Yang J, Chen G, Zhu S, Wen S, Hu J. Fixed/prescribed-time synchronization of BAM memristive neural networks with time-varying delays via convex analysis.
Neural Netw 2023;
163:53-63. [PMID:
37028154 DOI:
10.1016/j.neunet.2023.03.031]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 02/26/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023]
Abstract
The synchronization problem of bidirectional associative memory memristive neural networks (BAMMNNs) with time-varying delays plays an essential role in the implementation and application of neural networks. Firstly, under the framework of the Filippov's solution, the discontinuous parameters of the state-dependent switching are transformed by convex analysis method, which is different from most previous approaches. Secondly, based on Lyapunov function and some inequality techniques, several conditions for the fixed-time synchronization (FXTS) of the drive-response systems are obtained by designing special control strategies. Moreover, the settling time (ST) is estimated by the improved fixed-time stability lemma. Thirdly, the driven-response BAMMNNs are investigated to be synchronized within a prescribed time by designing new controllers based on the FXTS results, where ST is irrelevant to the initial values of BAMMNNs and the parameters of controllers. Finally, a numerical simulation is exhibited to verify the correctness of the conclusions.
Collapse