1
|
Zhang A, Khan A, Majeti S, Pham J, Nguyen C, Tran P, Iyer V, Shelat A, Chen J, Manjunath BS. Automated Segmentation and Connectivity Analysis for Normal Pressure Hydrocephalus. BME FRONTIERS 2022; 2022:9783128. [PMID: 37850185 PMCID: PMC10521674 DOI: 10.34133/2022/9783128] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 11/26/2021] [Indexed: 10/19/2023] Open
Abstract
Objective and Impact Statement. We propose an automated method of predicting Normal Pressure Hydrocephalus (NPH) from CT scans. A deep convolutional network segments regions of interest from the scans. These regions are then combined with MRI information to predict NPH. To our knowledge, this is the first method which automatically predicts NPH from CT scans and incorporates diffusion tractography information for prediction. Introduction. Due to their low cost and high versatility, CT scans are often used in NPH diagnosis. No well-defined and effective protocol currently exists for analysis of CT scans for NPH. Evans' index, an approximation of the ventricle to brain volume using one 2D image slice, has been proposed but is not robust. The proposed approach is an effective way to quantify regions of interest and offers a computational method for predicting NPH. Methods. We propose a novel method to predict NPH by combining regions of interest segmented from CT scans with connectome data to compute features which capture the impact of enlarged ventricles by excluding fiber tracts passing through these regions. The segmentation and network features are used to train a model for NPH prediction. Results. Our method outperforms the current state-of-the-art by 9 precision points and 29 recall points. Our segmentation model outperforms the current state-of-the-art in segmenting the ventricle, gray-white matter, and subarachnoid space in CT scans. Conclusion. Our experimental results demonstrate that fast and accurate volumetric segmentation of CT brain scans can help improve the NPH diagnosis process, and network properties can increase NPH prediction accuracy.
Collapse
Affiliation(s)
- Angela Zhang
- Vision Research Laboratory, Electrical and Computer Engineering, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Amil Khan
- Vision Research Laboratory, Electrical and Computer Engineering, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Saisidharth Majeti
- Vision Research Laboratory, Electrical and Computer Engineering, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Judy Pham
- Chen Lab, Department of Neurosurgery, University of California, Irvine Medical Center, Orange, CA, USA
| | - Christopher Nguyen
- Chen Lab, Department of Neurosurgery, University of California, Irvine Medical Center, Orange, CA, USA
| | - Peter Tran
- Chen Lab, Department of Neurosurgery, University of California, Irvine Medical Center, Orange, CA, USA
| | - Vikram Iyer
- Vision Research Laboratory, Electrical and Computer Engineering, University of California, Santa Barbara, Santa Barbara, CA, USA
| | | | - Jefferson Chen
- Chen Lab, Department of Neurosurgery, University of California, Irvine Medical Center, Orange, CA, USA
| | - B. S. Manjunath
- Vision Research Laboratory, Electrical and Computer Engineering, University of California, Santa Barbara, Santa Barbara, CA, USA
| |
Collapse
|