1
|
Zen Y, Akita M. Neoplastic Progression in Intraductal Papillary Neoplasm of the Bile Duct. Arch Pathol Lab Med 2024; 148:989-996. [PMID: 36800543 DOI: 10.5858/arpa.2022-0407-ra] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2022] [Indexed: 02/19/2023]
Abstract
CONTEXT.— Intraductal papillary neoplasm of the bile duct (IPNB) is classified into types 1 and 2 based on criteria proposed in 2019. Recent studies investigated the clinicopathologic and molecular features of IPNB, which contributed to a more detailed understanding of this undercharacterized neoplasm. OBJECTIVE.— To summarize driver gene mutations, radiologic tumor evolution, and a potentially unique pattern of tumor progression in IPNB. DATA SOURCES.— Data were derived from a literature review and personal clinical and research experiences. CONCLUSIONS.— In contrast to de novo cholangiocarcinoma, type 1 IPNB often has mutations in APC, CTNNB1, STK11, and GNAS. These molecular features are shared with intraductal papillary mucinous neoplasm of the pancreas; however, the frequencies of individual gene abnormalities differ between these 2 neoplasms. A radiologic review of sequential images suggested that type 1 IPNB is a slow-growing neoplasm, with an ∼1-cm increase in size every 2 to 3 years, and remains in a noninvasive state for many years. A similar papillary neoplasm may develop in the biliary tree years after the complete surgical resection of IPNB. The second neoplasm has the same genetic abnormalities as the first neoplasm, indicating intrabiliary implantation rather than multifocal lesions. In contrast to type 1 IPNB, most cases of type 2 IPNB have invasive malignancy at the initial presentation. Type 2 IPNB shares many clinicopathologic and molecular features with de novo cholangiocarcinoma, questioning the distinctness of this tumor entity. The molecular mechanisms underlying malignant transformation in IPNB warrant further study.
Collapse
Affiliation(s)
- Yoh Zen
- From the Institute of Liver Studies, King's College Hospital, London, UK (Zen)
| | - Masayuki Akita
- the Department of Hepato-Biliary-Pancreatic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan (Akita)
| |
Collapse
|
2
|
Thompson ED. Neoplastic Progression in Macroscopic Precursor Lesions of the Pancreas. Arch Pathol Lab Med 2024; 148:980-988. [PMID: 38386006 DOI: 10.5858/arpa.2023-0358-ra] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2023] [Indexed: 02/23/2024]
Abstract
CONTEXT.— Macroscopic precursor lesions of the pancreas represent a complex clinical management problem. Molecular characterization of pancreatic cysts has helped to confirm and refine clinical and pathologic classifications of these lesions, inform our understanding of tumorigenesis in the pancreas, and provide opportunities for preoperative diagnosis. OBJECTIVE.— To review the pathologic classification of macroscopic cystic lesions of the pancreas: intraductal papillary mucinous neoplasms (IPMNs), mucinous cystic neoplasms (MCNs), intraductal oncocytic papillary neoplasms (IOPNs), and intraductal tubulopapillary neoplasms (ITPNs), and to describe our current state of understanding of their molecular underpinnings, relationship to invasive carcinomas, and implications for diagnosis and prognostication. DATA SOURCES.— We assessed the current primary literature and current World Health Organization Classification of Digestive System Tumours. CONCLUSIONS.— Macroscopic cystic lesions of the pancreas are morphologically and molecularly diverse. IPMNs and MCNs share mucinous cytoplasm with papillae. MCNs are defined by ovarian-type stroma. IOPNs have granular eosinophilic cytoplasm, prominent nucleoli, and complex, arborizing papillae. ITPNs demonstrate complex, back-to-back tubules and anastomosing papillae and lack prominent intracellular mucin. IPMNs and MCNs are characterized by driver mutations in KRAS/GNAS (IPMNs) and KRAS (MCNs), with later driver events in RNF43, CDKN2A, SMAD4, and TP53. In contrast, IOPNs and ITPNs have recurrent rearrangements in PRKACA/PRKACB and MAPK-associated genes, respectively. The recurrent alterations described in cysts provide an opportunity for diagnosis using aspirated cyst fluid. Molecular characterization of IPMNs shows a striking spatial and mutational heterogeneity, challenging traditional models of neoplastic development and creating challenges to interpretation of cyst fluid sequencing results.
Collapse
Affiliation(s)
- Elizabeth D Thompson
- From the Departments of Pathology and Oncology, Sol Goldman Pancreatic Cancer Research Center, and the Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
3
|
Arai J, Hayakawa Y, Tateno H, Fujiwara H, Kasuga M, Fujishiro M. The role of gastric mucins and mucin-related glycans in gastric cancers. Cancer Sci 2024; 115:2853-2861. [PMID: 39031976 PMCID: PMC11463072 DOI: 10.1111/cas.16282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/22/2024] [Accepted: 07/02/2024] [Indexed: 07/22/2024] Open
Abstract
Gastric mucins serve as a protective barrier on the stomach's surface, protecting from external stimuli including gastric acid and gut microbiota. Their composition typically changes in response to the metaplastic sequence triggered by Helicobacter pylori infection. This alteration in gastric mucins is also observed in cases of gastric cancer, although the precise connection between mucin expressions and gastric carcinogenesis remains uncertain. This review first introduces the relationship between mucin expressions and gastric metaplasia or cancer observed in humans and mice. Additionally, we discuss potential pathogenic mechanisms of how aberrant mucins and their glycans affect gastric carcinogenesis. Finally, we summarize challenges to target tumor-specific glycans by utilizing lectin-drug conjugates that can bind to specific glycans. Understanding the correlation and mechanism between these mucin expressions and gastric carcinogenesis could pave the way for new strategies in gastric cancer treatment.
Collapse
Affiliation(s)
- Junya Arai
- Division of Gastroenterology, The Institute for Medical ScienceAsahi Life FoundationChuo‐ku, TokyoJapan
- Department of Gastroenterology, Graduate School of MedicineThe University of TokyoBunkyo‐ku, TokyoJapan
| | - Yoku Hayakawa
- Department of Gastroenterology, Graduate School of MedicineThe University of TokyoBunkyo‐ku, TokyoJapan
| | - Hiroaki Tateno
- Cellular and Molecular Biotechnology Research InstituteNational Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan
| | - Hiroaki Fujiwara
- Division of Gastroenterology, The Institute for Medical ScienceAsahi Life FoundationChuo‐ku, TokyoJapan
| | - Masato Kasuga
- The Institute for Medical ScienceAsahi Life FoundationChuo‐ku, TokyoJapan
| | - Mitsuhiro Fujishiro
- Department of Gastroenterology, Graduate School of MedicineThe University of TokyoBunkyo‐ku, TokyoJapan
| |
Collapse
|
4
|
Ohtsuka T, Fernandez-Del Castillo C, Furukawa T, Hijioka S, Jang JY, Lennon AM, Miyasaka Y, Ohno E, Salvia R, Wolfgang CL, Wood LD. International evidence-based Kyoto guidelines for the management of intraductal papillary mucinous neoplasm of the pancreas. Pancreatology 2024; 24:255-270. [PMID: 38182527 DOI: 10.1016/j.pan.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/14/2023] [Accepted: 12/22/2023] [Indexed: 01/07/2024]
Abstract
This study group aimed to revise the 2017 international consensus guidelines for the management of intraductal papillary mucinous neoplasm (IPMN) of the pancreas, and mainly focused on five topics; the revision of high-risk stigmata (HRS) and worrisome features (WF), surveillance of non-resected IPMN, surveillance after resection of IPMN, revision of pathological aspects, and investigation of molecular markers in cyst fluid. A new development from the prior guidelines is that systematic reviews were performed for each one of these topics, and published separately to provide evidence-based recommendations. One of the highlights of these new "evidence-based guidelines" is to propose a new management algorithm, and one major revision is to include into the assessment of HRS and WF the imaging findings from endoscopic ultrasound (EUS) and the results of cytological analysis from EUS-guided fine needle aspiration technique, when this is performed. Another key element of the current guidelines is to clarify whether lifetime surveillance for small IPMNs is required, and recommends two options, "stop surveillance" or "continue surveillance for possible development of concomitant pancreatic ductal adenocarcinoma", for small unchanged BD-IPMN after 5 years surveillance. Several other points are also discussed, including identifying high-risk features for recurrence in patients who underwent resection of non-invasive IPMN with negative surgical margin, summaries of the recent observations in the pathology of IPMN. In addition, the emerging role of cyst fluid markers that can aid in distinguishing IPMN from other pancreatic cysts and identify those IPMNs that harbor high-grade dysplasia or invasive carcinoma is discussed.
Collapse
Affiliation(s)
- Takao Ohtsuka
- Department of Digestive Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan.
| | | | - Toru Furukawa
- Department of Investigative Pathology, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Susumu Hijioka
- Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Jin-Young Jang
- Division of Hepatobiliary-Pancreatic Surgery, Departments of Surgery, Seoul National University College of Medicine, Seoul, South Korea
| | - Anne Marie Lennon
- Division of Gastroenterology and Hepatology, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Yoshihiro Miyasaka
- Department of Surgery, Fukuoka University Chikushi Hospital, and Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Eizaburo Ohno
- Department of Gastroenterology and Hepatology, Fujita Health University, Toyoake, Aichi, Japan
| | - Roberto Salvia
- Department of Surgery, Dentistry, Paediatrics and Gynaecology University of Verona, Verona, Italy
| | | | - Laura D Wood
- Departments of Pathology and Oncology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
5
|
Itoh T, Omori Y, Seino M, Hirose K, Date F, Ono Y, Mizukami Y, Aoki S, Ishida M, Mizuma M, Morikawa T, Higuchi R, Honda G, Okamura Y, Kinoshita K, Unno M, Furukawa T. Gene Rearrangement and Expression of PRKACA and PRKACB Govern Morphobiology of Pancreatobiliary Oncocytic Neoplasms. Mod Pathol 2024; 37:100358. [PMID: 37871652 DOI: 10.1016/j.modpat.2023.100358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 09/29/2023] [Accepted: 10/15/2023] [Indexed: 10/25/2023]
Abstract
Intraductal oncocytic papillary neoplasms (IOPNs) are distinct from intraductal papillary mucinous neoplasms based on characteristic morphologic and genetic features represented by fusion genes involving PRKACA or PRKACB (PRKACA/B). However, pancreatic and biliary tumors with partial oncocytic features are often encountered clinically, and their molecular features are yet to be clarified. This study included 80 intraductal papillary neoplasms: 32 tumors with mature IOPN morphology (typical), 28 with partial or subclonal oncocytic features (atypical), and 20 without oncocytic features (control). We analyzed PRKACA/B fusion genes, including ATP1B1::PRKACA, DNAJB1::PRKACA, and ATP1B1::PRKACB, by reverse-transcription PCR; mRNA expression of fusion genes and nonrearranged PRKACA/B genes by quantitative reverse-transcription PCR; mutations in KRAS, BRAF, and GNAS by targeted sequencing or droplet digital PCR; and the expression of cyclic adenosine monophosphate (cAMP)-dependent protein kinase catalytic subunits α (PRKACA) and β (PRKACB), phosphorylated cAMP response element-binding protein, and aberrations of p16, p53, SMAD4, STK11, and β-catenin by immunohistochemistry. PRKACA/B fusion genes were detected in 100% (32/32) of typical, 46% (13/28) of atypical, and 0% (0/20) of control (P < .05). Expression of PRKACA, PRKACB, and phosphorylated cAMP response element-binding protein was upregulated in neoplasms with PRKACA/B fusion genes (P < .05). mRNA expression of the PRKACA/B fusion genes and protein expression of PRKACA or PRKACB tended to be higher in typical than in atypical cases (mRNA, P = .002; protein expression, P = .054). In some atypical neoplasms with mixed subtypes, PRKACA/B fusion genes were superimposed exclusively on oncocytic components. Typical IOPNs harbored fewer KRAS and GNAS mutations than control samples and fewer alterations in p53 and STK11 than atypical samples (P < .05). In conclusion, PRKACA/B fusion genes not only are the characteristic drivers of IOPNs but also play a crucial role in the development of subclonal oncocytic neoplasms. Moreover, oncocytic morphology is strongly associated with upregulation of PRKACA/B, which may provide clues for potential therapeutic options.
Collapse
Affiliation(s)
- Taito Itoh
- Department of Investigative Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yuko Omori
- Department of Investigative Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan; Institute of Biomedical Research, Sapporo Higashi Tokushukai Hospital, Sapporo, Japan
| | - Mitsuru Seino
- Department of Investigative Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Katsuya Hirose
- Department of Investigative Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Fumiko Date
- Department of Investigative Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yusuke Ono
- Institute of Biomedical Research, Sapporo Higashi Tokushukai Hospital, Sapporo, Japan; Division of Gastroenterology, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Yusuke Mizukami
- Institute of Biomedical Research, Sapporo Higashi Tokushukai Hospital, Sapporo, Japan; Division of Gastroenterology, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Shuichi Aoki
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masaharu Ishida
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masamichi Mizuma
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takanori Morikawa
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ryota Higuchi
- Department of Surgery, Institute of Gastroenterology, Tokyo Women's Medical University, Tokyo, Japan
| | - Goro Honda
- Department of Surgery, Institute of Gastroenterology, Tokyo Women's Medical University, Tokyo, Japan
| | - Yasunobu Okamura
- Tohoku University Advanced Research Center for Innovations in Next-Generation Medicine, Sendai, Japan; Tohoku University Tohoku Medical Megabank Organization, Sendai, Japan
| | - Kengo Kinoshita
- Tohoku University Advanced Research Center for Innovations in Next-Generation Medicine, Sendai, Japan; Tohoku University Tohoku Medical Megabank Organization, Sendai, Japan; Tohoku University Graduate School of Information Sciences, Sendai, Japan
| | - Michiaki Unno
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Toru Furukawa
- Department of Investigative Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan.
| |
Collapse
|
6
|
Omori Y, Furukawa T, Scarpa A, Luchini C. Co-occurring IPMN and pancreatic cancer: the same or different? An overview from histology to molecular pathology. J Clin Pathol 2023; 76:734-739. [PMID: 37500498 DOI: 10.1136/jcp-2023-209012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023]
Abstract
Intraductal papillary mucinous neoplasm (IPMN) of the pancreas is one of the most well-established precursors of pancreatic cancer. Its progression to acquire invasiveness is a complex process, based on the accumulation of morphological and genetic alterations. Recent advances in DNA sequencing also showed that co-occurring IPMNs and pancreatic cancers could be totally independent, further complicating our understanding of this complex scenario. The distinction between IPMN and related pancreatic cancer vs IPMN and co-occurring-but not related-pancreatic cancer is a challenging task in routine diagnostic activity, but may have important implications for precision oncology. Of note, recent multiregional sequencing-based studies focused not only on IPMN multi-step tumourigenesis, but also on the divergent intratumoural heterogeneity of this neoplasm. Globally considered, there are three different situations in which co-occurring IPMNs and invasive carcinomas can be found in the same pancreata, indicated with different terminologies: (1) IPMN-associated carcinoma: this definition indicates a carcinoma arising from an IPMN and can be also defined as IPMN-derived carcinoma, sequential or likely related; (2) independent IPMN and invasive carcinoma: the two lesions are not related, and this situation is defined as concomitant, de novo or likely independent; (3) branch-off pathway, where an invasive carcinoma and an adjacent IPMN develop divergently in a forked fashion from a common ancestral clone. In this review, we aim at clarifying the most important nomenclature/definitions of these different situations, also providing an overview of the molecular state-of-the-art and of the clinical implications of this complex landscape.
Collapse
Affiliation(s)
- Yuko Omori
- Department of Investigative Patholgy, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, Verona, Italy
| | - Toru Furukawa
- Department of Investigative Patholgy, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Aldo Scarpa
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, Verona, Italy
- ARC-Net Research Center, University and Hospital Trust, Verona, Italy
| | - Claudio Luchini
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, Verona, Italy
- ARC-Net Research Center, University and Hospital Trust, Verona, Italy
| |
Collapse
|
7
|
Wood LD, Adsay NV, Basturk O, Brosens LAA, Fukushima N, Hong SM, Kim SJ, Lee JW, Luchini C, Noë M, Pitman MB, Scarpa A, Singhi AD, Tanaka M, Furukawa T. Systematic review of challenging issues in pathology of intraductal papillary mucinous neoplasms. Pancreatology 2023; 23:878-891. [PMID: 37604731 DOI: 10.1016/j.pan.2023.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 08/23/2023]
Abstract
BACKGROUND Intraductal papillary mucinous neoplasms (IPMNs) are a cystic precursor to pancreatic cancer. IPMNs deemed clinically to be at high-risk for malignant progression are frequently treated with surgical resection, and pathological examination of the pancreatectomy specimen is a key component of the clinical care of IPMN patients. METHODS Systematic literature reviews were conducted around eight topics of clinical relevance in the examination of pathological specimens in patients undergoing resection of IPMN. RESULTS This review provides updated perspectives on morphological subtyping of IPMNs, classification of intraductal oncocytic papillary neoplasms, nomenclature for high-grade dysplasia, assessment of T stage, distinction of carcinoma associated or concomitant with IPMN, role of molecular assessment of IPMN tissue, role of intraoperative assessment by frozen section, and preoperative evaluation of cyst fluid cytology. CONCLUSIONS This analysis provides the foundation for data-driven approaches to several challenging issues in the pathology of IPMNs.
Collapse
Affiliation(s)
- Laura D Wood
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - N Volkan Adsay
- Department of Pathology, Koç University Hospital and Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey
| | - Olca Basturk
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lodewijk A A Brosens
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Noriyoshi Fukushima
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Seung-Mo Hong
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sung-Joo Kim
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jae W Lee
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Claudio Luchini
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, 37134, Verona, Italy; ARC-Net Research Center, University of Verona, 37134, Verona, Italy
| | - Michaël Noë
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Martha B Pitman
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Aldo Scarpa
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, 37134, Verona, Italy; ARC-Net Research Center, University of Verona, 37134, Verona, Italy
| | - Aatur D Singhi
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Mariko Tanaka
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Toru Furukawa
- Department of Investigative Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
8
|
Are intratumoral microbiota involved in the progression of intraductal papillary mucinous neoplasms of the pancreas? Surgery 2023; 173:503-510. [PMID: 36404180 DOI: 10.1016/j.surg.2022.10.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/16/2022] [Accepted: 10/03/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND Microbiota have been reported to influence the development of various gastrointestinal neoplasms through the mechanism of sustained inflammation; however, few data are available regarding their influence on intraductal papillary mucinous neoplasms. The aim of this study was to assess the association between specific microbiota and the clinicopathologic characteristics of intraductal papillary mucinous neoplasms of the pancreas. METHODS DNA was extracted from formalin-fixed, paraffin-embedded samples of 30 patients who underwent pancreatectomy for intraductal papillary mucinous neoplasm, and polymerase chain reaction was used to create sequence libraries using the primer set for the V3 and V4 region of 16S recombinant DNA. Filtered sequence reads were then processed into operational taxonomic units with a 97% identity threshold and the relative abundance of bacteria compared between the 2 groups using operational taxonomic units. RESULTS There was a trend toward fewer Firmicutes and more Proteobacteria and Fusobacteria in the relative abundance of main duct operational taxonomic units than in branch duct operational taxonomic units. The relative abundances of Bacteroidetes (P < .01) and Fusobacteria (P = .04) were significantly higher in invasive intraductal papillary mucinous neoplasms than in noninvasive intraductal papillary mucinous neoplasms. The relative abundance of the intestinal type was significantly lower in Firmicutes than the relative abundance of the nonintestinal type (P = .04). Notably, main duct operational taxonomic units with the intestinal subtype were affected by increased proportions of Proteobacteria and Fusobacteria, and Fusobacteria were abundant in the intestinal type of invasive main duct operational taxonomic units. CONCLUSION Intratumoral microbiota may be involved in the progression of operational taxonomic units.
Collapse
|
9
|
Furukawa T. Mechanisms of development and progression of pancreatic neoplasms. Pathol Int 2022; 72:529-540. [PMID: 36161420 PMCID: PMC9828726 DOI: 10.1111/pin.13272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/20/2022] [Indexed: 01/12/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) develops via dysplastic changes in the epithelia graded as low- and high-grade with accumulation of molecular alterations. Constitutive activation of mitogen-activated protein kinase (MAPK) contributed by attenuation of DUSP6 plays a key role in sustaining PDAC. Active MAPK induces various molecules that function as effectors to sustain PDAC. AURKA and SON are downstream effectors that contribute substantially to the proliferation and survival of PDAC cells and are potentially useful as therapeutic targets. Active MAPK also promote microRNAs that modulate the proliferation of PDAC cells and are useful as diagnostic markers. Familial pancreatic cancer kindreds in Japan show various germline mutations supposed to increase a pancreatic cancer risk. Intraductal papillary mucinous neoplasms (IPMNs) consist of dilated ducts lined by papillary neoplastic epithelia of various shapes and varying grades of atypia. Various papillae of IPMNs are classified into four subtypes that are associated with clinicopathological features, including patient prognosis. GNAS is a specific driver gene for the development of IPMN through gain-of-function mutations. Tracing of molecular alterations has elucidated the mechanism of progression of IPMN from dysplasia to carcinoma, as well as one type of papillae. Intraductal tubulopapillary neoplasms belong to a distinct class of pancreatic neoplasms.
Collapse
Affiliation(s)
- Toru Furukawa
- Department of Investigative PathologyTohoku University Graduate School of MedicineSendaiJapan
| |
Collapse
|
10
|
Molecular Analysis of Pancreatic Cyst Fluid for the Management of Intraductal Papillary Mucinous Neoplasms. Diagnostics (Basel) 2022; 12:diagnostics12112573. [PMID: 36359417 PMCID: PMC9689264 DOI: 10.3390/diagnostics12112573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/13/2022] [Accepted: 10/19/2022] [Indexed: 12/03/2022] Open
Abstract
Pancreatic cancer is one of the most lethal human cancers. Early detection and diagnosis of precursor lesions for pancreatic malignancy is essential to improve the morbidity and mortality associated with this diagnosis. Of the cystic precursor lesions, branch duct intraductal papillary mucinous neoplasm (IPMN) is the most frequently identified lesion and has a wide range of malignant potential. Currently, Carcinogenic embryonic antigen (CEA) levels in the cyst fluid and cytology are the two most often utilized tools to diagnose these lesions; however, their diagnostic and risk stratification capabilities are somewhat limited. Within the last decade, the use of endoscopic ultrasound-guided fine-needle aspiration has opened the door for molecular analysis of cystic fluid as an option to enhance both the diagnosis and risk stratification of these lesions. The first step is to differentiate branch duct IPMNs from other lesions. KRAS and GNAS alterations have been shown to be accurate markers for this purpose. Following cyst type identification, mutational analysis, telomere fusion, microRNAs, long non-coding RNA, and DNA methylation have been identified as potential targets for stratifying malignant potential using the cystic fluid. In this review, we will examine the various targets of cyst fluid molecular analysis and their utility in the diagnosis and risk stratification of branch duct IPMNs.
Collapse
|
11
|
Assarzadegan N, Thompson E, Salimian K, Gaida MM, Brosens LAA, Wood L, Ali SZ, Hruban RH. Pathology of intraductal papillary mucinous neoplasms. Langenbecks Arch Surg 2021; 406:2643-2655. [PMID: 34047827 DOI: 10.1007/s00423-021-02201-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 05/13/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Intraductal papillary mucinous neoplasms (IPMNs) represent a unique opportunity to treat and prevent a curable neoplasm before it has the chance to progress to incurable cancer. This prospect, however, has to be balanced with the real risk of over treating patients with lesions that would, in fact, never progress during the life of the patient. PURPOSE Informed clinical decisions in the treatment of IPMNs are first and foremost based on a deep understanding of the pathology of these lesions. CONCLUSIONS Here we review the pathology of IPMNs, with an emphasis on the clinical relevance of the important features that characterize these lesions.
Collapse
Affiliation(s)
- Naziheh Assarzadegan
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD, 21212, USA
| | - Elizabeth Thompson
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD, 21212, USA
| | - Kevan Salimian
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD, 21212, USA
| | - Matthias M Gaida
- Institute of Pathology, University Medical Center Mainz, Mainz, Germany
| | - Lodewijk A A Brosens
- Department of Pathology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Laura Wood
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD, 21212, USA.,Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD, 21212, USA
| | - Syed Z Ali
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD, 21212, USA.,Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD, 21212, USA
| | - Ralph H Hruban
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD, 21212, USA. .,Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD, 21212, USA.
| |
Collapse
|