1
|
Chen K, Abtahi F, Carrero JJ, Fernandez-Llatas C, Seoane F. Process mining and data mining applications in the domain of chronic diseases: A systematic review. Artif Intell Med 2023; 144:102645. [PMID: 37783545 DOI: 10.1016/j.artmed.2023.102645] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 10/04/2023]
Abstract
The widespread use of information technology in healthcare leads to extensive data collection, which can be utilised to enhance patient care and manage chronic illnesses. Our objective is to summarise previous studies that have used data mining or process mining methods in the context of chronic diseases in order to identify research trends and future opportunities. The review covers articles that pertain to the application of data mining or process mining methods on chronic diseases that were published between 2000 and 2022. Articles were sourced from PubMed, Web of Science, EMBASE, and Google Scholar based on predetermined inclusion and exclusion criteria. A total of 71 articles met the inclusion criteria and were included in the review. Based on the literature review results, we detected a growing trend in the application of data mining methods in diabetes research. Additionally, a distinct increase in the use of process mining methods to model clinical pathways in cancer research was observed. Frequently, this takes the form of a collaborative integration of process mining, data mining, and traditional statistical methods. In light of this collaborative approach, the meticulous selection of statistical methods based on their underlying assumptions is essential when integrating these traditional methods with process mining and data mining methods. Another notable challenge is the lack of standardised guidelines for reporting process mining studies in the medical field. Furthermore, there is a pressing need to enhance the clinical interpretation of data mining and process mining results.
Collapse
Affiliation(s)
- Kaile Chen
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, 17177 Stockholm, Sweden; School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Biomedical Engineering and Health Systems, Division of Ergonomics, KTH Royal Institute of Technology, 14157 Stockholm, Sweden.
| | - Farhad Abtahi
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, 17177 Stockholm, Sweden; School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Biomedical Engineering and Health Systems, Division of Ergonomics, KTH Royal Institute of Technology, 14157 Stockholm, Sweden; Department of Clinical Physiology, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Juan-Jesus Carrero
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Carlos Fernandez-Llatas
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, 17177 Stockholm, Sweden; SABIEN, ITACA, Universitat Politècnica de València, Spain
| | - Fernando Seoane
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, 17177 Stockholm, Sweden; Department of Clinical Physiology, Karolinska University Hospital, 17176 Stockholm, Sweden; Department of Medical Technology, Karolinska University Hospital, 17176 Stockholm, Sweden; Department of Textile Technology, University of Borås, 50190 Borås, Sweden
| |
Collapse
|
2
|
Assessment of the risk factors of type II diabetes using ACO with self-regulative update function and decision trees by evaluation from Fisher’s Z-transformation. Med Biol Eng Comput 2022; 60:1391-1415. [DOI: 10.1007/s11517-022-02530-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 02/13/2022] [Indexed: 11/25/2022]
|
3
|
Kanimozhi N, Singaravel G. Hybrid artificial fish particle swarm optimizer and kernel extreme learning machine for type-II diabetes predictive model. Med Biol Eng Comput 2021; 59:841-867. [PMID: 33738640 DOI: 10.1007/s11517-021-02333-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 02/03/2021] [Indexed: 10/21/2022]
Abstract
The World Health Organization (WHO) estimated that in 2016, 1.6 million deaths caused were due to diabetes. Precise and on-time diagnosis of type-II diabetes is crucial to reduce the risk of various diseases such as heart disease, stroke, kidney disease, diabetic retinopathy, diabetic neuropathy, and macrovascular problems. The non-invasive methods like machine learning are reliable and efficient in classifying the people subjected to type-II diabetics risk and healthy people into two different categories. This present study aims to develop a stacking-based integrated kernel extreme learning machine (KELM) model for identifying the risk of type-II diabetic patients based on the follow-up time on the diabetes research center dataset. The Pima Indian Diabetic Dataset (PIDD) and a Diabetic Research Center dataset are used in this study. A min-max normalization is used to preprocess the noisy datasets. The Hybrid Particle Swarm Optimization-Artificial Fish Swarm Optimization (HAFPSO) algorithm used satisfies the multi-objective problem by increasing the Classification Accuracy (CA) and decreasing the kernel complexity of the optimal learners (NBC) selected. At last, the model is integrated by utilizing the KELM as a meta-classifier which combines the predictions of the twenty Base Learners as a whole. The proposed classification method helps the clinicians to predict the patients who are at a high risk of type-II diabetes in the future with the highest accuracy of 98.5%. The proposed method is tested with different measures such as accuracy, sensitivity, specificity, Mathews Correlation Coefficient, and Kappa Statistics are calculated. The results obtained show that the KELM-HAFPSO approach is a promising new tool for identifying type-II diabetes.
Collapse
Affiliation(s)
- N Kanimozhi
- Department of Computer Science and Engineering, GKM College of Engineering and Technology, Chennai, India.
| | - G Singaravel
- Department of Information Technology, K S Rangasamy College of Engineering, Tiruchengode, India
| |
Collapse
|
4
|
Sheik Abdullah A, Selvakumar S, Venkatesh M. Assessment and evaluation of CHD risk factors using weighted ranked correlation and regression with data classification. Soft comput 2021. [DOI: 10.1007/s00500-021-05663-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|