1
|
Li N, Yang X, Liu W, Xi G, Wang M, Liang B, Ma Z, Feng Y, Chen H, Shi C. Tannic Acid Cross-linked Polysaccharide-Based Multifunctional Hemostatic Microparticles for the Regulation of Rapid Wound Healing. Macromol Biosci 2018; 18:e1800209. [PMID: 30238611 DOI: 10.1002/mabi.201800209] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/26/2018] [Indexed: 12/20/2022]
Abstract
Hemostatic microparticles (HMs) have been widely used in surgery. To improve the comprehensive performance of HMs, multifunctional HMs named HM15 and HM15 ' are prepared from starch, carboxymethyl chitosan, hyaluronic acid, and tannic acid. Herein, tannic acid is used as an effective cross-linker. A 3D network structure for cell growth and wound repair can be formed by secondary cross-linking. Through synergistic effect of these natural materials, the process of wound healing can be regulated controllably. HM15 and HM15 ' have the ability of rapid hemostasis. Moreover, HM15 ' shows excellent properties in antibacteria and wound healing acceleration. Blood clotting time treated with different HMs is shortened obviously from 436.8 s to 126 s. Compared with Celox, HM15 and HM15 ' exhibited better broad spectrum antibacterial activity against both Escherichia coli and Staphylococcus aureus. Notably, the wound can be repaired rapidly by HM15 ' in 14 days. These multifunctional HMs might have an important prospect in clinical application.
Collapse
Affiliation(s)
- Na Li
- Wenzhou Institute of Biomaterials and Engineering, Ningbo Institute of Industrial Tehcnology (CNITECH), Chinese Academy of Sciences (CAS), Wenzhou, Zhejiang, 325011, China
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute of Biomaterials and Engineering, Chinese Academy of Sciences (CAS), Wenzhou, Zhejiang, 325011, China
| | - Xiao Yang
- Wenzhou Institute of Biomaterials and Engineering, Ningbo Institute of Industrial Tehcnology (CNITECH), Chinese Academy of Sciences (CAS), Wenzhou, Zhejiang, 325011, China
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute of Biomaterials and Engineering, Chinese Academy of Sciences (CAS), Wenzhou, Zhejiang, 325011, China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Wen Liu
- Wenzhou Institute of Biomaterials and Engineering, Ningbo Institute of Industrial Tehcnology (CNITECH), Chinese Academy of Sciences (CAS), Wenzhou, Zhejiang, 325011, China
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute of Biomaterials and Engineering, Chinese Academy of Sciences (CAS), Wenzhou, Zhejiang, 325011, China
| | - Guanghui Xi
- Wenzhou Institute of Biomaterials and Engineering, Ningbo Institute of Industrial Tehcnology (CNITECH), Chinese Academy of Sciences (CAS), Wenzhou, Zhejiang, 325011, China
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute of Biomaterials and Engineering, Chinese Academy of Sciences (CAS), Wenzhou, Zhejiang, 325011, China
| | - Mingshan Wang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Bin Liang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Zhaipu Ma
- College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China
| | - Yakai Feng
- Wenzhou Institute of Biomaterials and Engineering, Ningbo Institute of Industrial Tehcnology (CNITECH), Chinese Academy of Sciences (CAS), Wenzhou, Zhejiang, 325011, China
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute of Biomaterials and Engineering, Chinese Academy of Sciences (CAS), Wenzhou, Zhejiang, 325011, China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Hao Chen
- Wenzhou Institute of Biomaterials and Engineering, Ningbo Institute of Industrial Tehcnology (CNITECH), Chinese Academy of Sciences (CAS), Wenzhou, Zhejiang, 325011, China
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute of Biomaterials and Engineering, Chinese Academy of Sciences (CAS), Wenzhou, Zhejiang, 325011, China
| | - Changcan Shi
- Wenzhou Institute of Biomaterials and Engineering, Ningbo Institute of Industrial Tehcnology (CNITECH), Chinese Academy of Sciences (CAS), Wenzhou, Zhejiang, 325011, China
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute of Biomaterials and Engineering, Chinese Academy of Sciences (CAS), Wenzhou, Zhejiang, 325011, China
| |
Collapse
|
2
|
Solomon C, Ranucci M, Hochleitner G, Schöchl H, Schlimp CJ. Assessing the Methodology for Calculating Platelet Contribution to Clot Strength (Platelet Component) in Thromboelastometry and Thrombelastography. Anesth Analg 2015; 121:868-878. [PMID: 26378699 PMCID: PMC4568902 DOI: 10.1213/ane.0000000000000859] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2015] [Indexed: 12/28/2022]
Abstract
The viscoelastic properties of blood clot have been studied most commonly using thrombelastography (TEG) and thromboelastometry (ROTEM). ROTEM-based bleeding treatment algorithms recommend administering platelets to patients with low EXTEM clot strength (e.g., clot amplitude at 10 minutes [A10] <40 mm) once clot strength of the ROTEM® fibrin-based test (FIBTEM) is corrected. Algorithms based on TEG typically use a low value of maximum amplitude (e.g., <50 mm) as a trigger for administering platelets. However, this parameter reflects the contributions of various blood components to the clot, including platelets and fibrin/fibrinogen. The platelet component of clot strength may provide a more sensitive indication of platelet deficiency than clot amplitude from a whole blood TEG or ROTEM® assay. The platelet component of the formed clot is derived from the results of TEG/ROTEM® tests performed with and without platelet inhibition. In this article, we review the basis for why this calculation should be based on clot elasticity (e.g., the E parameter with TEG and the CE parameter with ROTEM®) as opposed to clot amplitude (e.g., the A parameter with TEG or ROTEM®). This is because clot elasticity, unlike clot amplitude, reflects the force with which the blood clot resists rotation within the device, and the relationship between clot amplitude (variable X) and clot elasticity (variable Y) is nonlinear. A specific increment of X (ΔX) will be associated with different increments of Y (ΔY), depending on the initial value of X. When calculated correctly, using clot elasticity data, the platelet component of the clot can provide a valuable insight into platelet deficiency in emergency bleeding.
Collapse
Affiliation(s)
- Cristina Solomon
- From the CSL Behring, Marburg, Germany; Department of Anesthesiology, Perioperative Care and General Intensive Care, Paracelsus Medical University, Salzburg University Hospital, Salzburg, Austria; Ludwig Boltzmann Institute for Experimental and Clinical Traumatology and AUVA Research Centre, Vienna, Austria; Department of Cardiothoracic and Vascular Anesthesia and Intensive Care, IRCCS Policlinico, San Donato, Milan, Italy; CSL Behring, Vienna, Austria and Department of Anesthesiology and Intensive Care, AUVA Trauma Hospital of Salzburg, Austria
| | - Marco Ranucci
- From the CSL Behring, Marburg, Germany; Department of Anesthesiology, Perioperative Care and General Intensive Care, Paracelsus Medical University, Salzburg University Hospital, Salzburg, Austria; Ludwig Boltzmann Institute for Experimental and Clinical Traumatology and AUVA Research Centre, Vienna, Austria; Department of Cardiothoracic and Vascular Anesthesia and Intensive Care, IRCCS Policlinico, San Donato, Milan, Italy; CSL Behring, Vienna, Austria and Department of Anesthesiology and Intensive Care, AUVA Trauma Hospital of Salzburg, Austria
| | - Gerald Hochleitner
- From the CSL Behring, Marburg, Germany; Department of Anesthesiology, Perioperative Care and General Intensive Care, Paracelsus Medical University, Salzburg University Hospital, Salzburg, Austria; Ludwig Boltzmann Institute for Experimental and Clinical Traumatology and AUVA Research Centre, Vienna, Austria; Department of Cardiothoracic and Vascular Anesthesia and Intensive Care, IRCCS Policlinico, San Donato, Milan, Italy; CSL Behring, Vienna, Austria and Department of Anesthesiology and Intensive Care, AUVA Trauma Hospital of Salzburg, Austria
| | - Herbert Schöchl
- From the CSL Behring, Marburg, Germany; Department of Anesthesiology, Perioperative Care and General Intensive Care, Paracelsus Medical University, Salzburg University Hospital, Salzburg, Austria; Ludwig Boltzmann Institute for Experimental and Clinical Traumatology and AUVA Research Centre, Vienna, Austria; Department of Cardiothoracic and Vascular Anesthesia and Intensive Care, IRCCS Policlinico, San Donato, Milan, Italy; CSL Behring, Vienna, Austria and Department of Anesthesiology and Intensive Care, AUVA Trauma Hospital of Salzburg, Austria
| | - Christoph J. Schlimp
- From the CSL Behring, Marburg, Germany; Department of Anesthesiology, Perioperative Care and General Intensive Care, Paracelsus Medical University, Salzburg University Hospital, Salzburg, Austria; Ludwig Boltzmann Institute for Experimental and Clinical Traumatology and AUVA Research Centre, Vienna, Austria; Department of Cardiothoracic and Vascular Anesthesia and Intensive Care, IRCCS Policlinico, San Donato, Milan, Italy; CSL Behring, Vienna, Austria and Department of Anesthesiology and Intensive Care, AUVA Trauma Hospital of Salzburg, Austria
| |
Collapse
|