1
|
Mohl W, Kiseleva Z, Jusic A, Bruckner M, Mader RM. Signs and signals limiting myocardial damage using PICSO: a scoping review decoding paradigm shifts toward a new encounter. Front Cardiovasc Med 2023; 10:1030842. [PMID: 37229230 PMCID: PMC10204926 DOI: 10.3389/fcvm.2023.1030842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 04/14/2023] [Indexed: 05/27/2023] Open
Abstract
Background Inducing recovery in myocardial ischemia is limited to a timely reopening of infarct vessels and clearing the cardiac microcirculation, but additional molecular factors may impact recovery. Objective In this scoping review, we identify the paradigm shifts decoding the branching points of experimental and clinical evidence of pressure-controlled intermittent coronary sinus occlusion (PICSO), focusing on myocardial salvage and molecular implications on infarct healing and repair. Design The reporting of evidence was structured chronologically, describing the evolution of the concept from mainstream research to core findings dictating a paradigm change. All data reported in this scoping review are based on published data, but new evaluations are also included. Results Previous findings relate hemodynamic PICSO effects clearing reperfused microcirculation to myocardial salvage. The activation of venous endothelium opened a new avenue for understanding PICSO. A flow-sensitive signaling molecule, miR-145-5p, showed a five-fold increase in porcine myocardium subjected to PICSO.Verifying our theory of "embryonic recall," an upregulation of miR-19b and miR-101 significantly correlates to the time of pressure increase in cardiac veins during PICSO (r2 = 0.90, p < 0.05; r2 = 0.98, p < 0.03), suggesting a flow- and pressure-dependent secretion of signaling molecules into the coronary circulation. Furthermore, cardiomyocyte proliferation by miR-19b and the protective role of miR-101 against remodeling show another potential interaction of PICSO in myocardial healing. Conclusion Molecular signaling during PICSO may contribute to retroperfusion toward deprived myocardium and clearing the reperfused cardiac microcirculation. A burst of specific miRNA reiterating embryonic molecular pathways may play a role in targeting myocardial jeopardy and will be an essential therapeutic contribution in limiting infarcts in recovering patients.
Collapse
Affiliation(s)
- Werner Mohl
- Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Zlata Kiseleva
- Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Alem Jusic
- Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Matthäus Bruckner
- Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Robert M. Mader
- Department of Medicine I, Comprehensive Cancer Center of the Medical University of Vienna, Vienna,Austria
| |
Collapse
|
2
|
Mohl W, Molnár L, Merkely B. Cardiac Vein Anatomy and Transcoronary Sinus Catheter Interventions in Myocardial Ischemia. Interv Cardiol 2022. [DOI: 10.1002/9781119697367.ch37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
3
|
Mohl W, Henry TD, Milasinovic D, Nguemo F, Hescheler J, Perin EC. From state-of-the-art cell therapy to endogenous cardiac repair. EUROINTERVENTION 2018; 13:760-772. [PMID: 28844036 DOI: 10.4244/eij-d-17-00467] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Clinical heart failure prevention and contemporary therapy often involve breaking the vicious cycle of global haemodynamic consequences of myocardial decay. The lack of effective regenerative therapies results in a primary focus on preventing further deterioration of cardiac performance. The cellular transplantation hypothesis has been evaluated in many different preclinical models and a handful of important clinical trials. The primary expectation that cellular transplants will be embedded into failing myocardium and fuse with existing functioning cells appears unlikely. A multitude of cellular formulas, access routes and clinical surrogate endpoints for evaluation add to the complexity of cellular therapies. Several recent large clinical trials have provided insights into both the regenerative potential and clinical improvement from non-regenerative mechanisms. Initiating endogenous repair seems to be another meaningful alternative to recover structural integrity in myocardial injury. This option may be achieved using a transcoronary sinus catheter intervention, implying the understanding of basic principles in biology. With intermittent reduction of outflow in cardiac veins (PICSO), vascular cells appear to be activated and restart a programme similar to pathways in the developing heart. Structural regeneration may be possible without requiring exogenous agents, or a combination of both approaches may become clinical reality in the next decade.
Collapse
Affiliation(s)
- Werner Mohl
- Department of Cardiac Surgery (Emeritus), Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | |
Collapse
|
4
|
Liu FY, Hsu TC, Choong P, Lin MH, Chuang YJ, Chen BS, Lin C. Uncovering the regeneration strategies of zebrafish organs: a comprehensive systems biology study on heart, cerebellum, fin, and retina regeneration. BMC SYSTEMS BIOLOGY 2018; 12:29. [PMID: 29560825 PMCID: PMC5861487 DOI: 10.1186/s12918-018-0544-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Background Regeneration is an important biological process for the restoration of organ mass, structure, and function after damage, and involves complex bio-physiological mechanisms including cell differentiation and immune responses. We constructed four regenerative protein-protein interaction (PPI) networks using dynamic models and AIC (Akaike’s Information Criterion), based on time-course microarray data from the regeneration of four zebrafish organs: heart, cerebellum, fin, and retina. We extracted core and organ-specific proteins, and proposed a recalled-blastema-like formation model to uncover regeneration strategies in zebrafish. Results It was observed that the core proteins were involved in TGF-β signaling for each step in the recalled-blastema-like formation model and TGF-β signaling may be vital for regeneration. Integrins, FGF, and PDGF accelerate hemostasis during heart injury, while Bdnf shields retinal neurons from secondary damage and augments survival during the injury response. Wnt signaling mediates the growth and differentiation of cerebellum and fin neural stem cells, potentially providing a signal to trigger differentiation. Conclusion Through our analysis of all four zebrafish regenerative PPI networks, we provide insights that uncover the underlying strategies of zebrafish organ regeneration.
Collapse
Affiliation(s)
- Fang-Yu Liu
- Department of Electrical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Te-Cheng Hsu
- Department of Electrical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Patrick Choong
- Department of Electrical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Min-Hsuan Lin
- Department of Medical Science and Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Yung-Jen Chuang
- Department of Medical Science and Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Bor-Sen Chen
- Department of Electrical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Che Lin
- Department of Electrical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan.
| |
Collapse
|
5
|
Sommese L, Zullo A, Schiano C, Mancini FP, Napoli C. Possible Muscle Repair in the Human Cardiovascular System. Stem Cell Rev Rep 2017; 13:170-191. [PMID: 28058671 DOI: 10.1007/s12015-016-9711-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The regenerative potential of tissues and organs could promote survival, extended lifespan and healthy life in multicellular organisms. Niches of adult stemness are widely distributed and lead to the anatomical and functional regeneration of the damaged organ. Conversely, muscular regeneration in mammals, and humans in particular, is very limited and not a single piece of muscle can fully regrow after a severe injury. Therefore, muscle repair after myocardial infarction is still a chimera. Recently, it has been recognized that epigenetics could play a role in tissue regrowth since it guarantees the maintenance of cellular identity in differentiated cells and, therefore, the stability of organs and tissues. The removal of these locks can shift a specific cell identity back to the stem-like one. Given the gradual loss of tissue renewal potential in the course of evolution, in the last few years many different attempts to retrieve such potential by means of cell therapy approaches have been performed in experimental models. Here we review pathways and mechanisms involved in the in vivo repair of cardiovascular muscle tissues in humans. Moreover, we address the ongoing research on mammalian cardiac muscle repair based on adult stem cell transplantation and pro-regenerative factor delivery. This latter issue, involving genetic manipulations of adult cells, paves the way for developing possible therapeutic strategies in the field of cardiovascular muscle repair.
Collapse
Affiliation(s)
- Linda Sommese
- Department of Internal and Specialty Medicine, U.O.C. Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology, Regional Reference Laboratory of Transplant Immunology, Azienda Ospedaliera Universitaria, Università degli Studi della Campania "Luigi Vanvitelli", Piazza Miraglia 2, 80138, Naples, Italy.
| | - Alberto Zullo
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy.,CEINGE Advanced Biotechnologies, s.c.ar.l, Naples, Italy
| | | | - Francesco P Mancini
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
| | - Claudio Napoli
- Department of Internal and Specialty Medicine, U.O.C. Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology, Regional Reference Laboratory of Transplant Immunology, Azienda Ospedaliera Universitaria, Università degli Studi della Campania "Luigi Vanvitelli", Piazza Miraglia 2, 80138, Naples, Italy.,IRCCS Foundation SDN, Naples, Italy
| |
Collapse
|
6
|
Mohl W, Molnár L, Merkely B. Cardiac Vein Anatomy and Transcoronary Sinus Catheter Interventions in Myocardial Ischemia. Interv Cardiol 2016. [DOI: 10.1002/9781118983652.ch84] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Werner Mohl
- Department of Cardiac Surgery; Medical University of Vienna; Vienna Austria
| | | | | |
Collapse
|
7
|
Mohl W, Gangl C, Jusić A, Aschacher T, De Jonge M, Rattay F. PICSO: from myocardial salvage to tissue regeneration. CARDIOVASCULAR REVASCULARIZATION MEDICINE 2015; 16:36-46. [DOI: 10.1016/j.carrev.2014.12.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 12/04/2014] [Accepted: 12/16/2014] [Indexed: 12/18/2022]
|
8
|
The Hypothesis of “Embryonic Recall”: Mechanotransduction as Common Denominator Linking Normal Cardiogenesis to Recovery in Adult Failing Hearts. J Cardiovasc Dev Dis 2014. [DOI: 10.3390/jcdd1010073] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
9
|
The legacy of coronary sinus interventions: Endogenous cardioprotection and regeneration beyond stem cell research. J Thorac Cardiovasc Surg 2008; 136:1131-5. [DOI: 10.1016/j.jtcvs.2008.05.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2008] [Revised: 04/18/2008] [Accepted: 05/15/2008] [Indexed: 11/23/2022]
|
10
|
Mohl W, Mina S, Milasinovic D, Kasahara H, Wei S, Maurer G. Is activation of coronary venous cells the key to cardiac regeneration? ACTA ACUST UNITED AC 2008; 5:528-30. [PMID: 18679384 DOI: 10.1038/ncpcardio1298] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Accepted: 04/23/2008] [Indexed: 01/13/2023]
Affiliation(s)
- Werner Mohl
- Department of Cardiothoracic Surgery, University of Vienna, 1090 Vienna, Austria.
| | | | | | | | | | | |
Collapse
|
11
|
Basic and applied research at the department of cardio-thoracic surgery: work in progress. Wien Klin Wochenschr 2008. [DOI: 10.1007/s00508-008-1044-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
Mohl W, Komamura K, Kasahara H, Heinze G, Glogar D, Hirayama A, Kodama K. Myocardial protection via the coronary sinus. Circ J 2008; 72:526-33. [PMID: 18362420 DOI: 10.1253/circj.72.526] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Recent reports on facilitated reperfusion therapy re-address interests in coronary sinus interventions (CSI). Patients in whom short time results have been reported earlier were re-evaluated, with the aim of gathering the long-term results of pressure-controlled intermittent coronary sinus occlusion (PICSO) generated in patients with acute myocardial infarction (MI) and revascularization. METHODS AND RESULTS Thirty-four patients with ST elevated MI, in whom complete revascularization was achieved, underwent primary thrombolysis with or without PICSO. Follow-up data from these patients were collected for at least 48 months. Immediate perioperative differences were observed for time to peak creatine kinase (CK), as well as cumulative CK. In addition, the time until reperfusion was considerably less than for the control group (p=0.014). Long-term data showed significant differences in reinfarction (p=0.015), as well as in major adverse cardiovascular events, between the 2 groups (p<0.0001). CONCLUSION These data, because of the wide interval between collection and current analysis, could have inherited historical bias. Nonetheless, they are also uniquely indicating the potential of CSI to induce not only immediate, but also clinically significant long-term, effects as an adjunct to reperfusion therapy. Therefore, CSI should be, once again, on the study agenda and be placed under contemporary and best-available scientific scrutiny.
Collapse
Affiliation(s)
- Werner Mohl
- Department of Cardiothoracic Surgery, Medical University of Vienna, 1090 Vienna, Waehringerguertel 18-20, Austria.
| | | | | | | | | | | | | |
Collapse
|