1
|
Suárez Terán J, Guarner Aguilar F. Small Intestinal Bacterial Overgrowth (SIBO), a clinically overdiagnosed entity? GASTROENTEROLOGIA Y HEPATOLOGIA 2024; 47:502190. [PMID: 38719183 DOI: 10.1016/j.gastrohep.2024.502190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/20/2024] [Accepted: 03/23/2024] [Indexed: 05/27/2024]
Abstract
Small intestinal bacterial overgrowth (SIBO) is a clinical entity recognized since ancient times; it represents the consequences of bacterial overgrowth in the small intestine associated with malabsorption. Recently, SIBO as a term has been popularized due to its high prevalence reported in various pathologies since the moment it is indirectly diagnosed with exhaled air tests. In the present article, the results of duodenal/jejunal aspirate culture testing as a reference diagnostic method, as well as the characteristics of the small intestinal microbiota described by culture-dependent and culture-independent techniques in SIBO, and their comparison with exhaled air testing are presented to argue about its overdiagnosis.
Collapse
|
2
|
Sciascia QL, Metges CC. Review: Methods and biomarkers to investigate intestinal function and health in pigs. Animal 2023; 17 Suppl 3:100860. [PMID: 37316380 DOI: 10.1016/j.animal.2023.100860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 06/16/2023] Open
Abstract
Society is becoming increasingly critical of animal husbandry due to its environmental impact and issues involving animal health and welfare including scientific experiments conducted on farm animals. This opens up two new fields of scientific research, the development of non- or minimally invasive (1) methods and techniques using faeces, urine, breath or saliva sampling to replace existing invasive models, and (2) biomarkers reflecting a disease or malfunction of an organ that may predict the future outcome of a pig's health, performance or sustainability. To date, there is a paucity of non- or minimally invasive methods and biomarkers investigating gastrointestinal function and health in pigs. This review describes recent literature pertaining to parameters that assess gastrointestinal functionality and health, tools currently used to investigate them, and the development or the potential to develop new non- and minimally invasive methods and/or biomarkers in pigs. Methods described within this review are those that characterise gastrointestinal mass such as the citrulline generation test, intestinal protein synthesis rate, first pass splanchnic nutrient uptake and techniques describing intestinal proliferation, barrier function and transit rate, and microbial composition and metabolism. An important consideration is gut health, and several molecules with the potential to act as biomarkers of compromised gut health in pigs are reported. Many of these methods to investigate gut functionality and health are considered 'gold standards' but are invasive. Thus, in pigs, there is a need to develop and validate non-invasive methods and biomarkers that meet the principles of the 3 R guidelines, which aim to reduce and refine animal experimentation and replace animals where possible.
Collapse
Affiliation(s)
- Q L Sciascia
- Research Institute for Farm Animal Biology, Institute of Nutritional Physiology "Oskar Kellner", Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - C C Metges
- Research Institute for Farm Animal Biology, Institute of Nutritional Physiology "Oskar Kellner", Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany.
| |
Collapse
|
3
|
Maeda Y, Murakami T. Diagnosis by Microbial Culture, Breath Tests and Urinary Excretion Tests, and Treatments of Small Intestinal Bacterial Overgrowth. Antibiotics (Basel) 2023; 12:antibiotics12020263. [PMID: 36830173 PMCID: PMC9952535 DOI: 10.3390/antibiotics12020263] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/19/2023] [Accepted: 01/19/2023] [Indexed: 01/31/2023] Open
Abstract
Small intestinal bacterial overgrowth (SIBO) is characterized as the increase in the number and/or alteration in the type of bacteria in the upper gastrointestinal tract and accompanies various bowel symptoms such as abdominal pain, bloating, gases, diarrhea, and so on. Clinically, SIBO is diagnosed by microbial culture in duodenum/jejunum fluid aspirates and/or the breath tests (BT) of hydrogen/methane gases after ingestion of carbohydrates such as glucose. The cultural analysis of aspirates is regarded as the golden standard for the diagnosis of SIBO; however, this is invasive and is not without risk to the patients. BT is an inexpensive and safe diagnostic test but lacks diagnostic sensitivity and specificity depending on the disease states of patients. Additionally, the urinary excretion tests are used for the SIBO diagnosis using chemically synthesized bile acid conjugates such as cholic acid (CA) conjugated with para-aminobenzoic acid (PABA-CA), ursodeoxycholic acid (UDCA) conjugated with PABA (PABA-UDCA) or conjugated with 5-aminosalicylic acid (5-ASA-UDCA). These conjugates are split by bacterial bile acid (cholylglycine) hydrolase. In the tests, the time courses of the urinary excretion rates of PABA or 5-ASA, including their metabolites, are determined as the measure of hydrolytic activity of intestinal bacteria. Although the number of clinical trials with this urinary excretion tests is small, results demonstrated the usefulness of bile acid conjugates as SIBO diagnostic substrates. PABA-UDCA disulfate, a single-pass type unabsorbable compound without the hydrolysis of conjugates, was likely to offer a simple and rapid method for the evaluation of SIBO without the use of radioisotopes or expensive special apparatus. Treatments of SIBO with antibiotics, probiotics, therapeutic diets, herbal medicines, and/or fecal microbiota transplantation are also reviewed.
Collapse
Affiliation(s)
- Yorinobu Maeda
- Laboratory of Drug Information Analytics, Faculty of Pharmacy & Pharmaceutical Sciences, Fukuyama University, Sanzou, Gakuen-cho, Fukuyama 729-0292, Hiroshima, Japan
| | - Teruo Murakami
- Faculty of Pharmaceutical Sciences, Hiroshima International University, 5-1-1 Hiro-koshingai, Kure 737-0112, Hiroshima, Japan
- Correspondence: ; Tel.: +81-82-872-4310
| |
Collapse
|
4
|
Ghoshal UC, Sachdeva S, Ghoshal U, Misra A, Puri AS, Pratap N, Shah A, Rahman MM, Gwee KA, Tan VPY, Ahmed T, Lee YY, Ramakrishna BS, Talukdar R, Rana SV, Sinha SK, Chen M, Kim N, Holtmann G. Asian-Pacific consensus on small intestinal bacterial overgrowth in gastrointestinal disorders: An initiative of the Indian Neurogastroenterology and Motility Association. Indian J Gastroenterol 2022; 41:483-507. [PMID: 36214973 PMCID: PMC9549446 DOI: 10.1007/s12664-022-01292-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/02/2022] [Indexed: 02/04/2023]
Abstract
In the clinical setting, small intestinal bacterial overgrowth (SIBO) is a frequent, but under-diagnosed entity. SIBO is linked to various gastrointestinal (GI) and non-GI disorders with potentially significant morbidity. The optimal management of SIBO is undefined while there is a lack of published consensus guidelines. Against this background, under the auspices of the Indian Neurogastroenterology and Motility Association (INMA), formerly known as the Indian Motility and Functional Diseases Association (IMFDA), experts from the Asian-Pacific region with extensive research and clinical experience in the field of gut dysbiosis including SIBO developed this evidence-based practice guideline for the management of SIBO utilizing a modified Delphi process based upon 37 consensus statements, involving an electronic voting process as well as face-to-face meetings and review of relevant supporting literature. These statements include 6 statements on definition and epidemiology; 11 on etiopathogenesis and pathophysiology; 5 on clinical manifestations, differential diagnosis, and predictors; and 15 on investigations and treatment. When the proportion of those who voted either to accept completely or with minor reservations was 80% or higher, the statement was regarded as accepted. The members of the consensus team consider that this guideline would be valuable to inform clinical practice, teaching, and research on SIBO in the Asian-Pacific region as well as in other countries.
Collapse
Affiliation(s)
- Uday C. Ghoshal
- Department of Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226 014 India
| | - Sanjeev Sachdeva
- Department of Gastroenterology, G B Pant Hospital, New Delhi, 110 002 India
| | - Ujjala Ghoshal
- Department of Microbiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226 014 India
| | - Asha Misra
- Department of Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226 014 India
| | | | | | - Ayesha Shah
- University of Queensland, Faculty of Medicine, and Princess Alexandra Hospital, Department of Gastroenterology and Hepatology, Brisbane, Queensland, Australia
| | - M. Masudur Rahman
- Sheikh Russel National Gastroliver Institute and Hospital, Dhaka, Bangladesh
| | - Kok Ann Gwee
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore ,Stomach, Liver and Bowel Centre, Gleneagles Hospital, Singapore, Singapore
| | - Victoria P Y Tan
- Faculty of Medicine, University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Tahmeed Ahmed
- International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Yeong Yeh Lee
- School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia ,GI Function and Motility Unit, Hospital Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - B S Ramakrishna
- SIMS Institute of Gastroenterology, Hepatology, and Transplantation, SRM Institutes for Medical Science, Chennai, 600 026 India
| | - Rupjyoti Talukdar
- Department of Gastroenterology, Asian Institute of Gastroenterology, Hyderabad, 500 082 India
| | - S V Rana
- Department of Biochemistry, All India Institute of Medical Sciences, Rishikesh, 249 203 India
| | - Saroj K Sinha
- Department of Gastroenterology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160 012 India
| | - Minhu Chen
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Nayoung Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Gerald Holtmann
- University of Queensland, Faculty of Medicine, and Princess Alexandra Hospital, Department of Gastroenterology and Hepatology, Brisbane, Queensland, Australia
| |
Collapse
|
5
|
Keller J, Hammer HF, Afolabi PR, Benninga M, Borrelli O, Dominguez-Munoz E, Dumitrascu D, Goetze O, Haas SL, Hauser B, Pohl D, Salvatore S, Sonyi M, Thapar N, Verbeke K, Fox MR. European guideline on indications, performance and clinical impact of 13 C-breath tests in adult and pediatric patients: An EAGEN, ESNM, and ESPGHAN consensus, supported by EPC. United European Gastroenterol J 2021; 9:598-625. [PMID: 34128346 PMCID: PMC8259225 DOI: 10.1002/ueg2.12099] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/06/2021] [Indexed: 12/20/2022] Open
Abstract
Introduction 13C‐breath tests are valuable, noninvasive diagnostic tests that can be widely applied for the assessment of gastroenterological symptoms and diseases. Currently, the potential of these tests is compromised by a lack of standardization regarding performance and interpretation among expert centers. Methods This consensus‐based clinical practice guideline defines the clinical indications, performance, and interpretation of 13C‐breath tests in adult and pediatric patients. A balance between scientific evidence and clinical experience was achieved by a Delphi consensus that involved 43 experts from 18 European countries. Consensus on individual statements and recommendations was established if ≥ 80% of reviewers agreed and <10% disagreed. Results The guideline gives an overview over general methodology of 13C‐breath testing and provides recommendations for the use of 13C‐breath tests to diagnose Helicobacter pylori infection, measure gastric emptying time, and monitor pancreatic exocrine and liver function in adult and pediatric patients. Other potential applications of 13C‐breath testing are summarized briefly. The recommendations specifically detail when and how individual 13C‐breath tests should be performed including examples for well‐established test protocols, patient preparation, and reporting of test results. Conclusion This clinical practice guideline should improve pan‐European harmonization of diagnostic approaches to symptoms and disorders, which are very common in specialist and primary care gastroenterology practice, both in adult and pediatric patients. In addition, this guideline identifies areas of future clinical research involving the use of 13C‐breath tests.
Collapse
Affiliation(s)
- Jutta Keller
- Department of Internal Medicine, Israelitic Hospital, Academic Hospital University of Hamburg, Hamburg, Germany
| | - Heinz F Hammer
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Medical University of Graz, Graz, Austria
| | - Paul R Afolabi
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, UK
| | - Marc Benninga
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Osvaldo Borrelli
- UCL Great Ormond Street Institute of Child Health and Department of Gastroenterology, Neurogastroenterology and Motility, Great Ormond Street Hospital, London, UK
| | - Enrique Dominguez-Munoz
- Department of Gastroenterology and Hepatology, University Hospital of Santiago de Compostela, Santiago, Spain
| | | | - Oliver Goetze
- Department of Medicine II, Division of Hepatology, University Hospital Würzburg, Würzburg, Germany
| | - Stephan L Haas
- Department of Upper GI Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Bruno Hauser
- Department of Paediatric Gastroenterology, Hepatology and Nutrition, KidZ Health Castle UZ Brussels, Brussels, Belgium
| | - Daniel Pohl
- Division of Gastroenterology and Hepatology, University Hospital Zürich, Zürich, Switzerland
| | - Silvia Salvatore
- Pediatric Department, Hospital "F. Del Ponte", University of Insubria, Varese, Italy
| | - Marc Sonyi
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Medical University of Graz, Graz, Austria.,Clinic for General Medicine, Gastroenterology, and Infectious Diseases, Augustinerinnen Hospital, Cologne, Germany
| | - Nikhil Thapar
- UCL Great Ormond Street Institute of Child Health and Department of Gastroenterology, Neurogastroenterology and Motility, Great Ormond Street Hospital, London, UK.,Department of Gastroenterology, Hepatology and Liver Transplantation, Queensland Children's Hospital, Brisbane, Australia
| | - Kristin Verbeke
- Translational Research Center for Gastrointestinal Disorders, KU Leuven, Leuven, Belgium
| | - Mark R Fox
- Division of Gastroenterology and Hepatology, University Hospital Zürich, Zürich, Switzerland.,Digestive Function: Basel, Laboratory and Clinic for Motility Disorders and Functional Gastrointestinal Diseases, Centre for Integrative Gastroenterology, Klinik Arlesheim, Arlesheim, Switzerland
| | | |
Collapse
|
6
|
Losurdo G, Leandro G, Ierardi E, Perri F, Barone M, Principi M, Di Leo A. Breath Tests for the Non-invasive Diagnosis of Small Intestinal Bacterial Overgrowth: A Systematic Review With Meta-analysis. J Neurogastroenterol Motil 2020; 26:16-28. [PMID: 31743632 PMCID: PMC6955189 DOI: 10.5056/jnm19113] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 08/29/2019] [Accepted: 09/20/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND/AIMS Small intestinal bacterial overgrowth (SIBO) diagnosis is usually based on non-invasive breath tests (BTs), namely lactulose BT (LBT) and glucose BT (GBT). However, divergent opinions and problems of parameter standardization are still controversial aspects. We aim to perform a meta-analysis to analyze diagnostic performance of LBT/GBT for SIBO diagnosis. METHODS We searched in main literature databases articles in which SIBO diagnosis was achieved by LBT/GBT in comparison to jejunal aspirate culture (reference gold standard). We calculated pooled sensitivity, specificity, positive, and negative likelihood ratios and diagnostic odd ratios. Summary receiver operating characteristic curves were drawn and pooled areas under the curve were calculated. RESULTS We selected 14 studies. Pooled sensitivity of LBT and GBT was 42.0% and 54.5%, respectively. Pooled specificity of LBT and GBT was 70.6% and 83.2%, respectively. When delta over baseline cut-off > 20 H2 parts per million (ppm) was used, GBT sensitivity and specificity were 47.3% and 80.9%; when the cutoff was other than and lower than > 20 ppm, sensitivity and specificity were 61.7% and 86.0%. In patients with abdominal surgery history, pooled GBT sensitivity and specificity gave the impression of having a better performance (81.7% and 78.8%) compared to subjects without any SIBO predisposing condition (sensitivity = 40.6% and specificity = 84.0%). CONCLUSIONS GBT seems to work better than LBT. A cut-off of delta H2 expired other than and lower than > 20 ppm shows a slightly better result than > 20 ppm. BTs demonstrate the best effectiveness in patients with surgical reconstructions of gastrointestinal tract.
Collapse
Affiliation(s)
- Giuseppe Losurdo
- Section of Gastroenterology, Department of Emergency and Organ Transplantation, University “Aldo Moro”, Piazza Giulio Cesare, Bari,
Italy
| | - Gioacchino Leandro
- Gastroenterology Unit, National Institute of Research for Gastroenterology “Saverio De Bellis”, Castellana Grotte, Bari,
Italy
| | - Enzo Ierardi
- Section of Gastroenterology, Department of Emergency and Organ Transplantation, University “Aldo Moro”, Piazza Giulio Cesare, Bari,
Italy
| | - Francesco Perri
- Digestive Endoscopy Unit, National Institute of Research “Casa Sollievo della Sofferenza”, San Giovanni Rotondo, Foggia,
Italy
| | - Michele Barone
- Section of Gastroenterology, Department of Emergency and Organ Transplantation, University “Aldo Moro”, Piazza Giulio Cesare, Bari,
Italy
| | - Mariabeatrice Principi
- Section of Gastroenterology, Department of Emergency and Organ Transplantation, University “Aldo Moro”, Piazza Giulio Cesare, Bari,
Italy
| | - Alfredo Di Leo
- Section of Gastroenterology, Department of Emergency and Organ Transplantation, University “Aldo Moro”, Piazza Giulio Cesare, Bari,
Italy
- Correspondence: Alfredo Di Leo, MD, PhD, Section of Gastroenterology, Department of Emergency and Organ Transplantation, University “Aldo Moro”, Piazza Giulio Cesare 11, 70124 Bari, Italy, Tel: +39-080-559-3452, Fax: +39-080-559-3088, E-mail:
| |
Collapse
|
7
|
Abstract
Gut microbiota is the largest organ of the human body. Although growth of bacteria more than 105 colony forming unit (CFU) per milliliter in culture of upper gut aspirate is used to diagnosis small intestinal bacterial overgrowth (SIBO), 103 CFU or more is being considered to suggest the diagnosis, particularly if colonic type bacteria are present in the upper gut. Although neither very sensitive nor specific, hydrogen breath tests are widely used to diagnose SIBO. Rifaximin is the best treatment for SIBO due to its broad spectrum, lack of systemic absorption, and safety profile.
Collapse
|
8
|
Owino V, Ahmed T, Freemark M, Kelly P, Loy A, Manary M, Loechl C. Environmental Enteric Dysfunction and Growth Failure/Stunting in Global Child Health. Pediatrics 2016; 138:peds.2016-0641. [PMID: 27940670 DOI: 10.1542/peds.2016-0641] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/10/2016] [Indexed: 11/24/2022] Open
Abstract
Approximately 25% of the world's children aged <5 years have stunted growth, which is associated with increased mortality, cognitive dysfunction, and loss of productivity. Reducing by 40% the number of stunted children is a global target for 2030. The pathogenesis of stunting is poorly understood. Prenatal and postnatal nutritional deficits and enteric and systemic infections clearly contribute, but recent findings implicate a central role for environmental enteric dysfunction (EED), a generalized disturbance of small intestinal structure and function found at a high prevalence in children living under unsanitary conditions. Mechanisms contributing to growth failure in EED include intestinal leakiness and heightened permeability, gut inflammation, dysbiosis and bacterial translocation, systemic inflammation, and nutrient malabsorption. Because EED has multiple causal pathways, approaches to manage it need to be multifaceted. Potential interventions to tackle EED include: (1) reduction of exposure to feces and contact with animals through programs such as improved water, sanitation, and hygiene; (2) breastfeeding and enhanced dietary diversity; (3) probiotics and prebiotics; (4) nutrient supplements, including zinc, polyunsaturated fatty acids, and amino acids; (5) antiinflammatory agents such as 5-aminosalicyclic acid; and (6) antibiotics in the context of acute malnutrition and infection. Better understanding of the underlying causes of EED and development of noninvasive, practical, simple, and affordable point-of-care diagnostic tools remain key gaps. "Omics" technologies (genomics, epigenomics, transcriptomics, proteomics, and metabolomics) and stable isotope techniques (eg, 13C breath tests) targeted at children and their intestinal microbiota will enhance our ability to successfully identify, manage, and prevent this disorder.
Collapse
Affiliation(s)
- Victor Owino
- International Atomic Energy Agency, Vienna, Austria;
| | - Tahmeed Ahmed
- International Centre for Diarrhoeal Research, Bangladesh, Dhaka, Bangladesh
| | - Michael Freemark
- Division of Pediatric Endocrinology, Duke University Medical Center, Durham, North Carolina
| | - Paul Kelly
- University of Zambia, Lusaka, Zambia.,Blizard Institute, Queen Mary University of London, London, United Kingdom
| | - Alexander Loy
- Department of Microbiology and Ecosystem Science, Research Network "Chemistry meets Microbiology," University of Vienna, Vienna, Austria; and
| | | | | |
Collapse
|
9
|
Modak AS. An Update on 13C-Breath Tests: The Transition to Acceptability into Clinical Practice. VOLATILE BIOMARKERS 2013:244-262. [DOI: 10.1016/b978-0-44-462613-4.00014-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
10
|
The gut microbiota and irritable bowel syndrome: friend or foe? Int J Inflam 2012; 2012:151085. [PMID: 22577594 PMCID: PMC3346986 DOI: 10.1155/2012/151085] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Accepted: 01/07/2012] [Indexed: 12/20/2022] Open
Abstract
Progress in the understanding of the pathophysiology of irritable bowel syndrome (IBS), once thought to be a purely psychosomatic disease, has advanced considerably and low-grade inflammation and changes in the gut microbiota now feature as potentially important. The human gut harbours a huge microbial ecosystem, which is equipped to perform a variety of functions such as digestion of food, metabolism of drugs, detoxification of toxic compounds, production of essential vitamins, prevention of attachment of pathogenic bacteria to the gut wall, and maintenance of homeostasis in the gastrointestinal tract. A subset of patients with IBS may have a quantitative increase in bacteria in the small bowel (small intestinal bacterial overgrowth). Qualitative changes in gut microbiota have also been associated with IBS. Targeting the gut microbiota using probiotics and antibiotics has emerged as a potentially effective approach to the treatment of this, hitherto enigmatic, functional bowel disorder. The gut microbiota in health, quantitative and qualitative microbiota changes, and therapeutic manipulations targeting the microbiota in patients with IBS are reviewed in this paper.
Collapse
|
11
|
|
12
|
Sutton DGM, Preston T, Love S. Application of the lactose 13C-ureide breath test for measurement of equine orocaecal transit time. Equine Vet J 2011:49-55. [PMID: 21790754 DOI: 10.1111/j.2042-3306.2011.00407.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
REASONS FOR PERFORMING STUDY Application of the lactose (13) C-ureide breath test (LUBT) for measurement of equine orocaecal transit time (OCTT) has not been reported previously. The ability to assess OCTT noninvasively, and to investigate its relationship to gastric emptying rate and small intestinal transit, would be of both clinical and research value. OBJECTIVES 1) Assessment of the LUBT in healthy horses, with comparison of induced versus noninduced test protocols. 2) Application of a new dual stable isotope breath test (lactose (13) C-ureide and (13) C-octanoic acid) for gastrointestinal transit measurement. HYPOTHESIS The LUBT will allow quantification of equine OCTT, and test efficacy will be enhanced by prior administration of lactose (12) C-ureide as shown in vitro. The dual tracer breath test will permit simultaneous measurement of gastric emptying, OCTT and small bowel transit times. METHODS Induced and noninduced LUBTs were performed in 3 healthy mature horses in randomised order using a standard test meal and protocol. Combined LUBT and (13) C-octanoic acid breath tests ((13) C-OABT) were performed in 4 individuals on 4 occasions at weekly intervals. Expiratory isotopic recovery was modelled to allow generation of gastric emptying data, small bowel transit times and caecal transit parameters. RESULTS The induction protocol for the LUBT increased the rate and magnitude of expiratory (13) CO(2) significantly. Mean ± s.d. values for OCTT, caecal lag phase (t(lag) ) and caecal t(1/2) using the induced LUBT were 3.24 ± 0.65 h, 5.62 ± 1.22 h and 6.31 ± 1.21 h, respectively. Dual stable isotope tests resulted in the production of 2 discrete peaks in expiratory (13) CO(2) in 15/16 tests from which gastric t(1/2), OCTT and small bowel transit (SBT) parameters could be calculated. CONCLUSIONS The induced LUBT provides a reliable noninvasive measure of equine OCTT and can be paired with the (13) C-OABT to provide further information about small intestinal motility.
Collapse
Affiliation(s)
- D G M Sutton
- School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK.
| | | | | |
Collapse
|
13
|
Bures J, Cyrany J, Kohoutova D, Förstl M, Rejchrt S, Kvetina J, Vorisek V, Kopacova M. Small intestinal bacterial overgrowth syndrome. World J Gastroenterol 2010; 16:2978-90. [PMID: 20572300 PMCID: PMC2890937 DOI: 10.3748/wjg.v16.i24.2978] [Citation(s) in RCA: 343] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Human intestinal microbiota create a complex polymicrobial ecology. This is characterised by its high population density, wide diversity and complexity of interaction. Any dysbalance of this complex intestinal microbiome, both qualitative and quantitative, might have serious health consequence for a macro-organism, including small intestinal bacterial overgrowth syndrome (SIBO). SIBO is defined as an increase in the number and/or alteration in the type of bacteria in the upper gastrointestinal tract. There are several endogenous defence mechanisms for preventing bacterial overgrowth: gastric acid secretion, intestinal motility, intact ileo-caecal valve, immunoglobulins within intestinal secretion and bacteriostatic properties of pancreatic and biliary secretion. Aetiology of SIBO is usually complex, associated with disorders of protective antibacterial mechanisms (e.g. achlorhydria, pancreatic exocrine insufficiency, immunodeficiency syndromes), anatomical abnormalities (e.g. small intestinal obstruction, diverticula, fistulae, surgical blind loop, previous ileo-caecal resections) and/or motility disorders (e.g. scleroderma, autonomic neuropathy in diabetes mellitus, post-radiation enteropathy, small intestinal pseudo-obstruction). In some patients more than one factor may be involved. Symptoms related to SIBO are bloating, diarrhoea, malabsorption, weight loss and malnutrition. The gold standard for diagnosing SIBO is still microbial investigation of jejunal aspirates. Non-invasive hydrogen and methane breath tests are most commonly used for the diagnosis of SIBO using glucose or lactulose. Therapy for SIBO must be complex, addressing all causes, symptoms and complications, and fully individualised. It should include treatment of the underlying disease, nutritional support and cyclical gastro-intestinal selective antibiotics. Prognosis is usually serious, determined mostly by the underlying disease that led to SIBO.
Collapse
|
14
|
Wutzke KD, Mix J. The metabolic fate of doubly labelled lactose-[13C, 15N]ureide after pre-dosing with different ureides. Eur J Clin Nutr 2010; 64:733-8. [DOI: 10.1038/ejcn.2010.84] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
15
|
|