1
|
Skvareninova J, Sitko R, Vido J, Snopková Z, Skvarenina J. Phenological response of European beech ( Fagus sylvatica L.) to climate change in the Western Carpathian climatic-geographical zones. FRONTIERS IN PLANT SCIENCE 2024; 15:1242695. [PMID: 38633456 PMCID: PMC11022973 DOI: 10.3389/fpls.2024.1242695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 02/20/2024] [Indexed: 04/19/2024]
Abstract
Introduction The paper analyzes the results of 26 years (1996-2021) of phenological observations of the vegetative organs of European beech (Fagus sylvatica L.) in the Western Carpathians. It evaluates the influence of the heterogeneity of this territory, including relief and elevation, based on climatic-geographical types. Methods Phenological stages, including leaf unfolding, full leaves, leaf coloring, and leaf fall, were monitored at 40 phenological stations across eight elevation zones. The study assesses trends in the occurrence of phenological stages, the length of the growing season, and phenological elevation gradients. Results The results indicate a statistically significant earlier onset of spring phenological phases and delay in autumn phases, resulting in an average extension of the beech growing season by 12 days. Our findings confirm that the lengthening of the growing season due to warming, as an expression of climate change, is predominantly attributed to the warming in the spring months. The detected delayed onset of autumn phenophases was not due to warming in the autumn months, but other environmental factors influence it. The trend of elongation of the growing season (p<0.01) is observed in all elevation zones, with a less significant trend observed only in zones around 400 and 600 m a.s.l, signaling changes in environmental conditions across most of the elevation spectrum. Moreover, the heterogeneity of climatic-geographical types within each elevation zone increases the variability in the duration of the growing season for sites with similar elevations. By extending the growing season, it is assumed that the beech area will be changed to locations with optimal environmental conditions, especially in terms of adverse climatic events (late spring frosts, drought) during the growing season. The phenological elevation gradients reveal an earlier onset of 2.2 days per 100 m for spring phenophases and a delay of 1.1-2.9 days per 100 m for autumn phenophases. Discussion These findings highlight the specific environmental conditions of European beech in the Western Carpathians and their potential for anticipating changes in its original area. Additionally, these observations can aid in forecasting the further development of phenological manifestations related to climate change.
Collapse
Affiliation(s)
- Jana Skvareninova
- Faculty of Ecology and Environmental Sciences, Technical University in Zvolen, Zvolen, Slovakia
| | - Roman Sitko
- Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
| | - Jaroslav Vido
- Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
| | - Zora Snopková
- Slovak Hydrometeorological Institut, Banská Bystrica, Slovakia
| | | |
Collapse
|
2
|
Didion-Gency M, Vitasse Y, Buchmann N, Gessler A, Gisler J, Schaub M, Grossiord C. Chronic warming and dry soils limit carbon uptake and growth despite a longer growing season in beech and oak. PLANT PHYSIOLOGY 2024; 194:741-757. [PMID: 37874743 PMCID: PMC10828195 DOI: 10.1093/plphys/kiad565] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/26/2023] [Accepted: 09/30/2023] [Indexed: 10/26/2023]
Abstract
Progressively warmer and drier climatic conditions impact tree phenology and carbon cycling with large consequences for forest carbon balance. However, it remains unclear how individual impacts of warming and drier soils differ from their combined effects and how species interactions modulate tree responses. Using mesocosms, we assessed the multiyear impact of continuous air warming and lower soil moisture alone or in combination on phenology, leaf-level photosynthesis, nonstructural carbohydrate concentrations, and aboveground growth of young European beech (Fagus sylvatica L.) and Downy oak (Quercus pubescens Willd.) trees. We further tested how species interactions (in monocultures and in mixtures) modulated these effects. Warming prolonged the growing season of both species but reduced growth in oak. In contrast, lower moisture did not impact phenology but reduced carbon assimilation and growth in both species. Combined impacts of warming and drier soils did not differ from their single effects. Under warmer and drier conditions, performances of both species were enhanced in mixtures compared to monocultures. Our work revealed that higher temperature and lower soil moisture have contrasting impacts on phenology vs. leaf-level assimilation and growth, with the former being driven by temperature and the latter by moisture. Furthermore, we showed a compensation in the negative impacts of chronic heat and drought by tree species interactions.
Collapse
Affiliation(s)
- Margaux Didion-Gency
- Plant Ecology Research Laboratory PERL, School of Architecture, Civil and Environmental Engineering, EPFL, CH-1015 Lausanne, Switzerland
| | - Yann Vitasse
- Forest Dynamics Research Unit, Swiss Federal Institute for Forest, Snow and Landscape WSL, CH-8903 Birmensdorf, Switzerland
| | - Nina Buchmann
- Institute of Agricultural Sciences, ETH Zurich, CH-8092 Zurich, Switzerland
| | - Arthur Gessler
- Forest Dynamics Research Unit, Swiss Federal Institute for Forest, Snow and Landscape WSL, CH-8903 Birmensdorf, Switzerland
- Institute of Terrestrial Ecosystems, ETH Zurich, CH-8092 Zurich, Switzerland
| | - Jonas Gisler
- Forest Dynamics Research Unit, Swiss Federal Institute for Forest, Snow and Landscape WSL, CH-8903 Birmensdorf, Switzerland
| | - Marcus Schaub
- Forest Dynamics Research Unit, Swiss Federal Institute for Forest, Snow and Landscape WSL, CH-8903 Birmensdorf, Switzerland
| | - Charlotte Grossiord
- Plant Ecology Research Laboratory PERL, School of Architecture, Civil and Environmental Engineering, EPFL, CH-1015 Lausanne, Switzerland
- Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape WSL, CH-1015 Lausanne, Switzerland
| |
Collapse
|
3
|
Shin N, Saitoh TM, Nasahara KN. How did the characteristics of the growing season change during the past 100 years at a steep river basin in Japan? PLoS One 2021; 16:e0255078. [PMID: 34330144 PMCID: PMC8324334 DOI: 10.1371/journal.pone.0255078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 07/11/2021] [Indexed: 11/18/2022] Open
Abstract
The effects of climate change on plant phenological events such as flowering, leaf flush, and leaf fall may be greater in steep river basins than at the horizontal scale of countries and continents. This possibility is due to the effect of temperature on plant phenology and the difference between vertical and horizontal gradients in temperature sensitivities. We calculated the dates of the start (SGS) and end of the growing season (EGS) in a steep river basin located in a mountainous region of central Japan over a century timescale by using a degree-day phenological model based on long-term, continuous, in situ observations. We assessed the generality and representativeness of the modelled SGS and EGS dates by using phenological events, live camera images taken at multiple points in the basin, and satellite observations made at a fine spatial resolution. The sensitivity of the modelled SGS and EGS dates to elevation changed from 3.29 days (100 m)−1 (−5.48 days °C−1) and −2.89 days (100 m)−1 (4.81 days °C−1), respectively, in 1900 to 2.85 days (100 m)−1 (−4.75 days °C−1) and −2.84 day (100 m)−1 (4.73 day °C−1) in 2019. The long-term trend of the sensitivity of the modelled SGS date to elevation was −0.0037 day year−1 per 100 m, but the analogous trend in the case of the modelled EGS date was not significant. Despite the need for further studies to improve the generality and representativeness of the model, the development of degree-day phenology models in multiple, steep river basins will deepen our ecological understanding of the sensitivity of plant phenology to climate change.
Collapse
Affiliation(s)
- Nagai Shin
- Earth Surface System Research Center, Research Institute for Global Change, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Kanazawa-ku, Yokohama, Japan
- River Basin Research Center, Gifu University, Gifu, Japan
- * E-mail:
| | - Taku M. Saitoh
- River Basin Research Center, Gifu University, Gifu, Japan
| | - Kenlo Nishida Nasahara
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
4
|
Müller C, Hethke M, Riedel F, Helle G. Inter- and intra-tree variability of carbon and oxygen stable isotope ratios of modern pollen from nine European tree species. PLoS One 2020; 15:e0234315. [PMID: 32516353 PMCID: PMC7282652 DOI: 10.1371/journal.pone.0234315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 05/23/2020] [Indexed: 11/19/2022] Open
Abstract
Stable carbon and oxygen isotope ratios of raw pollen sampled from nine abundant tree species growing in natural habitats of central and northern Europe were investigated to understand the intra- and inter-specific variability of pollen-isotope values. All species yielded specific δ13Cpollen and δ18Opollen values and patterns, which can be ascribed to their physiology and habitat preferences. Broad-leaved trees flowering early in the year before leaf proliferation (Alnus glutinosa and Corylus avellana) exhibited on average 2.6‰ lower δ13Cpollen and 3.1‰ lower δ18Opollen values than broad-leaved and coniferous trees flowering during mid and late spring (Acer pseudoplatanus, Betula pendula, Carpinus betulus, Fagus sylvatica, Picea abies, Pinus sylvestris and Quercus robur). Mean species-specific δ13Cpollen values did not change markedly over time, whereas δ18Opollen values of two consecutive years were often statistically distinct. An intra-annual analysis of B. pendula and P. sylvestris pollen revealed increasing δ18Opollen values during the final weeks of pollen development. However, the δ13Cpollen values remained consistent throughout the pollen-maturation process. Detailed intra-individual analysis yielded circumferential and height-dependent variations within carbon and oxygen pollen-isotopes and the sampling position on a tree accounted for differences of up to 3.5‰ for δ13Cpollen and 2.1‰ for δ18Opollen. A comparison of isotope ranges from different geographic settings revealed gradients between maritime and continental as well as between high and low altitudinal study sites. The results of stepwise regression analysis demonstrated, that carbon and oxygen pollen-isotopes also reflect local non-climate environmental conditions. A detailed understanding of isotope patterns and ranges in modern pollen is necessary to enhance the accuracy of palaeoclimate investigations on δ13C and δ18O of fossil pollen. Furthermore, pollen-isotope values are species-specific and the analysis of species growing during different phenophases may be valuable for palaeoweather reconstructions of different seasons.
Collapse
Affiliation(s)
- Carolina Müller
- Institute of Geological Sciences, Palaeontology, Freie Universität Berlin, Berlin, Germany
- Section 4.3 Climate Dynamics and Landscape Evolution, GFZ German Research Centre for Geoscience, Potsdam, Germany
| | - Manja Hethke
- Institute of Geological Sciences, Palaeontology, Freie Universität Berlin, Berlin, Germany
| | - Frank Riedel
- Institute of Geological Sciences, Palaeontology, Freie Universität Berlin, Berlin, Germany
| | - Gerhard Helle
- Institute of Geological Sciences, Palaeontology, Freie Universität Berlin, Berlin, Germany
- Section 4.3 Climate Dynamics and Landscape Evolution, GFZ German Research Centre for Geoscience, Potsdam, Germany
| |
Collapse
|
5
|
Bucher SF, König P, Menzel A, Migliavacca M, Ewald J, Römermann C. Traits and climate are associated with first flowering day in herbaceous species along elevational gradients. Ecol Evol 2018; 8:1147-1158. [PMID: 29375786 PMCID: PMC5773311 DOI: 10.1002/ece3.3720] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 11/10/2017] [Accepted: 11/20/2017] [Indexed: 01/17/2023] Open
Abstract
Phenological responses to changing temperatures are known as “fingerprints of climate change,” yet these reactions are highly species specific. To assess whether different plant characteristics are related to these species‐specific responses in flowering phenology, we observed the first flowering day (FFD) of ten herbaceous species along two elevational gradients, representing temperature gradients. On the same populations, we measured traits being associated with (1) plant performance (specific leaf area), (2) leaf biochemistry (leaf C, N, P, K, and Mg content), and (3) water‐use efficiency (stomatal pore area index and stable carbon isotopes concentration). We found that as elevation increased, FFD was delayed for all species with a highly species‐specific rate. Populations at higher elevations needed less temperature accumulation to start flowering than populations of the same species at lower elevations. Surprisingly, traits explained a higher proportion of variance in the phenological data than elevation. Earlier flowering was associated with higher water‐use efficiency, higher leaf C, and lower leaf P content. In addition to that, the intensity of shifts in FFD was related to leaf N and K. These results propose that traits have a high potential in explaining phenological variations, which even surpassed the effect of temperature changes in our study. Therefore, they have a high potential to be included in future analyses studying the effects of climate change and will help to improve predictions of vegetation changes.
Collapse
Affiliation(s)
- Solveig Franziska Bucher
- Department of Plant Biodiversity Institute of Ecology and Evolution Friedrich Schiller University Jena Jena Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig Leipzig Germany
| | - Patrizia König
- Department of Plant Biodiversity Institute of Ecology and Evolution Friedrich Schiller University Jena Jena Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig Leipzig Germany
| | - Annette Menzel
- Department of Ecology and Ecosystem Management Technische Universität München Freising Germany.,Institute for Advanced Study Technische Universität München Garching Germany
| | - Mirco Migliavacca
- Biosphere-Atmosphere Interactions and Experimentation Max Planck Institute for Biogeochemistry Jena Germany
| | - Jörg Ewald
- Department of Forest Science and Forestry Weihenstephan-Triesdorf University of Applied Sciences Freising Germany
| | - Christine Römermann
- Department of Plant Biodiversity Institute of Ecology and Evolution Friedrich Schiller University Jena Jena Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig Leipzig Germany
| |
Collapse
|
6
|
Donnelly A, Yu R. The rise of phenology with climate change: an evaluation of IJB publications. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2017; 61:29-50. [PMID: 28527153 DOI: 10.1007/s00484-017-1371-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/26/2017] [Accepted: 04/28/2017] [Indexed: 05/28/2023]
Abstract
In recent decades, phenology has become an important tool by which to measure both the impact of climate change on ecosystems and the feedback of ecosystems to the climate system. However, there has been little attempt to date to systematically quantify the increase in the number of scientific publications with a focus on phenology and climate change. In order to partially address this issue, we examined the number of articles (original papers, reviews and short communications) containing the terms 'phenology' and 'climate change' in the title, abstract or keywords, published in the International Journal of Biometeorology in the 60 years since its inception in 1957. We manually inspected all issues prior to 1987 for the search terms and subsequently used the search facility on the Web of Science online database. The overall number of articles published per decade remained relatively constant (255-378) but rose rapidly to 1053 in the most recent decade (2007-2016), accompanied by an increase (41-172) in the number of articles containing the search terms. A number of factors may have contributed to this rise, including the recognition of the value of phenology as an indicator of climate change and the initiation in 2010 of a series of conferences focusing on phenology which subsequently led to two special issues of the journal. The word 'phenology' was in use from the first issue, whereas 'climate change' only emerged in 1987 and peaked in 2014. New technologies such as satellite remote sensing and the internet led to an expansion of and greater access to a growing reservoir of phenological information. The application of phenological data included determining the impact of warming of phenophases, predicting wine quality and the pollen season, demonstrating the potential for mismatch to occur and both reconstructing and forecasting climate. Even though this analysis was limited to one journal, it is likely to be indicative of a similar trend across other scientific publications.
Collapse
Affiliation(s)
- Alison Donnelly
- Department of Geography, University of Wisconsin-Milwaukee, Milwaukee, WI, 53201, USA.
| | - Rong Yu
- School of Natural Resources, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| |
Collapse
|
7
|
Chaney L, Richardson BA, Germino MJ. Climate drives adaptive genetic responses associated with survival in big sagebrush ( Artemisia tridentata). Evol Appl 2017; 10:313-322. [PMID: 28352292 PMCID: PMC5367076 DOI: 10.1111/eva.12440] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 09/09/2016] [Indexed: 01/06/2023] Open
Abstract
A genecological approach was used to explore genetic variation for survival in Artemisia tridentata (big sagebrush). Artemisia tridentata is a widespread and foundational shrub species in western North America. This species has become extremely fragmented, to the detriment of dependent wildlife, and efforts to restore it are now a land management priority. Common-garden experiments were established at three sites with seedlings from 55 source-populations. Populations included each of the three predominant subspecies, and cytotype variations. Survival was monitored for 5 years to assess differences in survival between gardens and populations. We found evidence of adaptive genetic variation for survival. Survival within gardens differed by source-population and a substantial proportion of this variation was explained by seed climate of origin. Plants from areas with the coldest winters had the highest levels of survival, while populations from warmer and drier sites had the lowest levels of survival. Survival was lowest, 36%, in the garden that was prone to the lowest minimum temperatures. These results suggest the importance of climatic driven genetic differences and their effect on survival. Understanding how genetic variation is arrayed across the landscape, and its association with climate can greatly enhance the success of restoration and conservation.
Collapse
Affiliation(s)
- Lindsay Chaney
- Plant and Wildlife SciencesBrigham Young UniversityProvoUTUSA
- Present address: Department of BiologySnow CollegeEphraimUTUSA
| | | | - Matthew J. Germino
- U.S. Geological SurveyForest and Rangeland Ecosystem Science CenterBoiseIDUSA
| |
Collapse
|