1
|
Teran-Pineda D, Thurnhofer-Hemsi K, Domínguez E. Human Gait Activity Recognition Using Multimodal Sensors. Int J Neural Syst 2023; 33:2350058. [PMID: 37779221 DOI: 10.1142/s0129065723500582] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Human activity recognition is an application of machine learning with the aim of identifying activities from the gathered activity raw data acquired by different sensors. In medicine, human gait is commonly analyzed by doctors to detect abnormalities and determine possible treatments for the patient. Monitoring the patient's activity is paramount in evaluating the treatment's evolution. This type of classification is still not enough precise, which may lead to unfavorable reactions and responses. A novel methodology that reduces the complexity of extracting features from multimodal sensors is proposed to improve human activity classification based on accelerometer data. A sliding window technique is used to demarcate the first dominant spectral amplitude, decreasing dimensionality and improving feature extraction. In this work, we compared several state-of-art machine learning classifiers evaluated on the HuGaDB dataset and validated on our dataset. Several configurations to reduce features and training time were analyzed using multimodal sensors: all-axis spectrum, single-axis spectrum, and sensor reduction.
Collapse
Affiliation(s)
- Diego Teran-Pineda
- Department of Computer Languages and Computer Science, University of Málaga Bulevar Louis Pasteur, 35, 29071, Málaga, Spain
- Biomedical Research Institute of Málaga (IBIMA), C/ Doctor Miguel Díaz Recio, 28, 29010, Málaga, Spain
| | - Karl Thurnhofer-Hemsi
- Department of Computer Languages and Computer Science, University of Málaga Bulevar Louis Pasteur, 35, 29071, Málaga, Spain
- Biomedical Research Institute of Málaga (IBIMA), C/ Doctor Miguel Díaz Recio, 28, 29010, Málaga, Spain
| | - Enrique Domínguez
- Department of Computer Languages and Computer Science, University of Málaga Bulevar Louis Pasteur, 35, 29071, Málaga, Spain
- Biomedical Research Institute of Málaga (IBIMA), C/ Doctor Miguel Díaz Recio, 28, 29010, Málaga, Spain
| |
Collapse
|
2
|
Prochazka A, Charvatova H, Vysata O. The Effect of Face Masks on Physiological Data and the Classification of Rehabilitation Walking. IEEE Trans Neural Syst Rehabil Eng 2022; 30:2467-2473. [PMID: 36001515 DOI: 10.1109/tnsre.2022.3201487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Gait analysis and the assessment of rehabilitation exercises are important processes that occur during fitness level monitoring and the treatment of neurological disorders. This paper presents the possibility of using oximetric, heart rate (HR), accelerometric, and global navigation satellite systems (GNSSs) to analyse signals recorded during uphill and downhill walking without and with a face mask to find its influence on physiological functions during selected walking patterns. The experimental dataset includes 86 signal segments acquired under different conditions. The proposed methodology is based on signal analysis in both the time and frequency domains. The results indicate that face mask use has a minimal effect on blood oxygen concentration and heart rate, with the average mean changes of these parameters being less than 2%. The support vector machine, a Bayesian method, the k -nearest neighbour method, and a two-layer neural network showed very good separation abilities and successfully classified different walking patterns only in the case when the effect of face mask wearing was not included in the classification process. Our methodology suggests that artificial intelligence and machine learning tools are efficient methods for the assessment of motion patterns in different motion conditions and that face masks have a negligible effect for short-duration experiments.
Collapse
|
3
|
Bo F, Yerebakan M, Dai Y, Wang W, Li J, Hu B, Gao S. IMU-Based Monitoring for Assistive Diagnosis and Management of IoHT: A Review. Healthcare (Basel) 2022; 10:healthcare10071210. [PMID: 35885736 PMCID: PMC9318359 DOI: 10.3390/healthcare10071210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 01/22/2023] Open
Abstract
With the rapid development of Internet of Things (IoT) technologies, traditional disease diagnoses carried out in medical institutions can now be performed remotely at home or even ambient environments, yielding the concept of the Internet of Health Things (IoHT). Among the diverse IoHT applications, inertial measurement unit (IMU)-based systems play a significant role in the detection of diseases in many fields, such as neurological, musculoskeletal, and mental. However, traditional numerical interpretation methods have proven to be challenging to provide satisfying detection accuracies owing to the low quality of raw data, especially under strong electromagnetic interference (EMI). To address this issue, in recent years, machine learning (ML)-based techniques have been proposed to smartly map IMU-captured data on disease detection and progress. After a decade of development, the combination of IMUs and ML algorithms for assistive disease diagnosis has become a hot topic, with an increasing number of studies reported yearly. A systematic search was conducted in four databases covering the aforementioned topic for articles published in the past six years. Eighty-one articles were included and discussed concerning two aspects: different ML techniques and application scenarios. This review yielded the conclusion that, with the help of ML technology, IMUs can serve as a crucial element in disease diagnosis, severity assessment, characteristic estimation, and monitoring during the rehabilitation process. Furthermore, it summarizes the state-of-the-art, analyzes challenges, and provides foreseeable future trends for developing IMU-ML systems for IoHT.
Collapse
Affiliation(s)
- Fan Bo
- Smart Sensing Research and Development Center, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China; (F.B.); (W.W.)
- School of Microelectronics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mustafa Yerebakan
- Department of Industrial and Systems Engineering, University of Florida, Gainesville, FL 32611, USA;
| | - Yanning Dai
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China;
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing 100191, China
| | - Weibing Wang
- Smart Sensing Research and Development Center, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China; (F.B.); (W.W.)
- School of Microelectronics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jia Li
- Smart Sensing Research and Development Center, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China; (F.B.); (W.W.)
- School of Microelectronics, University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (J.L.); (B.H.); (S.G.)
| | - Boyi Hu
- Department of Industrial and Systems Engineering, University of Florida, Gainesville, FL 32611, USA;
- Correspondence: (J.L.); (B.H.); (S.G.)
| | - Shuo Gao
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China;
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing 100191, China
- Correspondence: (J.L.); (B.H.); (S.G.)
| |
Collapse
|
4
|
Vyšata O, Ťupa O, Procházka A, Doležal R, Cejnar P, Bhorkar AM, Dostál O, Vališ M. Classification of Ataxic Gait. SENSORS 2021; 21:s21165576. [PMID: 34451018 PMCID: PMC8402252 DOI: 10.3390/s21165576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/08/2021] [Accepted: 08/12/2021] [Indexed: 12/17/2022]
Abstract
Gait disorders accompany a number of neurological and musculoskeletal disorders that significantly reduce the quality of life. Motion sensors enable high-quality modelling of gait stereotypes. However, they produce large volumes of data, the evaluation of which is a challenge. In this publication, we compare different data reduction methods and classification of reduced data for use in clinical practice. The best accuracy achieved between a group of healthy individuals and patients with ataxic gait extracted from the records of 43 participants (23 ataxic, 20 healthy), forming 418 segments of straight gait pattern, is 98% by random forest classifier preprocessed by t-distributed stochastic neighbour embedding.
Collapse
Affiliation(s)
- Oldřich Vyšata
- Department of Neurology, Faculty of Medicine in Hradec Králové, Charles University, 500 03 Hradec Králové, Czech Republic; (A.M.B.); (O.D.); (M.V.)
- Correspondence:
| | - Ondřej Ťupa
- Department of Computing and Control Engineering, University of Chemistry and Technology in Prague, 166 28 Praha 6, Czech Republic; (O.Ť.); (A.P.); (P.C.)
| | - Aleš Procházka
- Department of Computing and Control Engineering, University of Chemistry and Technology in Prague, 166 28 Praha 6, Czech Republic; (O.Ť.); (A.P.); (P.C.)
- Czech Institute of Informatics, Robotics and Cybernetics, Czech Technical University in Prague, 160 00 Prague 6, Czech Republic
| | - Rafael Doležal
- Department of Chemistry, Faculty of Science, University of Hradec Králové, 500 03 Hradec Králové, Czech Republic;
| | - Pavel Cejnar
- Department of Computing and Control Engineering, University of Chemistry and Technology in Prague, 166 28 Praha 6, Czech Republic; (O.Ť.); (A.P.); (P.C.)
| | - Aprajita Milind Bhorkar
- Department of Neurology, Faculty of Medicine in Hradec Králové, Charles University, 500 03 Hradec Králové, Czech Republic; (A.M.B.); (O.D.); (M.V.)
| | - Ondřej Dostál
- Department of Neurology, Faculty of Medicine in Hradec Králové, Charles University, 500 03 Hradec Králové, Czech Republic; (A.M.B.); (O.D.); (M.V.)
| | - Martin Vališ
- Department of Neurology, Faculty of Medicine in Hradec Králové, Charles University, 500 03 Hradec Králové, Czech Republic; (A.M.B.); (O.D.); (M.V.)
| |
Collapse
|
5
|
Lonini L, Shawen N, Hoppe-Ludwig S, Deems-Dluhy S, Mummidisetty CK, Eisenberg Y, Jayaraman A. Combining Accelerometer and GPS Features to Evaluate Community Mobility in Knee Ankle Foot Orthoses (KAFO) Users. IEEE Trans Neural Syst Rehabil Eng 2021; 29:1386-1393. [PMID: 34252030 PMCID: PMC8363134 DOI: 10.1109/tnsre.2021.3096434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Orthotic and assistive devices such as knee ankle foot orthoses (KAFO), come in a variety of forms and fits, with several levels of available features that could help users perform daily activities more naturally. However, objective data on the actual use of these devices outside of the research lab is usually not obtained. Such data could enhance traditional lab-based outcome measures and inform clinical decision-making when prescribing new orthotic and assistive technology. Here, we link data from a GPS unit and an accelerometer mounted on the orthotic device to quantify its usage in the community and examine the correlations with clinical metrics. We collected data from 14 individuals over a period of 2 months as they used their personal KAFO first, and then a novel research KAFO; for each device we quantified number of steps, cadence, time spent at community locations and time wearing the KAFO at those locations. Sensor-derived metrics showed that mobility patterns differed widely between participants (mean steps: 591.3, SD =704.2). The novel KAFO generally enabled participants to walk faster during clinical tests ( ∆6 Minute-Walk-Test=71.5m, p=0.006). However, some participants wore the novel device less often despite improved performance on these clinical measures, leading to poor correlation between changes in clinical outcome measures and changes in community mobility ( ∆6 Minute-Walk-Test - ∆ Community Steps: r=0.09, p=0.76). Our results suggest that some traditional clinical outcome measures may not be associated with the actual wear time of an assistive device in the community, and obtaining personalized data from real-world use through wearable technology is valuable.
Collapse
|
6
|
Procházka A, Charvátová H, Vyšata O, Jarchi D, Sanei S. Discrimination of cycling patterns using accelerometric data and deep learning techniques. Neural Comput Appl 2021. [DOI: 10.1007/s00521-020-05504-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
7
|
Dynamic Segmentation for Physical Activity Recognition Using a Single Wearable Sensor. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11062633] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Data segmentation is an essential process in activity recognition when using machine learning techniques. Previous studies on physical activity recognition have mostly relied on the sliding window approach for segmentation. However, choosing a fixed window size for multiple activities with different durations may affect recognition accuracy, especially when the activities belong to the same category (i.e., dynamic or static). This paper presents and verifies a new method for dynamic segmentation of physical activities performed during the rehabilitation of individuals with spinal cord injuries. To adaptively segment the raw data, signal characteristics are analyzed to determine the suitable type of boundaries. Then, the algorithm identifies the time boundaries to represent the start- and endpoints of each activity. To verify the method and build a predictive model, an experiment was conducted in which data were collected using a single wrist-worn accelerometer sensor. The experimental results were compared with the sliding window approach, indicating that the proposed method outperformed the sliding window approach in terms of overall accuracy, which exceeded 5%, as well as model robustness. The results also demonstrated efficient physical activity segmentation using the proposed method, resulting in high classification performance for all activities considered.
Collapse
|
8
|
Prochazka A, Dostal O, Cejnar P, Mohamed HI, Pavelek Z, Valis M, Vysata O. Deep Learning for Accelerometric Data Assessment and Ataxic Gait Monitoring. IEEE Trans Neural Syst Rehabil Eng 2021; 29:360-367. [PMID: 33434133 DOI: 10.1109/tnsre.2021.3051093] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Ataxic gait monitoring and assessment of neurological disorders belong to important multidisciplinary areas that are supported by digital signal processing methods and machine learning tools. This paper presents the possibility of using accelerometric data to optimise deep learning convolutional neural network systems to distinguish between ataxic and normal gait. The experimental dataset includes 860 signal segments of 16 ataxic patients and 19 individuals from the control set with the mean age of 38.6 and 39.6 years, respectively. The proposed methodology is based upon the analysis of frequency components of accelerometric signals simultaneously recorded at specific body positions with a sampling frequency of 60 Hz. The deep learning system uses all of the frequency components in a range of 〈0,30 〉 Hz. Our classification results are compared with those obtained by standard methods, which include the support vector machine, Bayesian methods, and the two-layer neural network with features estimated as the relative power in selected frequency bands. Our results show that the appropriate selection of sensor positions can increase the accuracy from 81.2% for the foot position to 91.7% for the spine position. Combining the input data and the deep learning methodology with five layers increased the accuracy to 95.8%. Our methodology suggests that artificial intelligence methods and deep learning are efficient methods in the assessment of motion disorders and they have a wide range of further applications.
Collapse
|