1
|
A survey of evolutionary algorithms for supervised ensemble learning. KNOWL ENG REV 2023. [DOI: 10.1017/s0269888923000024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
Abstract
This paper presents a comprehensive review of evolutionary algorithms that learn an ensemble of predictive models for supervised machine learning (classification and regression). We propose a detailed four-level taxonomy of studies in this area. The first level of the taxonomy categorizes studies based on which stage of the ensemble learning process is addressed by the evolutionary algorithm: the generation of base models, model selection, or the integration of outputs. The next three levels of the taxonomy further categorize studies based on methods used to address each stage. In addition, we categorize studies according to the main types of objectives optimized by the evolutionary algorithm, the type of base learner used and the type of evolutionary algorithm used. We also discuss controversial topics, like the pros and cons of the selection stage of ensemble learning, and the need for using a diversity measure for the ensemble’s members in the fitness function. Finally, as conclusions, we summarize our findings about patterns in the frequency of use of different methods and suggest several new research directions for evolutionary ensemble learning.
Collapse
|
2
|
Abstract
The paper presents a new approach to predicting the 24-h electricity power demand in the Polish Power System (PPS, or Krajowy System Elektroenergetyczny—KSE) using the deep learning approach. The prediction system uses a deep multilayer autoencoder to generate diagnostic features and an ensemble of two neural networks: multilayer perceptron and radial basis function network and support vector machine in regression model, for final 24-h forecast one-week advance. The period of the data that is the subject of the experiments is 2014–2019, which has been divided into two parts: Learning data (2014–2018), and test data (2019). The numerical experiments have shown the advantage of deep learning over classical approaches of neural networks for the problem of power demand prediction.
Collapse
|
3
|
Prediction of convective clouds formation using evolutionary neural computation techniques. Neural Comput Appl 2020. [DOI: 10.1007/s00521-020-04795-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
4
|
Correia A, Lopes C, Costa e Silva E, Monteiro M, Lopes RB. A multi-model methodology for forecasting sales and returns of liquefied petroleum gas cylinders. Neural Comput Appl 2020. [DOI: 10.1007/s00521-020-04713-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Ibrahim AO, Shamsuddin SM, Abraham A, Qasem SN. Adaptive memetic method of multi-objective genetic evolutionary algorithm for backpropagation neural network. Neural Comput Appl 2019. [DOI: 10.1007/s00521-018-03990-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Hybrid Metaheuristics to the Automatic Selection of Features and Members of Classifier Ensembles. INFORMATION 2018. [DOI: 10.3390/info9110268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Metaheuristic algorithms have been applied to a wide range of global optimization problems. Basically, these techniques can be applied to problems in which a good solution must be found, providing imperfect or incomplete knowledge about the optimal solution. However, the concept of combining metaheuristics in an efficient way has emerged recently, in a field called hybridization of metaheuristics or, simply, hybrid metaheuristics. As a result of this, hybrid metaheuristics can be successfully applied in different optimization problems. In this paper, two hybrid metaheuristics, MAMH (Multiagent Metaheuristic Hybridization) and MAGMA (Multiagent Metaheuristic Architecture), are adapted to be applied in the automatic design of ensemble systems, in both mono- and multi-objective versions. To validate the feasibility of these hybrid techniques, we conducted an empirical investigation, performing a comparative analysis between them and traditional metaheuristics as well as existing existing ensemble generation methods. Our findings demonstrate a competitive performance of both techniques, in which a hybrid technique provided the lowest error rate for most of the analyzed objective functions.
Collapse
|