1
|
van Dieren A, Schwarzenbacher RE, Sonnewald S, Bittner A, Vothknecht UC. Analysis of abiotic and biotic stress-induced Ca 2+ transients in the crop species Solanum tuberosum. Sci Rep 2024; 14:27625. [PMID: 39528594 PMCID: PMC11555376 DOI: 10.1038/s41598-024-79134-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024] Open
Abstract
Secondary messengers, such as calcium ions (Ca2+), are integral parts of a system that transduces environmental stimuli into appropriate cellular responses. Different abiotic and biotic stresses as well as developmental processes trigger temporal increases in cytosolic free Ca2+ levels by an influx from external and internal stores. Stimulus-specificity is obtained by a certain amplitude, duration, oscillation and localisation of the response. Most knowledge on stress-specific Ca2+ transient, called calcium signatures, has been gained in the model plant Arabidopsis thaliana, while reports about stress-related Ca2+ signalling in crop plants are comparatively scarce. In this study, we introduced the Ca2+ biosensor apoaequorin into potato (Solanum tuberosum, Lcv. Désirée). We observed dose-dependent calcium signatures in response to a series of stress stimuli, including H2O2, NaCl, mannitol and pathogen-associated molecular patterns (PAMPs) with stimuli-specific kinetics. Direct comparison with Arabidopsis revealed differences in the kinetics and amplitude of Ca2+ transients between both species, implying species-specific sensitivity for different stress conditions. The potato line generated in this work provides a useful tool for further investigations on stress-induced signalling pathways, which could contribute to the generation of novel, stress-tolerant potato varieties.
Collapse
Affiliation(s)
- Annelotte van Dieren
- Institute for Cellular and Molecular Botany, University of Bonn, Kirschallee 1, 53115, Bonn, Germany.
| | | | - Sophia Sonnewald
- Department of Biology, Chair of Biochemistry, Friedrich-Alexander-University Erlangen-Nuremberg, Staudtstraße 5, Erlangen, 91058, Germany
| | - Andras Bittner
- Institute for Cellular and Molecular Botany, University of Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Ute C Vothknecht
- Institute for Cellular and Molecular Botany, University of Bonn, Kirschallee 1, 53115, Bonn, Germany.
| |
Collapse
|
2
|
Somoza SC, Boccardo NA, Santin F, Sede AR, Wengier DL, Boisson-Dernier A, Muschietti JP. Arabidopsis RALF4 Rapidly Halts Pollen Tube Growth by Increasing ROS and Decreasing Calcium Cytoplasmic Tip Levels. Biomolecules 2024; 14:1375. [PMID: 39595552 PMCID: PMC11591785 DOI: 10.3390/biom14111375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/22/2024] [Accepted: 10/25/2024] [Indexed: 11/28/2024] Open
Abstract
In recent years, the rapid alkalinization factor (RALF) family of cysteine-rich peptides has been reported to be crucial for several plant signaling mechanisms, including cell growth, plant immunity and fertilization. RALF4 and RALF19 (RALF4/19) pollen peptides redundantly regulate the pollen tube integrity and growth through binding to their receptors ANXUR1/2 (ANX1/2) and Buddha's Paper Seal 1 and 2 (BUPS1/2), members of the Catharanthus roseus RLK1-like (CrRLK1L) family, and, thus, are essential for plant fertilization. However, the signaling mechanisms at the cellular level that follow these binding events remain unclear. In this study, we show that the addition of synthetic peptide RALF4 rapidly halts pollen tube growth along with the excessive deposition of plasma membrane and cell wall material at the tip. The ratiometric imaging of genetically encoded ROS and Ca2+ sensors-expressing pollen tubes shows that RALF4 treatment modulates the cytoplasmic levels of reactive oxygen species (ROS) and calcium (Ca2+) in opposite ways at the tip. Thus, we propose that pollen RALF4/19 peptides bind ANX1/2 and BUPS1/2 to regulate ROS and calcium homeostasis to ensure proper cell wall integrity and control of pollen tube growth.
Collapse
Affiliation(s)
- Sofía C. Somoza
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, “Dr. Héctor Torres” (INGEBI-CONICET), Vuelta de Obligado 2490, Buenos Aires C1428ADN, Argentina; (S.C.S.); (N.A.B.); (F.S.); (A.R.S.); (D.L.W.)
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, Pabellón II, Buenos Aires C1428EGA, Argentina
| | - Noelia A. Boccardo
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, “Dr. Héctor Torres” (INGEBI-CONICET), Vuelta de Obligado 2490, Buenos Aires C1428ADN, Argentina; (S.C.S.); (N.A.B.); (F.S.); (A.R.S.); (D.L.W.)
| | - Franco Santin
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, “Dr. Héctor Torres” (INGEBI-CONICET), Vuelta de Obligado 2490, Buenos Aires C1428ADN, Argentina; (S.C.S.); (N.A.B.); (F.S.); (A.R.S.); (D.L.W.)
| | - Ana R. Sede
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, “Dr. Héctor Torres” (INGEBI-CONICET), Vuelta de Obligado 2490, Buenos Aires C1428ADN, Argentina; (S.C.S.); (N.A.B.); (F.S.); (A.R.S.); (D.L.W.)
| | - Diego L. Wengier
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, “Dr. Héctor Torres” (INGEBI-CONICET), Vuelta de Obligado 2490, Buenos Aires C1428ADN, Argentina; (S.C.S.); (N.A.B.); (F.S.); (A.R.S.); (D.L.W.)
| | | | - Jorge P. Muschietti
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, “Dr. Héctor Torres” (INGEBI-CONICET), Vuelta de Obligado 2490, Buenos Aires C1428ADN, Argentina; (S.C.S.); (N.A.B.); (F.S.); (A.R.S.); (D.L.W.)
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, Pabellón II, Buenos Aires C1428EGA, Argentina
| |
Collapse
|
3
|
Ghosh S, Dahiya M, Kumar A, Bheri M, Pandey GK. Calcium imaging: a technique to monitor calcium dynamics in biological systems. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1777-1811. [PMID: 38222278 PMCID: PMC10784449 DOI: 10.1007/s12298-023-01405-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 01/16/2024]
Abstract
Calcium ion (Ca2+) is a multifaceted signaling molecule that acts as an important second messenger. During the course of evolution, plants and animals have developed Ca2+ signaling in order to respond against diverse stimuli, to regulate a large number of physiological and developmental pathways. Our understanding of Ca2+ signaling and its components in physiological phenomena ranging from lower to higher organisms, and from single cell to multiple tissues has grown exponentially. The generation of Ca2+ transients or signatures for various stress factor is a well-known mechanism adopted in plant and animal systems. However, the decoding of such remarkable signatures is an uphill task and is always an interesting goal for the scientific community. In the past few decades, studies on the concentration and dynamics of intracellular Ca2+ are significantly increasing and have become a trend in modern biology. The advancement in approaches from Ca2+ binding dyes to in vivo Ca2+ imaging through the use of Ca2+ biosensors to achieve spatio-temporal resolution in micro and milliseconds range, provide us phenomenal opportunities to study live cell Ca2+ imaging or dynamics. Here, we describe the usage, improvement and advancement of Ca2+ based dyes, genetically encoded probes and sensors to achieve extraordinary Ca2+ imaging in plants and animals. Graphical abstract
Collapse
Affiliation(s)
- Soma Ghosh
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021 India
| | - Monika Dahiya
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021 India
| | - Amit Kumar
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021 India
| | - Malathi Bheri
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021 India
| | - Girdhar K. Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021 India
| |
Collapse
|
4
|
Guo J, He J, Dehesh K, Cui X, Yang Z. CamelliA-based simultaneous imaging of Ca2+ dynamics in subcellular compartments. PLANT PHYSIOLOGY 2022; 188:2253-2271. [PMID: 35218352 PMCID: PMC8968278 DOI: 10.1093/plphys/kiac020] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
As a universal second messenger, calcium (Ca2+) transmits specific cellular signals via a spatiotemporal signature generated from its extracellular source and internal stores. Our knowledge of the mechanisms underlying the generation of a Ca2+ signature is hampered by limited tools for simultaneously monitoring dynamic Ca2+ levels in multiple subcellular compartments. To overcome the limitation and to further improve spatiotemporal resolutions, we have assembled a molecular toolset (CamelliA lines) in Arabidopsis (Arabidopsis thaliana) that enables simultaneous and high-resolution monitoring of Ca2+ dynamics in multiple subcellular compartments through imaging different single-colored genetically encoded calcium indicators. We uncovered several Ca2+ signatures in three types of Arabidopsis cells in response to internal and external cues, including rapid oscillations of cytosolic Ca2+ and apical plasma membrane Ca2+ influx in fast-growing Arabidopsis pollen tubes, the spatiotemporal relationship of Ca2+ dynamics in four subcellular compartments of root epidermal cells challenged with salt, and a shockwave-like Ca2+ wave propagating in laser-wounded leaf epidermis. These observations serve as a testimony to the wide applicability of the CamelliA lines for elucidating the subcellular sources contributing to the Ca2+ signatures in plants.
Collapse
Affiliation(s)
- Jingzhe Guo
- Institute for Integrative Genome Biology, University of California, Riverside, 92521 California, USA
- Department of Botany and Plant Sciences, University of California, Riverside, 92521 California, USA
| | - Jiangman He
- Institute for Integrative Genome Biology, University of California, Riverside, 92521 California, USA
- Department of Botany and Plant Sciences, University of California, Riverside, 92521 California, USA
| | - Katayoon Dehesh
- Institute for Integrative Genome Biology, University of California, Riverside, 92521 California, USA
- Department of Botany and Plant Sciences, University of California, Riverside, 92521 California, USA
| | - Xinping Cui
- Institute for Integrative Genome Biology, University of California, Riverside, 92521 California, USA
- Department of Statistics, University of California, Riverside, 92521 California, USA
| | | |
Collapse
|
5
|
Dufil G, Bernacka-Wojcik I, Armada-Moreira A, Stavrinidou E. Plant Bioelectronics and Biohybrids: The Growing Contribution of Organic Electronic and Carbon-Based Materials. Chem Rev 2022; 122:4847-4883. [PMID: 34928592 PMCID: PMC8874897 DOI: 10.1021/acs.chemrev.1c00525] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Indexed: 12/26/2022]
Abstract
Life in our planet is highly dependent on plants as they are the primary source of food, regulators of the atmosphere, and providers of a variety of materials. In this work, we review the progress on bioelectronic devices for plants and biohybrid systems based on plants, therefore discussing advancements that view plants either from a biological or a technological perspective, respectively. We give an overview on wearable and implantable bioelectronic devices for monitoring and modulating plant physiology that can be used as tools in basic plant science or find application in agriculture. Furthermore, we discuss plant-wearable devices for monitoring a plant's microenvironment that will enable optimization of growth conditions. The review then covers plant biohybrid systems where plants are an integral part of devices or are converted to devices upon functionalization with smart materials, including self-organized electronics, plant nanobionics, and energy applications. The review focuses on advancements based on organic electronic and carbon-based materials and discusses opportunities, challenges, as well as future steps.
Collapse
Affiliation(s)
- Gwennaël Dufil
- Laboratory
of Organic Electronics, Department of Science and Technology, Linköping University, SE-601 74 Norrköping, Sweden
| | - Iwona Bernacka-Wojcik
- Laboratory
of Organic Electronics, Department of Science and Technology, Linköping University, SE-601 74 Norrköping, Sweden
| | - Adam Armada-Moreira
- Laboratory
of Organic Electronics, Department of Science and Technology, Linköping University, SE-601 74 Norrköping, Sweden
| | - Eleni Stavrinidou
- Laboratory
of Organic Electronics, Department of Science and Technology, Linköping University, SE-601 74 Norrköping, Sweden
- Wallenberg
Wood Science Center, Department of Science and Technology, Linköping University, SE-60174 Norrköping, Sweden
- Umeå
Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Campus Umeå, SE-901 83 Umeå, Sweden
| |
Collapse
|
6
|
Resentini F, Grenzi M, Ancora D, Cademartori M, Luoni L, Franco M, Bassi A, Bonza MC, Costa A. Simultaneous imaging of ER and cytosolic Ca2+ dynamics reveals long-distance ER Ca2+ waves in plants. PLANT PHYSIOLOGY 2021; 187:603-617. [PMID: 34608947 PMCID: PMC8491065 DOI: 10.1093/plphys/kiab251] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/12/2021] [Indexed: 05/07/2023]
Abstract
Calcium ions (Ca2+) play a key role in cell signaling across organisms. In plants, a plethora of environmental and developmental stimuli induce specific Ca2+ increases in the cytosol as well as in different cellular compartments including the endoplasmic reticulum (ER). The ER represents an intracellular Ca2+ store that actively accumulates Ca2+ taken up from the cytosol. By exploiting state-of-the-art genetically encoded Ca2+ indicators, specifically the ER-GCaMP6-210 and R-GECO1, we report the generation and characterization of an Arabidopsis (Arabidopsis thaliana) line that allows for simultaneous imaging of Ca2+ dynamics in both the ER and cytosol at different spatial scales. By performing analyses in single cells, we precisely quantified (1) the time required by the ER to import Ca2+ from the cytosol into the lumen and (2) the time required to observe a cytosolic Ca2+ increase upon the pharmacological inhibition of the ER-localized P-Type IIA Ca2+-ATPases. Furthermore, live imaging of mature, soil-grown plants revealed the existence of a wounding-induced, long-distance ER Ca2+ wave propagating in injured and systemic rosette leaves. This technology enhances high-resolution analyses of intracellular Ca2+ dynamics at the cellular level and in adult organisms and paves the way to develop new methodologies aimed at defining the contribution of subcellular compartments in Ca2+ homeostasis and signaling.
Collapse
Affiliation(s)
| | - Matteo Grenzi
- Department of Biosciences, University of Milan, Milan 20133, Italy
| | - Daniele Ancora
- Department of Physics, Politecnico di Milano, Milan 20133, Italy
| | - Mara Cademartori
- Department of Biosciences, University of Milan, Milan 20133, Italy
| | - Laura Luoni
- Department of Biosciences, University of Milan, Milan 20133, Italy
| | - Marianna Franco
- Department of Biosciences, University of Milan, Milan 20133, Italy
| | - Andrea Bassi
- Department of Physics, Politecnico di Milano, Milan 20133, Italy
| | | | - Alex Costa
- Department of Biosciences, University of Milan, Milan 20133, Italy
- Institute of Biophysics, Consiglio Nazionale Delle Ricerche, Milan 20133, Italy
| |
Collapse
|
7
|
Hayashi M, Palmgren M. The quest for the central players governing pollen tube growth and guidance. PLANT PHYSIOLOGY 2021; 185:682-693. [PMID: 33793904 PMCID: PMC8133568 DOI: 10.1093/plphys/kiaa092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 12/06/2020] [Indexed: 05/02/2023]
Abstract
Recent insights into the mechanism of pollen tube growth and guidance point to the importance of H+ dynamics, which are regulated by the plasma membrane H+-ATPase.
Collapse
Affiliation(s)
- Maki Hayashi
- Department for Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Copenhagen, Denmark
| | - Michael Palmgren
- Department for Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Copenhagen, Denmark
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000,China
- Author for communication:
| |
Collapse
|
8
|
Wollenweber TE, van Deenen N, Roelfs KU, Prüfer D, Gronover CS. Microscopic and Transcriptomic Analysis of Pollination Processes in Self-Incompatible Taraxacum koksaghyz. PLANTS 2021; 10:plants10030555. [PMID: 33809548 PMCID: PMC7998978 DOI: 10.3390/plants10030555] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/12/2021] [Accepted: 03/13/2021] [Indexed: 11/23/2022]
Abstract
The transition of the Russian dandelion Taraxacum koksaghyz (Asteraceae) to a profitable, alternative crop producing natural rubber and inulin requires the optimization of several agronomic traits, cultivation conditions and harvesting procedures to improve the yield. However, efficient breeding is hindered by the obligatory sexual outcrossing of this species. Several other asters have been investigated to determine the mechanism of self-incompatibility, but the underlying molecular basis remains unclear. We therefore investigated the self-pollination and cross-pollination of two compatible T. koksaghyz varieties (TkMS2 and TkMS3) by microscopy and transcriptomic analysis to shed light on the pollination process. Self-pollination showed typical sporophytic self-incompatibility characteristics, with the rare pollen swelling at the pollen tube apex. In contrast, cross-pollination was characterized by pollen germination and penetration of the stigma by the growing pollen tubes. RNA-Seq was used to profile gene expression in the floret tissue during self-pollination and cross-pollination, and the differentially expressed genes were identified. This revealed three candidates for the early regulation of pollination in T. koksaghyz, which can be used to examine self-incompatibility mechanisms in more detail and to facilitate breeding programs.
Collapse
Affiliation(s)
- Tassilo Erik Wollenweber
- Institute of Plant Biology and Biotechnology, University of Muenster, Schlossplatz 8, 48143 Muenster, Germany; (T.E.W.); (N.v.D.); (D.P.)
| | - Nicole van Deenen
- Institute of Plant Biology and Biotechnology, University of Muenster, Schlossplatz 8, 48143 Muenster, Germany; (T.E.W.); (N.v.D.); (D.P.)
| | - Kai-Uwe Roelfs
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schlossplatz 8, 48143 Muenster, Germany;
| | - Dirk Prüfer
- Institute of Plant Biology and Biotechnology, University of Muenster, Schlossplatz 8, 48143 Muenster, Germany; (T.E.W.); (N.v.D.); (D.P.)
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schlossplatz 8, 48143 Muenster, Germany;
| | - Christian Schulze Gronover
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schlossplatz 8, 48143 Muenster, Germany;
- Correspondence: ; Tel.: +49(0)251-83-24998
| |
Collapse
|
9
|
Ponvert N, Goldberg J, Leydon A, Johnson MA. Iterative subtraction facilitates automated, quantitative analysis of multiple pollen tube growth features. PLANT REPRODUCTION 2019; 32:45-54. [PMID: 30543045 DOI: 10.1007/s00497-018-00351-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 11/22/2018] [Indexed: 06/09/2023]
Abstract
In flowering plants, successful reproduction and generation of seed depends on the delivery of immotile sperm to female gametes via the pollen tube. As reproduction in flowering plants is the cornerstone of our agricultural industry, there is a need to uncover the genes, small molecules, and environmental conditions that affect pollen tube growth dynamics. However, methods for measuring pollen tube phenotypes are labor intensive, and suffer from a tradeoff between workload and resolution. To approach these problems, we use an image analysis technique called Automated Stack Iterative Subtraction (ASIST). Our tool converts growing pollen tube tips into closed particles, making the automated simultaneous extraction of multiple pollen tube phenotypes from hundreds of individual cells tractable via existing particle identification technology. Here we use our tool to analyze growth dynamics of pollen tubes in vitro, and semi in vivo. We show that ASIST provides a framework for robust, high throughput analysis of pollen tube growth behaviors in populations of cells, thus facilitating pollen tube phenomics.
Collapse
Affiliation(s)
- Nathaniel Ponvert
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, 02912, USA
| | - Jacob Goldberg
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, 02912, USA
| | - Alexander Leydon
- Department of Biology, University of Washington, Seattle, WA, 98195, USA
| | - Mark A Johnson
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, 02912, USA.
| |
Collapse
|