1
|
Martel J, Rouleau N, Murugan NJ, Chin WC, Ojcius DM, Young JD. Effects of light, electromagnetic fields and water on biological rhythms. Biomed J 2024:100824. [PMID: 39672328 DOI: 10.1016/j.bj.2024.100824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/05/2024] [Accepted: 12/10/2024] [Indexed: 12/15/2024] Open
Abstract
The circadian rhythm controls a wide range of functions in the human body and is required for optimal health. Disruption of the circadian rhythm can produce inflammation and initiate or aggravate chronic diseases. The modern lifestyle involves long indoor hours under artificial lighting conditions as well as eating, working, and sleeping at irregular times, which can disrupt the circadian rhythm and lead to poor health outcomes. Seasonal solar variations, the sunspot cycle and anthropogenic electromagnetic fields can also influence biological rhythms. The possible mechanisms underlying these effects are discussed, which include resonance, radical-pair formation in retina cryptochromes, ion cyclotron resonance, and interference, ultimately leading to variations in melatonin and cortisol. Intracellular water, which represents a coherent, ordered phase that is sensitive to infrared light and electromagnetic fields, may also respond to solar variations and man-made electromagnetic fields. We describe here various factors and underlying mechanisms that affect the regulation of biological rhythms, with the aim of providing practical measures to improve human health.
Collapse
Affiliation(s)
- Jan Martel
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, Taiwan.
| | - Nicolas Rouleau
- Department of Health Sciences, Wilfrid Laurier University, Waterloo, Ontario, Canada; Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Nirosha J Murugan
- Department of Health Sciences, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - Wei-Chun Chin
- Department of Bioengineering, University of California, Merced, Merced, CA, USA
| | - David M Ojcius
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, Taiwan; Chang Gung Immunology Consortium, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Department of Biomedical Sciences, Arthur Dugoni School of Dentistry, University of the Pacific, San Francisco, CA, USA
| | - John D Young
- Chang Gung Biotechnology Corporation, Taipei, Taiwan
| |
Collapse
|
2
|
Davies E. The decrease in diurnal oxygen production in Elodea under the influence of high geomagnetic variability: the role of light, temperature and atmospheric pressure. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2023; 67:821-834. [PMID: 36973472 PMCID: PMC10167113 DOI: 10.1007/s00484-023-02457-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 02/24/2023] [Accepted: 03/15/2023] [Indexed: 05/09/2023]
Abstract
Epidemiological studies have indicated adverse effects of geomagnetic disturbance on human health, including increased mortality. There is evidence from plant and animal studies that help to elucidate this interaction. This study tests the hypothesis that geomagnetic disturbance affects living systems, by modifying the metabolic process of photosynthesis, in the natural environment.Continuous 24-h measurements of dissolved oxygen in flasks containing Holtfreiter's solution and strands of healthy Elodea were recorded from May 1996, until September 1998, in an electromagnetically quiet, purpose built, garden shed environment, without mains electricity. Sensormeter recordings of oxygen, light, temperature and air pressure were uploaded weekly to a PC. The hourly total geomagnetic field measurements were obtained from the nearest observatory.Significant decrease in oxygen (diurnal volume of oxygen divided by plant mass and diurnal light), (O/WL), was found on days of high geomagnetic field variability throughout 11 recorded months of the year 1997. This result was independent of temperature and atmospheric pressure. No significant decrease in O/WL during high geomagnetic variability was found for the 7 months recorded in 1996. The 1996 and 1997 data both showed a significant decrease in the diurnal time lag between peak light and peak oxygen for diurnal high geomagnetic variability compared with low geomagnetic variability. Cross correlation analysis for 1997 and 1998 data showed a decrease in positive correlation of oxygen with light in high geomagnetic variability, compared with low geomagnetic variability, and increased positive correlation with the geomagnetic field instead. These experiments support a hypothesis of high geomagnetic field variability as a weak zeitgeber, and a metabolic depressant for photosynthetic oxygen production in plants.
Collapse
|
3
|
Martel J, Chang SH, Chevalier G, Ojcius DM, Young JD. Influence of electromagnetic fields on the circadian rhythm: Implications for human health and disease. Biomed J 2023; 46:48-59. [PMID: 36681118 PMCID: PMC10105029 DOI: 10.1016/j.bj.2023.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/06/2022] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Living organisms have evolved within the natural electromagnetic fields (EMFs) of the earth which comprise the global atmospheric electrical circuit, Schumann resonances (SRs) and the geomagnetic field. Research suggests that the circadian rhythm, which controls several physiological functions in the human body, can be influenced by light but also by the earth's EMFs. Cyclic solar disturbances, including sunspots and seasonal weakening of the geomagnetic field, can affect human health, possibly by disrupting the circadian rhythm and downstream physiological functions. Severe disruption of the circadian rhythm increases inflammation which can induce fatigue, fever and flu-like symptoms in a fraction of the population and worsen existing symptoms in old and diseased individuals, leading to periodic spikes of infectious and chronic diseases. Possible mechanisms underlying sensing of the earth's EMFs involve entrainment via electrons and electromagnetic waves, light-dependent radical pair formation in retina cryptochromes, and paramagnetic magnetite nanoparticles. Factors such as electromagnetic pollution from wireless devices, base antennas and low orbit internet satellites, shielding by non-conductive materials used in shoes and buildings, and local geomagnetic anomalies may also affect sensing of the earth's EMFs by the human body and contribute to circadian rhythm disruption and disease development.
Collapse
Affiliation(s)
- Jan Martel
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, Taiwan
| | - Shih-Hsin Chang
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, Taiwan
| | - Gaétan Chevalier
- Department of Family Medicine and Public Health, University of California, San Diego, La Jolla, CA, USA
| | - David M Ojcius
- Chang Gung Immunology Consortium, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Department of Biomedical Sciences, University of the Pacific, Arthur Dugoni School of Dentistry, San Francisco, CA, USA
| | - John D Young
- Chang Gung Biotechnology Corporation, Taipei, Taiwan.
| |
Collapse
|
4
|
Krylov VV, Izvekov EI, Pavlova VV, Pankova NA, Osipova EA. Magnetic Fluctuations Entrain the Circadian Rhythm of Locomotor Activity in Zebrafish: Can Cryptochrome Be Involved? BIOLOGY 2022; 11:biology11040591. [PMID: 35453790 PMCID: PMC9025847 DOI: 10.3390/biology11040591] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/05/2022] [Accepted: 04/11/2022] [Indexed: 12/16/2022]
Abstract
Simple Summary Most physiological processes are subject to biological circadian rhythms maintained by a complex cascade of biochemical events. The circadian rhythmicity of behavior allows organisms to use energy and resources optimally under changing environmental conditions. To that end, endogenous circadian rhythms are synchronized with external pacemakers (zeitgebers), especially daily changes in illumination. In the 1960s, it was assumed that, in addition to this primary photic cue, animals can use diurnal geomagnetic variation as a secondary zeitgeber. Earlier research found that slow magnetic fluctuations can affect some behavioral endpoints of circadian rhythms by modulating an organism’s physiological state. However, no direct experiments to test such an entrainment of biological clocks by artificial magnetic fields were performed due to the technical difficulty of eliminating natural geomagnetic variation. For the first time, we carried out such tests in a fully controlled magnetic environment using zebrafish as a research model. The experimental treatments included various light/dark cycles and continuous illumination coupled with pre-recorded natural geomagnetic variations. The obtained results indicate that slow magnetic fluctuations can entrain endogenous rhythmical activity in vertebrates. Probably, cryptochromes play a key role in this process. This research provides promising opportunities for the magnetic control of circadian processes, e.g., correcting circadian dysfunctions. Abstract In the 1960s, it was hypothesized that slow magnetic fluctuations could be a secondary zeitgeber for biological circadian rhythms. However, no comprehensive experimental research has been carried out to test the entrainment of free-running circadian rhythms by this zeitgeber. We studied the circadian patterns of the locomotor activity of zebrafish (Danio rerio) under different combinations of light regimes and slow magnetic fluctuations, based on a record of natural geomagnetic variation. A rapid synchronization of activity rhythms to an unusual 24:12 light/dark cycle was found under magnetic fluctuations with a period of 36 h. Under constant illumination, significant locomotor activity rhythms with 26.17 h and 33.07 h periods were registered in zebrafish exposed to magnetic fluctuations of 26.8 h and 33.76 h, respectively. The results reveal the potential of magnetic fluctuations for entrainment of circadian rhythms in zebrafish and genuine prospects to manipulate circadian oscillators via magnetic fields. The putative mechanisms responsible for the entrainment are discussed, including the possible role of cryptochromes.
Collapse
Affiliation(s)
- Viacheslav V. Krylov
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, 152742 Borok, Russia; (E.I.I.); (V.V.P.); (N.A.P.); (E.A.O.)
- Scientific and Technological Center of Unique Instrumentation, Russian Academy of Sciences, 117342 Moscow, Russia
- Correspondence:
| | - Evgeny I. Izvekov
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, 152742 Borok, Russia; (E.I.I.); (V.V.P.); (N.A.P.); (E.A.O.)
| | - Vera V. Pavlova
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, 152742 Borok, Russia; (E.I.I.); (V.V.P.); (N.A.P.); (E.A.O.)
| | - Natalia A. Pankova
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, 152742 Borok, Russia; (E.I.I.); (V.V.P.); (N.A.P.); (E.A.O.)
| | - Elena A. Osipova
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, 152742 Borok, Russia; (E.I.I.); (V.V.P.); (N.A.P.); (E.A.O.)
| |
Collapse
|
5
|
Krylov VV. Influence of Geomagnetic Disturbances at Different Times of Day on Locomotor Activity in Zebrafish (Danio Rerio). Clocks Sleep 2021; 3:624-632. [PMID: 34940024 PMCID: PMC8700499 DOI: 10.3390/clockssleep3040045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/19/2021] [Accepted: 11/25/2021] [Indexed: 12/29/2022] Open
Abstract
The influence of magnetic fields and natural geomagnetic storms on biological circadian rhythms are actively studied. This study reveals an impact of local natural perturbations in the geomagnetic field that occurred at different times of the day on circadian patterns of locomotor activity of zebrafish. A decrease in zebrafish swimming speed was observed during the geomagnetic disturbances before or after the fluctuations of diurnal geomagnetic variation. However, if the geomagnetic perturbations coincided with the fluctuations of diurnal geomagnetic variation, the decrease in zebrafish swimming speed was insignificant. This result suggests that the biological effects of geomagnetic disturbances may depend on synchronization with the diurnal geomagnetic variation. It implies that the previously published correlations between geomagnetic activity and medical or biological parameters could result from a disruption in circadian biorhythms.
Collapse
Affiliation(s)
- Viacheslav V Krylov
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, 152742 Borok, Russia
| |
Collapse
|
6
|
The Possible Effect of Space Weather Factors on Various Physiological Systems of the Human Organism. ATMOSPHERE 2021. [DOI: 10.3390/atmos12030346] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A systematic review of heliobiological studies of the last 25 years devoted to the study of the potential influence of space weather factors on human health and well-being was carried out. We proposed three criteria (coordinates), according to which the work on solar–biospheric relations was systematized: the time scale of data sampling (years, days, hours, minutes); the level of organization of the biological system under study (population, group, individual, body system); and the degree of system response (norm, adaptation, failure of adaptation (illness), disaster (death)). This systematic review demonstrates that three parameters mentioned above are closely related in the existing heliobiological studies: the larger the selected time scale, the higher the level of estimated biological system organization and the stronger the potential response degree is. The long-term studies are devoted to the possible influence of solar activity on population disasters, i.e., significant increases in morbidity and mortality. On a daily scale, a probable effect of geomagnetic storms and other space weather events on short-term local outbreaks of morbidity is shown as well as on cases of deterioration in people functional state. On an intraday scale, in the regular functioning mode, the heart and brain rhythms of healthy people turn to be synchronized with geomagnetic field variations in some frequency ranges, which apparently is the necessary organism’s existence element. The applicability of different space weather indices at different data sampling rates, the need to take into account the contribution of meteorological factors, and the prospects for an individual approach in heliobiology are discussed. The modern important results of experiments on modeling the action of magnetic storms in laboratory conditions and the substantiation of possible theoreical mechanisms are described. These results provide an experimental and theoretical basis for studies of possible connections of space weather and human health.
Collapse
|
7
|
Krylov VV, Papchenkova GA, Osipova EA. The Influence of Changes in Magnetic Variations and Light-Dark Cycle on Life-History Traits of Daphnia magna. Bioelectromagnetics 2020; 41:338-347. [PMID: 32297359 DOI: 10.1002/bem.22264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 03/12/2020] [Accepted: 04/02/2020] [Indexed: 12/18/2022]
Abstract
Day-night cycle is the main zeitgeber (time giver) for biological circadian rhythms. Recently, it was suggested that natural diurnal geomagnetic variation may also be utilized by organisms for the synchronization of these rhythms. In this study, life-history traits in Daphnia magna were evaluated after short-term and multigenerational exposure to 16 h day/8 h night cycle, 32 h day/16 h night cycle, diurnal geomagnetic variation of 24 h, simulated magnetic variation of 48 h, and combinations of these conditions. With short-term exposure, the lighting mode substantially influenced the brood to brood period and the lifespan in daphnids. The brood to brood period, brood size, and body length of crustaceans similarly depended on the lighting mode during the multigenerational exposure. At the same time, an interaction of lighting mode and magnetic variations affected to a lesser extent brood to brood period, brood size, and newborn's body length. The influence of simulated diurnal variation on life-history traits in daphnids appeared distinctly as effects of synchronization between periods of lighting mode and magnetic variations during the multigenerational exposure. Newborn's body length significantly depended on the lighting regime when the periods of both studied zeitgebers were unsynchronized, or on the interaction of light regime with magnetic variations when the periods were synchronized. These results confirm the hypothesis that diurnal geomagnetic variation is an additional zeitgeber for biological circadian rhythms. Possible mechanisms for these observed effects are discussed. Bioelectromagnetics. © 2020 Bioelectromagnetics Society.
Collapse
Affiliation(s)
- Viacheslav V Krylov
- I.D. Papanin Institute for Biology of Inland Waters Russian Academy of Sciences, Borok, Russia
| | - Galina A Papchenkova
- I.D. Papanin Institute for Biology of Inland Waters Russian Academy of Sciences, Borok, Russia
| | - Elena A Osipova
- I.D. Papanin Institute for Biology of Inland Waters Russian Academy of Sciences, Borok, Russia
| |
Collapse
|