1
|
Wu N, Zheng W, Zhou Y, Tian Y, Tang M, Feng X, Ashrafizadeh M, Wang Y, Niu X, Tambuwala M, Wang L, Tergaonkar V, Sethi G, Klionsky D, Huang L, Gu M. Autophagy in aging-related diseases and cancer: Principles, regulatory mechanisms and therapeutic potential. Ageing Res Rev 2024; 100:102428. [PMID: 39038742 DOI: 10.1016/j.arr.2024.102428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/05/2024] [Accepted: 07/15/2024] [Indexed: 07/24/2024]
Abstract
Macroautophagy/autophagy is primarily accountable for the degradation of damaged organelles and toxic macromolecules in the cells. Regarding the essential function of autophagy for preserving cellular homeostasis, changes in, or dysfunction of, autophagy flux can lead to disease development. In the current paper, the complicated function of autophagy in aging-associated pathologies and cancer is evaluated, highlighting the underlying molecular mechanisms that can affect longevity and disease pathogenesis. As a natural biological process, a reduction in autophagy is observed with aging, resulting in an accumulation of cell damage and the development of different diseases, including neurological disorders, cardiovascular diseases, and cancer. The MTOR, AMPK, and ATG proteins demonstrate changes during aging, and they are promising therapeutic targets. Insulin/IGF1, TOR, PKA, AKT/PKB, caloric restriction and mitochondrial respiration are vital for lifespan regulation and can modulate or have an interaction with autophagy. The specific types of autophagy, such as mitophagy that degrades mitochondria, can regulate aging by affecting these organelles and eliminating those mitochondria with genomic mutations. Autophagy and its specific types contribute to the regulation of carcinogenesis and they are able to dually enhance or decrease cancer progression. Cancer hallmarks, including proliferation, metastasis, therapy resistance and immune reactions, are tightly regulated by autophagy, supporting the conclusion that autophagy is a promising target in cancer therapy.
Collapse
Affiliation(s)
- Na Wu
- Department of Infectious Diseases, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Wenhui Zheng
- Department of Anesthesiology, The Shengjing Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Yundong Zhou
- Department of Thoracic Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang 315040, China
| | - Yu Tian
- School of Public Health, Benedictine University, No.5700 College Road, Lisle, IL 60532, USA; Research Center, the Huizhou Central People's Hospital, Guangdong Medical University, Huizhou, Guangdong, China
| | - Min Tang
- Department of Oncology, Chongqing General Hospital, Chongqing University, Chongqing 401120, China
| | - Xiaoqiang Feng
- Center of Stem Cell and Regenerative Medicine, Gaozhou People's Hospital, Gaozhou, Guangdong 525200, China
| | - Milad Ashrafizadeh
- Department of Radiation Oncology, Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong 250000, China; Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yuzhuo Wang
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC V6H3Z6, Canada
| | - Xiaojia Niu
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC V6H3Z6, Canada
| | - Murtaza Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln LN6 7TS, UK
| | - Lingzhi Wang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore 117600, Singapore
| | - Vinay Tergaonkar
- Laboratory of NF-κB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A⁎STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore 117600, Singapore; NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore.
| | - Daniel Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| | - Li Huang
- Center of Stem Cell and Regenerative Medicine, Gaozhou People's Hospital, Gaozhou, Guangdong 525200, China.
| | - Ming Gu
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China.
| |
Collapse
|
2
|
Li YY, Qin ZH, Sheng R. The Multiple Roles of Autophagy in Neural Function and Diseases. Neurosci Bull 2024; 40:363-382. [PMID: 37856037 PMCID: PMC10912456 DOI: 10.1007/s12264-023-01120-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/11/2023] [Indexed: 10/20/2023] Open
Abstract
Autophagy involves the sequestration and delivery of cytoplasmic materials to lysosomes, where proteins, lipids, and organelles are degraded and recycled. According to the way the cytoplasmic components are engulfed, autophagy can be divided into macroautophagy, microautophagy, and chaperone-mediated autophagy. Recently, many studies have found that autophagy plays an important role in neurological diseases, including Alzheimer's disease, Parkinson's disease, Huntington's disease, neuronal excitotoxicity, and cerebral ischemia. Autophagy maintains cell homeostasis in the nervous system via degradation of misfolded proteins, elimination of damaged organelles, and regulation of apoptosis and inflammation. AMPK-mTOR, Beclin 1, TP53, endoplasmic reticulum stress, and other signal pathways are involved in the regulation of autophagy and can be used as potential therapeutic targets for neurological diseases. Here, we discuss the role, functions, and signal pathways of autophagy in neurological diseases, which will shed light on the pathogenic mechanisms of neurological diseases and suggest novel targets for therapies.
Collapse
Affiliation(s)
- Yan-Yan Li
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, 215123, China
| | - Zheng-Hong Qin
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, 215123, China.
| | - Rui Sheng
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, 215123, China.
| |
Collapse
|
3
|
Han S, Liu P, Yan Q, Cen Y, Wu G, Chen Z, Li M, Deng Y, Luo F, Lin J. Seawater pearl hydrolysate inhibits photoaging via decreasing oxidative stress, autophagy and apoptosis of Ultraviolet B-induced human skin keratinocytes. J Cosmet Dermatol 2024; 23:256-270. [PMID: 37435953 DOI: 10.1111/jocd.15916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/30/2023] [Accepted: 06/25/2023] [Indexed: 07/13/2023]
Abstract
BACKGROUND Ultraviolet (UV) is the main reason to cause photoaging skin which not only hinders beauty, brings the patients with psychological burden, but also pathologically leads to the occurrence of tumors in skin. OBJECTIVE This study goes into the inhibitory effect and mechanism of seawater pearl hydrolysate (SPH) to address human skin keratinocytes photoaging induced by UVB. METHODS The photoaging model of Hacat cell was constructed by UVB irradiation, the levels of oxidative stress, apoptosis, aging, autophagy and autophagy-related protein and signal pathway expression were assessed to characterize the inhibitory effect and mechanism of SPH on photoaging Hacat cell. RESULTS Seawater pearl hydrolysate significantly accelerated (p < 0.05) the activities of superoxide dismutase, catalase, and glutathione peroxidase, and markedly reduced (p < 0.05) the contents of reactive oxygen species (ROS), malondialdehyde, protein carbonyl compound and nitrosylated tyrosine protein, aging level, apoptosis rate in Hacat cell induced by 200 mJ cm-2 UVB after 24 and 48 h of culture; high dose SPH significantly raised (p < 0.05) relative expression level of p-Akt, p-mTOR proteins, and markedly decreased (p < 0.05) relative expression level of LC3II protein, p-AMPK, and autophagy level in Hacat cell induced by 200 mJ cm-2 UVB, or in combination with the intervention of PI3K inhibitor or AMPK overexpression after 48 h of culture. CONCLUSION Seawater pearl hydrolysate can effectively inhibit 200 mJ cm-2 UVB-induced photoaging of Hacat cells. The mechanism indicates removing the excessive ROS through increasing the antioxidation of photoaging Hacat cells. Once redundant ROS is eliminated, SPH works to reduce AMPK, increase PI3K-Akt pathway expression, activate mTOR pathway to lowdown autophagy level, and as a result, inhibit apoptosis and aging in photoaging Hacat cells.
Collapse
Affiliation(s)
- Siyin Han
- School of Basic Medical Science, Guangxi University of Chinese Medicine, Nanning, China
| | - Peng Liu
- School of Basic Medical Science, Guangxi University of Chinese Medicine, Nanning, China
| | - Qiangqiang Yan
- School of Basic Medical Science, Guangxi University of Chinese Medicine, Nanning, China
| | - Yanhui Cen
- School of Basic Medical Science, Guangxi University of Chinese Medicine, Nanning, China
| | - Guanyi Wu
- School of Basic Medical Science, Guangxi University of Chinese Medicine, Nanning, China
| | - Zhenxing Chen
- School of Basic Medical Science, Guangxi University of Chinese Medicine, Nanning, China
| | - Mingxing Li
- School of Basic Medical Science, Guangxi University of Chinese Medicine, Nanning, China
| | - Yasheng Deng
- School of Basic Medical Science, Guangxi University of Chinese Medicine, Nanning, China
| | - Fei Luo
- School of Basic Medical Science, Guangxi University of Chinese Medicine, Nanning, China
| | - Jiang Lin
- School of Basic Medical Science, Guangxi University of Chinese Medicine, Nanning, China
| |
Collapse
|
4
|
Wang Q, Wang Y, Li S, Shi J. PACAP-Sirtuin3 alleviates cognitive impairment through autophagy in Alzheimer's disease. Alzheimers Res Ther 2023; 15:184. [PMID: 37891608 PMCID: PMC10605376 DOI: 10.1186/s13195-023-01334-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023]
Abstract
BACKGROUND Autophagy is vital in the pathogenesis of neurodegeneration. Thus far, no studies have specifically investigated the relationship between pituitary adenylate cyclase-activating polypeptide (PACAP) and autophagy, particularly in the context of Alzheimer's disease (AD). This study used in vitro and in vivo models, along with clinical samples, to explore interactions between PACAP and autophagy in AD. METHODS AD model mice were administered 6 μl of 0.1 mg/ml PACAP liquid intranasally for 4 weeks, then subjected to behavioral analyses to assess the benefits of PACAP treatment. The underlying mechanisms of PACAP-induced effects were investigated by methods including real-time quantitative polymerase chain reaction, RNA sequencing, immunofluorescence, and western blotting. Exosomes were extracted from human serum and subjected to enzyme-linked immunosorbent assays to examine autophagy pathways. The clinical and therapeutic implications of PACAP and autophagy were extensively investigated throughout the experiment. RESULTS Impaired autophagy was a critical step in amyloid β (Aβ) and Tau deposition; PACAP enhanced autophagy and attenuated cognitive impairment. RNA sequencing revealed three pathways that may be involved in AD progression: PI3K-AKT, mTOR, and AMPK. In vivo and in vitro studies showed that sirtuin3 knockdown diminished the ability of PACAP to restore normal autophagy function, resulting in phagocytosis dysregulation and the accumulation of pTau, Tau, and Aβ. Additionally, the autophagic biomarker MAP1LC3 demonstrated a positive association with PACAP in human serum. CONCLUSIONS PACAP reverses AD-induced cognitive impairment through autophagy, using sirtuin3 as a key mediator. MAP1LC3 has a positive relationship with PACAP in humans. These findings provide insights regarding potential uses of intranasal PACAP and sirtuin3 agonists in AD treatment. TRIAL REGISTRATION NCT04320368.
Collapse
Affiliation(s)
- Qing Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No. 119, South 4Th Ring West Road, Fengtai District, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Yue Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No. 119, South 4Th Ring West Road, Fengtai District, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Shiping Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No. 119, South 4Th Ring West Road, Fengtai District, Beijing, 100070, China.
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.
| | - Jiong Shi
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No. 119, South 4Th Ring West Road, Fengtai District, Beijing, 100070, China.
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.
| |
Collapse
|
5
|
Chen X, Ma J, Chen H. Induction of autophagy via the ROS-dependent AMPK/mTOR pathway protects deoxynivalenol exposure grass carp hepatocytes damage. FISH & SHELLFISH IMMUNOLOGY 2023; 135:108687. [PMID: 36921881 DOI: 10.1016/j.fsi.2023.108687] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/04/2023] [Accepted: 03/11/2023] [Indexed: 06/18/2023]
Abstract
Deoxynivalenol (DON) is one of the most frequently found mycotoxin sources in feed and raw food products, endangering human and animal health. The mechanism of grass carp (Ctenopharyngodon idellus) liver cell (L8824) toxicity induced by DON is still unknown. The DON was administered to the L8824 cells in concentrations of 150, 200, and 250 ng/mL for 24 h. The results of this study suggested that DON could enable L8824 cells to significantly increase the levels of autophagy. Concurrently, DON could trigger autophagy through the AMPK-mTOR pathway, which upregulated the expression of p-AMPK and p-ULK1 while downregulating the expression of p-mTOR. In the meantime, DON treatment could alter the levels of expression of the related proteins in autophagy. Additionally, DON treatment dramatically reduced the activity of the antioxidant enzymes as well as increased the levels of oxidase, which increased the production of ROS in L8824 cells. This indicates that DON could induce oxidative stress. Furthermore, we discovered that DON exposure caused apoptosis, which is characterized by elevated levels of BAX, Caspase 9, Caspase 3, and decreased Bcl-2 levels. Next, it was investigated how oxidative stress affected DON-induced autophagy. The research revealed that the oxidative stress inhibitor (NAC) attenuated DON-induced autophagy. Additionally, the study also investigated how autophagy worked under the L8824 cells induced by DON. The ROS production, however, was enhanced by the addition of the autophagy inhibitor (3-MA). Additionally, co-treatment with the apoptosis inhibitor Z-VAD-FMK had no influence on autophagy. The combined findings showed that induction of autophagy via the ROS-dependent AMPK-mTOR pathway protects DON-induced L8824 cells from damage.
Collapse
Affiliation(s)
- Xin Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Harbin, 150030, PR China
| | - Jun Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Harbin, 150030, PR China
| | - Hao Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Harbin, 150030, PR China.
| |
Collapse
|
6
|
Popov SV, Mukhomedzyanov AV, Voronkov NS, Derkachev IA, Boshchenko AA, Fu F, Sufianova GZ, Khlestkina MS, Maslov LN. Regulation of autophagy of the heart in ischemia and reperfusion. Apoptosis 2023; 28:55-80. [PMID: 36369366 DOI: 10.1007/s10495-022-01786-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2022] [Indexed: 11/13/2022]
Abstract
Ischemia/reperfusion (I/R) of the heart leads to increased autophagic flux. Preconditioning stimulates autophagic flux by AMPK and PI3-kinase activation and mTOR inhibition. The cardioprotective effect of postconditioning is associated with activation of autophagy and increased activity of NO-synthase and AMPK. Oxidative stress stimulates autophagy in the heart during I/R. Superoxide radicals generated by NADPH-oxidase acts as a trigger for autophagy, possibly due to AMPK activation. There is reason to believe that AMPK, GSK-3β, PINK1, JNK, hexokinase II, MEK, PKCα, and ERK kinases stimulate autophagy, while mTOR, PKCδ, Akt, and PI3-kinase can inhibit autophagy in the heart during I/R. However, there is evidence that PI3-kinase could stimulate autophagy in ischemic preconditioning of the heart. It was found that transcription factors FoxO1, FoxO3, NF-κB, HIF-1α, TFEB, and Nrf-2 enhance autophagy in the heart in I/R. Transcriptional factors STAT1, STAT3, and p53 inhibit autophagy in I/R. MicroRNAs could stimulate and inhibit autophagy in the heart in I/R. Long noncoding RNAs regulate the viability and autophagy of cardiomyocytes in hypoxia/reoxygenation (H/R). Nitric oxide (NO) donors and endogenous NO could activate autophagy of cardiomyocytes. Activation of heme oxygenase-1 promotes cardiomyocyte tolerance to H/R and enhances autophagy. Hydrogen sulfide increases cardiac tolerance to I/R and inhibits apoptosis and autophagy via mTOR and PI3-kinase activation.
Collapse
Affiliation(s)
- Sergey V Popov
- Cardiology Research Institute, Tomsk National Research Medical Centre, the Russian Academy of Sciences, Tomsk, Russia, 634012
| | - Alexander V Mukhomedzyanov
- Cardiology Research Institute, Tomsk National Research Medical Centre, the Russian Academy of Sciences, Tomsk, Russia, 634012
| | - Nikita S Voronkov
- Cardiology Research Institute, Tomsk National Research Medical Centre, the Russian Academy of Sciences, Tomsk, Russia, 634012
| | - Ivan A Derkachev
- Cardiology Research Institute, Tomsk National Research Medical Centre, the Russian Academy of Sciences, Tomsk, Russia, 634012
| | - Alla A Boshchenko
- Cardiology Research Institute, Tomsk National Research Medical Centre, the Russian Academy of Sciences, Tomsk, Russia, 634012
| | - Feng Fu
- School of Basic Medicine, Fourth Military Medical University, No.169, West Changle Road, Xi'an, 710032, China
| | | | | | - Leonid N Maslov
- Cardiology Research Institute, Tomsk National Research Medical Centre, the Russian Academy of Sciences, Tomsk, Russia, 634012.
| |
Collapse
|
7
|
Li XQ, Wang Y, Yang SJ, Liu Y, Ma X, Liu L, Li SH, Niu D, Duan X. Melatonin protects against maternal diabetes-associated meiotic defects by maintaining mitochondrial function. Free Radic Biol Med 2022; 188:386-394. [PMID: 35792241 DOI: 10.1016/j.freeradbiomed.2022.06.243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/22/2022] [Accepted: 06/29/2022] [Indexed: 12/09/2022]
Abstract
Maternal diabetes has been widely reported to adversely affect oocyte quality. Although various molecules and pathways may be involved in this process, strategies to prevent maternal diabetes-induced deterioration of oocyte quality remain unexplored. Melatonin is synthesized by the pineal gland and has been shown to have beneficial effects on oocyte quality owing to its antioxidative function. In the present study, we found that the exposure of oocytes of diabetic mice to melatonin, in vitro, alleviated aberrant oocyte maturation competence. Notably, melatonin supplementation attenuated defects in spindle organization and chromosome alignment by mediating the expression of TPX2 and pericentrin localization. Importantly, melatonin eliminated the accumulation of reactive oxygen species and increased the cytosolic Ca2+ levels in diabetic oocytes by maintaining mitochondrial function. Moreover, the occurrence of autophagy and apoptosis was reversed in diabetic oocytes after melatonin exposure via decreased LC3β expression. Collectively, our findings provide evidence that melatonin supplementation can protect oocytes from maternal diabetes-related meiotic defects and poor egg quality, providing a potential strategy for improving oocyte quality in assisted reproductive technologies.
Collapse
Affiliation(s)
- Xiao-Qing Li
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, 311300, China
| | - Yi Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, 311300, China
| | - Shu-Jie Yang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, 311300, China
| | - Yu Liu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, 311300, China
| | - Xiang Ma
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, 311300, China
| | - Lu Liu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, 311300, China
| | - Si-Hong Li
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, 311300, China
| | - Dong Niu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, 311300, China.
| | - Xing Duan
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, 311300, China.
| |
Collapse
|
8
|
Hypoxia Acclimation Protects against Heart Failure Postacute Myocardial Infarction via Fundc1-Mediated Mitophagy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8192552. [PMID: 35422895 PMCID: PMC9005280 DOI: 10.1155/2022/8192552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/16/2022] [Indexed: 12/19/2022]
Abstract
Mitochondrial dysfunction is the main cause of heart failure (HF) postacute myocardial infarction (AMI). Hypoxia acclimation (HA) reduces efficiently the area of AMI caused by ischemia and/or reperfusion and delays HF. Here, we examined whether HA improves mitochondrial structure and function through the hypoxic autophagy receptor FUNDC1 to prevent HF post-AMI. Male adult mice were acclimated in a low-pressure hypoxic animal chamber (11% oxygen (O2)) for 8 h/day for 28 days, and then, an induced HF post-AMI model via left anterior descending (LAD) artery ligation was structured to explore the efficacy and mechanism of HA. Our results showed that HA exposure can improve cardiac structure and function in mice with HF post-AMI and protected myocardial mitochondrial morphology and function. Further studies showed that HA increased the expression of Fundc1 protein and its associated mitophagy protein LC3 in myocardial tissue after infarction. We then established a cellular model of oxygen glucose deprivation (OGD) in vitro, and knockdown of FUNDC1 attenuated the protective effect of HA exposed on cardiomyocyte mitochondria and increased cardiomyocyte apoptosis. In conclusion, the protective effect of HA on HF post-AMI is achieved by regulating Fundc1-mediated mitophagy in myocardial tissue. FUNDC1-mediated mitophagy could be a promising strategy to treat cardiovascular diseases, including HF.
Collapse
|
9
|
García-Niño WR, Zazueta C, Buelna-Chontal M, Silva-Palacios A. Mitochondrial Quality Control in Cardiac-Conditioning Strategies against Ischemia-Reperfusion Injury. Life (Basel) 2021; 11:1123. [PMID: 34832998 PMCID: PMC8620839 DOI: 10.3390/life11111123] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 12/14/2022] Open
Abstract
Mitochondria are the central target of ischemic preconditioning and postconditioning cardioprotective strategies, which consist of either the application of brief intermittent ischemia/reperfusion (I/R) cycles or the administration of pharmacological agents. Such strategies reduce cardiac I/R injury by activating protective signaling pathways that prevent the exacerbated production of reactive oxygen/nitrogen species, inhibit opening of mitochondrial permeability transition pore and reduce apoptosis, maintaining normal mitochondrial function. Cardioprotection also involves the activation of mitochondrial quality control (MQC) processes, which replace defective mitochondria or eliminate mitochondrial debris, preserving the structure and function of the network of these organelles, and consequently ensuring homeostasis and survival of cardiomyocytes. Such processes include mitochondrial biogenesis, fission, fusion, mitophagy and mitochondrial-controlled cell death. This review updates recent advances in MQC mechanisms that are activated in the protection conferred by different cardiac conditioning interventions. Furthermore, the role of extracellular vesicles in mitochondrial protection and turnover of these organelles will be discussed. It is concluded that modulation of MQC mechanisms and recognition of mitochondrial targets could provide a potential and selective therapeutic approach for I/R-induced mitochondrial dysfunction.
Collapse
|
10
|
Autophagy in Tumor Immunity and Viral-Based Immunotherapeutic Approaches in Cancer. Cells 2021; 10:cells10102672. [PMID: 34685652 PMCID: PMC8534833 DOI: 10.3390/cells10102672] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 09/22/2021] [Accepted: 09/27/2021] [Indexed: 01/09/2023] Open
Abstract
Autophagy is a fundamental catabolic process essential for the maintenance of cellular and tissue homeostasis, as well as directly contributing to the control of invading pathogens. Unsurprisingly, this process becomes critical in supporting cellular dysregulation that occurs in cancer, particularly the tumor microenvironments and their immune cell infiltration, ultimately playing a role in responses to cancer therapies. Therefore, understanding "cancer autophagy" could help turn this cellular waste-management service into a powerful ally for specific therapeutics. For instance, numerous regulatory mechanisms of the autophagic machinery can contribute to the anti-tumor properties of oncolytic viruses (OVs), which comprise a diverse class of replication-competent viruses with potential as cancer immunotherapeutics. In that context, autophagy can either: promote OV anti-tumor effects by enhancing infectivity and replication, mediating oncolysis, and inducing autophagic and immunogenic cell death; or reduce OV cytotoxicity by providing survival cues to tumor cells. These properties make the catabolic process of autophagy an attractive target for therapeutic combinations looking to enhance the efficacy of OVs. In this article, we review the complicated role of autophagy in cancer initiation and development, its effect on modulating OVs and immunity, and we discuss recent progress and opportunities/challenges in targeting autophagy to enhance oncolytic viral immunotherapy.
Collapse
|
11
|
Sheng R, Chen JL, Qin ZH. Cerebral conditioning: Mechanisms and potential clinical implications. BRAIN HEMORRHAGES 2021. [DOI: 10.1016/j.hest.2021.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
12
|
Saran U, Tyagi A, Chandrasekaran B, Ankem MK, Damodaran C. The role of autophagy in metal-induced urogenital carcinogenesis. Semin Cancer Biol 2021; 76:247-257. [PMID: 33798723 DOI: 10.1016/j.semcancer.2021.03.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 12/13/2022]
Abstract
Environmental and/or occupational exposure to metals such as Arsenic (As), Cadmium (Cd), and Chromium (Cr) have been shown to induce carcinogenesis in various organs, including the urogenital system. However, the mechanisms responsible for metal-induced carcinogenesis remain elusive. We and others have shown that metals are potent inducers of autophagy, which has been suggested to be an adaptive stress response to allow metal-exposed cells to survive in hostile environments. Albeit few, recent experimental studies have shown that As and Cd promote tumorigenesis via autophagy and that inhibition of autophagic signaling suppressed metal-induced carcinogenesis. In light of the newly emerging role of autophagic involvement in metal-induced carcinogenesis, the present review focuses explicitly on the mechanistic role of autophagy and potential signaling pathways involved in As-, Cd-, and Cr-induced urogenital carcinogenesis.
Collapse
Affiliation(s)
- Uttara Saran
- Department of Urology, University of Louisville, Louisville, KY, United States
| | - Ashish Tyagi
- Department of Urology, University of Louisville, Louisville, KY, United States
| | | | - Murali K Ankem
- Department of Urology, University of Louisville, Louisville, KY, United States
| | - Chendil Damodaran
- Department of Urology, University of Louisville, Louisville, KY, United States; College of Pharmacy, Department of Pharmaceutical Sciences, Texas A&M, College Station, TX, United States.
| |
Collapse
|
13
|
Carresi C, Mollace R, Macrì R, Scicchitano M, Bosco F, Scarano F, Coppoletta AR, Guarnieri L, Ruga S, Zito MC, Nucera S, Gliozzi M, Musolino V, Maiuolo J, Palma E, Mollace V. Oxidative Stress Triggers Defective Autophagy in Endothelial Cells: Role in Atherothrombosis Development. Antioxidants (Basel) 2021; 10:antiox10030387. [PMID: 33807637 PMCID: PMC8001288 DOI: 10.3390/antiox10030387] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 02/18/2021] [Accepted: 03/01/2021] [Indexed: 02/06/2023] Open
Abstract
Atherothrombosis, a multifactorial and multistep artery disorder, represents one of the main causes of morbidity and mortality worldwide. The development and progression of atherothrombosis is closely associated with age, gender and a complex relationship between unhealthy lifestyle habits and several genetic risk factors. The imbalance between oxidative stress and antioxidant defenses is the main biological event leading to the development of a pro-oxidant phenotype, triggering cellular and molecular mechanisms associated with the atherothrombotic process. The pathogenesis of atherosclerosis and its late thrombotic complications involve multiple cellular events such as inflammation, endothelial dysfunction, proliferation of vascular smooth muscle cells (SMCs), extracellular matrix (ECM) alterations, and platelet activation, contributing to chronic pathological remodeling of the vascular wall, atheromatous plague formation, vascular stenosis, and eventually, thrombus growth and propagation. Emerging studies suggest that clotting activation and endothelial cell (EC) dysfunction play key roles in the pathogenesis of atherothrombosis. Furthermore, a growing body of evidence indicates that defective autophagy is closely linked to the overproduction of reactive oxygen species (ROS) which, in turn, are involved in the development and progression of atherosclerotic disease. This topic represents a large field of study aimed at identifying new potential therapeutic targets. In this review, we focus on the major role played by the autophagic pathway induced by oxidative stress in the modulation of EC dysfunction as a background to understand its potential role in the development of atherothrombosis.
Collapse
Affiliation(s)
- Cristina Carresi
- Research for Food Safety & Health IRC-FSH, Department of Health Sciences, University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (R.M.); (M.S.); (F.B.); (F.S.); (A.R.C.); (L.G.); (S.R.); (M.C.Z.); (S.N.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
- Correspondence: ; Tel.: +39-09613694128; Fax: +39-09613695737
| | - Rocco Mollace
- Research for Food Safety & Health IRC-FSH, Department of Health Sciences, University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (R.M.); (M.S.); (F.B.); (F.S.); (A.R.C.); (L.G.); (S.R.); (M.C.Z.); (S.N.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Roberta Macrì
- Research for Food Safety & Health IRC-FSH, Department of Health Sciences, University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (R.M.); (M.S.); (F.B.); (F.S.); (A.R.C.); (L.G.); (S.R.); (M.C.Z.); (S.N.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Miriam Scicchitano
- Research for Food Safety & Health IRC-FSH, Department of Health Sciences, University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (R.M.); (M.S.); (F.B.); (F.S.); (A.R.C.); (L.G.); (S.R.); (M.C.Z.); (S.N.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Francesca Bosco
- Research for Food Safety & Health IRC-FSH, Department of Health Sciences, University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (R.M.); (M.S.); (F.B.); (F.S.); (A.R.C.); (L.G.); (S.R.); (M.C.Z.); (S.N.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Federica Scarano
- Research for Food Safety & Health IRC-FSH, Department of Health Sciences, University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (R.M.); (M.S.); (F.B.); (F.S.); (A.R.C.); (L.G.); (S.R.); (M.C.Z.); (S.N.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Anna Rita Coppoletta
- Research for Food Safety & Health IRC-FSH, Department of Health Sciences, University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (R.M.); (M.S.); (F.B.); (F.S.); (A.R.C.); (L.G.); (S.R.); (M.C.Z.); (S.N.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Lorenza Guarnieri
- Research for Food Safety & Health IRC-FSH, Department of Health Sciences, University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (R.M.); (M.S.); (F.B.); (F.S.); (A.R.C.); (L.G.); (S.R.); (M.C.Z.); (S.N.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Stefano Ruga
- Research for Food Safety & Health IRC-FSH, Department of Health Sciences, University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (R.M.); (M.S.); (F.B.); (F.S.); (A.R.C.); (L.G.); (S.R.); (M.C.Z.); (S.N.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Maria Caterina Zito
- Research for Food Safety & Health IRC-FSH, Department of Health Sciences, University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (R.M.); (M.S.); (F.B.); (F.S.); (A.R.C.); (L.G.); (S.R.); (M.C.Z.); (S.N.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Saverio Nucera
- Research for Food Safety & Health IRC-FSH, Department of Health Sciences, University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (R.M.); (M.S.); (F.B.); (F.S.); (A.R.C.); (L.G.); (S.R.); (M.C.Z.); (S.N.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Micaela Gliozzi
- Research for Food Safety & Health IRC-FSH, Department of Health Sciences, University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (R.M.); (M.S.); (F.B.); (F.S.); (A.R.C.); (L.G.); (S.R.); (M.C.Z.); (S.N.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Vincenzo Musolino
- Research for Food Safety & Health IRC-FSH, Department of Health Sciences, University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (R.M.); (M.S.); (F.B.); (F.S.); (A.R.C.); (L.G.); (S.R.); (M.C.Z.); (S.N.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Jessica Maiuolo
- Research for Food Safety & Health IRC-FSH, Department of Health Sciences, University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (R.M.); (M.S.); (F.B.); (F.S.); (A.R.C.); (L.G.); (S.R.); (M.C.Z.); (S.N.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Ernesto Palma
- Research for Food Safety & Health IRC-FSH, Department of Health Sciences, University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (R.M.); (M.S.); (F.B.); (F.S.); (A.R.C.); (L.G.); (S.R.); (M.C.Z.); (S.N.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
- Nutramed S.c.a.r.l., Complesso Ninì Barbieri, Roccelletta di Borgia, 88100 Catanzaro, Italy
| | - Vincenzo Mollace
- Research for Food Safety & Health IRC-FSH, Department of Health Sciences, University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (R.M.); (M.S.); (F.B.); (F.S.); (A.R.C.); (L.G.); (S.R.); (M.C.Z.); (S.N.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
- Nutramed S.c.a.r.l., Complesso Ninì Barbieri, Roccelletta di Borgia, 88100 Catanzaro, Italy
| |
Collapse
|
14
|
Zhang S, Yang G, Guan W, Li B, Feng X, Fan H. Autophagy Plays a Protective Role in Sodium Hydrosulfide-Induced Acute Lung Injury by Attenuating Oxidative Stress and Inflammation in Rats. Chem Res Toxicol 2021; 34:857-864. [PMID: 33539076 DOI: 10.1021/acs.chemrestox.0c00493] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Sodium hydrosulfide (NaHS), as an exogenous hydrogen sulfide (H2S) donor, has been used in various pathological models. NaHS is usually considered to be primarily protective, however, the toxic effect of NaHS has not been well elucidated. The aim of this study was to investigate whether NaHS (1 mg/kg) can induce acute lung injury (ALI is a disease process characterized by diffuse inflammation of the lung parenchyma) and define the mechanism by which NaHS-induced ALI involves autophagy, oxidative stress, and inflammatory response. Wistar rats were randomly divided into three groups (control group, NaHS group, and 3-MA + NaHS group), and samples from each group were collected from 2, 6, 12, and 24 h. We found that intraperitoneal injection of NaHS (1 mg/kg) increased the pulmonary levels of H2S and oxidative stress-related indicators (reactive oxygen species, myeloperoxidase, and malondialdehyde) in a time-dependent manner. Intraperitoneal injection of NaHS (1 mg/kg) induced histopathological changes of ALI and inhibition of autophagy exacerbated the lung injury. This study demonstrates that administration of NaHS (1 mg/kg) induces ALI in rats and autophagy in response to ROS is protective in NaHS-induced ALI by attenuating oxidative stress and inflammation.
Collapse
Affiliation(s)
- Shuai Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Guiyan Yang
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Wei Guan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Bei Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Xiujing Feng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Honggang Fan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
15
|
Sevoflurane Preconditioning Prevents Septic Myocardial Dysfunction in Lipopolysaccharide-Challenged Mice. J Cardiovasc Pharmacol 2020; 74:462-473. [PMID: 31425341 DOI: 10.1097/fjc.0000000000000734] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Myocardial dysfunction accompanied by severe sepsis could significantly increase the mortality rate of septic patients. This study investigated the effects and the potential mechanisms of sevoflurane preconditioning on septic myocardial dysfunction, which was induced by lipopolysaccharide (LPS; from Escherichia coli O55:B5; 18 mg/kg) in mice. Results indicated that 1 hour after the administration, LPS induced a significant increase in cell-surface Toll-like receptor 4 (TLR4), cytoplasmic IKKα protein expression, and nuclear translocation of nuclear factor kappa-B (NF-κB) protein (P < 0.05), which was attenuated by preconditioning with sevoflurane. Two hours after the administration, inhalation of sevoflurane significantly reduced the serum levels of tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1β, and IL-10 (P < 0.05). Twelve hours after administration, LPS caused pathological damage to the heart and elevated the serum levels of lactate dehydrogenase (LDH) and creatine kinase-MB (P < 0.05). Echocardiography indicated that sevoflurane preconditioning significantly improved systolic and diastolic function. The inhalation of sevoflurane inhibited increases in myeloperoxidase (MPO), macrophage inflammatory protein-2 (MIP-2), TNF-α, and IL-1β levels (P < 0.05) induced by endotoxemia, whereas IL-6 release was facilitated. Sevoflurane attenuated the myocardial levels of nitric oxide (P < 0.05) without an apparent influence on malondialdehyde (MDA) or superoxide dismutase (P > 0.05). In conclusion, our study indicates that exposure to 2% sevoflurane before LPS challenge is protective against myocardial dysfunction. Sevoflurane preconditioning may attenuate neutrophil infiltration and the release of inflammatory mediators during endotoxemia.
Collapse
|
16
|
Li J, Sun D, Li Y. Novel Findings and Therapeutic Targets on Cardioprotection of Ischemia/ Reperfusion Injury in STEMI. Curr Pharm Des 2020; 25:3726-3739. [PMID: 31692431 DOI: 10.2174/1381612825666191105103417] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 10/30/2019] [Indexed: 12/19/2022]
Abstract
Acute ST-segment elevation myocardial infarction (STEMI) remains a leading cause of morbidity and mortality around the world. A large number of STEMI patients after the infarction gradually develop heart failure due to the infarcted myocardium. Timely reperfusion is essential to salvage ischemic myocardium from the infarction, but the restoration of coronary blood flow in the infarct-related artery itself induces myocardial injury and cardiomyocyte death, known as ischemia/reperfusion injury (IRI). The factors contributing to IRI in STEMI are complex, and microvascular obstruction, inflammation, release of reactive oxygen species, myocardial stunning, and activation of myocardial cell death are involved. Therefore, additional cardioprotection is required to prevent the heart from IRI. Although many mechanical conditioning procedures and pharmacological agents have been identified as effective cardioprotective approaches in animal studies, their translation into the clinical practice has been relatively disappointing due to a variety of reasons. With new emerging data on cardioprotection in STEMI over the past few years, it is mandatory to reevaluate the effectiveness of "old" cardioprotective interventions and highlight the novel therapeutic targets and new treatment strategies of cardioprotection.
Collapse
Affiliation(s)
- Jianqiang Li
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Danghui Sun
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Yue Li
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| |
Collapse
|
17
|
Hong L, Sun Y, An JZ, Wang C, Qiao SG. Sevoflurane Preconditioning Confers Delayed Cardioprotection by Upregulating AMP-Activated Protein Kinase Levels to Restore Autophagic Flux in Ischemia-Reperfusion Rat Hearts. Med Sci Monit 2020; 26:e922176. [PMID: 32476662 PMCID: PMC7288833 DOI: 10.12659/msm.922176] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background Volatile anesthetic preconditioning confers delayed cardioprotection against ischemia/reperfusion injury (I/R). AMP-activated protein kinase (AMPK) takes part in autophagy activation. Furthermore, autophagic flux is thought to be impaired after I/R. We hypothesized that delayed cardioprotection can restore autophagic flux by activating AMPK. Material/Methods All male rat hearts underwent 30-min ischemia and 120-min reperfusion with or without sevoflurane exposure. AMPK inhibitor compound C (250 μg/kg, iv) was given at the reperfusion period. Autophagic flux blocker chloroquine (10 mg/kg, ip) was administrated 1 h before the experiment. Myocardial infarction, nicotinamide adenine dinucleotide (NAD+) content, and cytochrome c were measured. To evaluate autophagic flux, the markers of microtubule-associated protein 1 light chain 3 (LC3) I and II, P62 and Beclin 1, and lysosome-associated membrane protein-2 (LAMP 2) were analyzed. Results The delayed cardioprotection enhanced post-ischemic AMPK activation, reduced infarction, CK-MB level, NAD+ content loss and cytochrome c release, and compound C blocked these effects. Sevoflurane restored impaired autophagic flux through a lower ratio of LC3II/LC3I, downregulation of P62 and Beclin 1, and higher expression in LAMP 2. Consistently, compound C inhibited these changes of autophagy flux. Moreover, chloroquine pretreatment abolished sevoflurane-induced infarct size reduction, CK-MB level, NAD+ content loss, and cytochrome c release, with concomitant increase the ratios of LC3II/LC3I and levels of P62 and Beclin 1, but p-AMPK expression was not downregulated by chloroquine. Conclusions Sevoflurane exerts a delayed cardioprotective effects against myocardial injury in rats by activation of AMPK and restoration of I/R-impaired autophagic flux.
Collapse
Affiliation(s)
- Lei Hong
- Institute of Clinical Medicine Research, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou, Jiangsu, China (mainland)
| | - Ying Sun
- Institute of Clinical Medicine Research, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou, Jiangsu, China (mainland)
| | - Jian-Zhong An
- Institute of Clinical Medicine Research, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou, Jiangsu, China (mainland)
| | - Chen Wang
- Institute of Clinical Medicine Research, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou, Jiangsu, China (mainland)
| | - Shi-Gang Qiao
- Institute of Clinical Medicine Research, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou, Jiangsu, China (mainland)
| |
Collapse
|
18
|
Qiu S, Liu B, Mo Y, Wang X, Zhong L, Han X, Mi F. MicroRNA-153-3p increases autophagy in sevoflurane-preconditioned mice to protect against ischaemic/reperfusion injury after knee arthroplasty. J Cell Mol Med 2020; 24:5330-5340. [PMID: 32239627 PMCID: PMC7205820 DOI: 10.1111/jcmm.15188] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 01/16/2020] [Accepted: 03/01/2020] [Indexed: 12/17/2022] Open
Abstract
The use of tourniquet during total knee arthroplasty (TKA) can result in ischaemia/reperfusion injury (IRI). Of interest, microRNAs (miRs) are reported to be involved in various kinds of IRI due to their ability in modulating autophagy. Therefore, the study aimed to investigate the effect of miR‐153‐3p on autophagy in IRI in vitro and in vivo under sevoflurane preconditioning. In the in vitro model, chondrocytes from naive mice were treated with 0% FBS alone or in combination with sevoflurane. Additionally, in vivo assays were conducted in mouse models with tourniquet‐induced IRI after TKA under or without sevoflurane preconditioning. The pathological observation in vivo validated that sevoflurane preconditioning protected the knee joint against IRI. Moreover, miR‐153‐3p expression was diminished in chondrocytes of the in vitro model and in cartilage tissue of the in vivo model, but its expression was appreciably up‐regulated in the presence of sevoflurane preconditioning. Mechanistic study showed that miR‐153‐3p disrupted the interaction between Bcl‐2 and Beclin1 by targeting Bcl‐2, thereby facilitating autophagy in chondrocytes under sevoflurane preconditioning. Furthermore, the experiments in human chondrocytes also verified the protective effects of miR‐153‐3p against IRI were realized through inhibiting Bcl‐2. Collectively, miR‐153‐3p overexpression blocks the interaction between Bcl‐2 and Beclin1 via down‐regulation of Bcl‐2 to promote autophagy of chondrocytes, thus protecting knee joint against IRI after TKA under sevoflurane preconditioning.
Collapse
Affiliation(s)
- Shuang Qiu
- Department of Anesthesiology, Linyi People's Hospital, Linyi, China
| | - Benjuan Liu
- Department of Anesthesiology, Linyi People's Hospital, Linyi, China
| | - Yanshuai Mo
- Department of Anesthesiology, Linyi People's Hospital, Linyi, China
| | - Xueqin Wang
- Department of Anesthesiology, Linyi People's Hospital, Linyi, China
| | - Lina Zhong
- Department of Anesthesiology, Linyi People's Hospital, Linyi, China
| | - Xiao Han
- Department of Anesthesiology, Linyi People's Hospital, Linyi, China
| | - Fuli Mi
- Department of Anesthesiology, Linyi People's Hospital, Linyi, China
| |
Collapse
|
19
|
Abstract
Living in a complex environment, humans are always faced with various external stimuli and internal changes including oxidative stress and tissue damage. To adapt to these stimuli, maintain physiological stability, and ensure survival, cells in the body initiate a series of interactive and regulatory response pathways. For example, increased reactive oxygen species in the body can induce autophagy through a variety of signalling pathways. This section will focus on ROS-mediated regulation of autophagy through PI3K/Akt, AMPK, JNK, ERK, ATG4, and other pathways.
Collapse
Affiliation(s)
- Qi Gao
- Department of Clinical Laboratory, Shandong Provincial Hospital, Shandong University, Jinan, 250014, Shandong, China.
| |
Collapse
|
20
|
Chen X, Li LY, Jiang JL, Li K, Su ZB, Zhang FQ, Zhang WJ, Zhao GQ. Propofol elicits autophagy via endoplasmic reticulum stress and calcium exchange in C2C12 myoblast cell line. PLoS One 2018; 13:e0197934. [PMID: 29795639 PMCID: PMC5967754 DOI: 10.1371/journal.pone.0197934] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 05/10/2018] [Indexed: 02/07/2023] Open
Abstract
In this study, we investigated the relationship between propofol and autophagy and examined whether this relationship depends on ER stress, production of ROS (reactive oxygen species), and disruption of calcium (Ca2+) homeostasis. To this end, we measured C2C12 cell apoptosis in vitro, along with Ca2+ levels; ROS production; and expression of proteins and genes associated with autophagy, Ca2+ homeostasis, and ER stress, including LC3 (microtubule-associate protein 1 light chain 3), p62, AMPK (adenosine 5'-monophosphate (AMP)-activated protein kinase), phosphorylated AMPK, mTOR (the mammalian target of rapamycin), phosphorylated mTOR, CHOP (C/BEP homologous protein), and Grp78/Bip (78 kDa glucose-regulated protein). We found that propofol treatment induced autophagy, ER stress, and Ca2+ release. The ratio of phosphorylated AMPK to AMPK increased, whereas the ratio of phosphorylated mTOR to mTOR decreased. Collectively, the data suggested that propofol induced autophagy in vitro through ER stress, resulting in elevated ROS and Ca2+. Additionally, co-administration of an ER stress inhibitor blunted the effect of propofol.
Collapse
Affiliation(s)
- Xi Chen
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Long-Yun Li
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jin-Lan Jiang
- Department of Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Kai Li
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Zhen-Bo Su
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Fu-Qiang Zhang
- Department of Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Wen-Jing Zhang
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Guo-Qing Zhao
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, China
- * E-mail:
| |
Collapse
|
21
|
Lin XL, Xiao WJ, Xiao LL, Liu MH. Molecular mechanisms of autophagy in cardiac ischemia/reperfusion injury (Review). Mol Med Rep 2018; 18:675-683. [PMID: 29845269 DOI: 10.3892/mmr.2018.9028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 05/10/2018] [Indexed: 11/05/2022] Open
Abstract
Autophagy is a maintenance process for recycling long-lived proteins and cytoplasmic organelles. The level of this process is enhanced during ischemia/reperfusion (I/R) injury. Autophagy can trigger survival signaling in myocardial ischemia, whereas defective autophagy during reperfusion is detrimental. Autophagy can be regulated through multiple signaling pathways in I/R, including Beclin‑1/class III phosphatidylinositol‑3 kinase (PI‑3K), adenosine monophosphate activated protein kinase/mammalian target of rapamycin (mTOR), and PI‑3K/protein kinase B/mTOR pathways, which consequently lead to different functions. Thus, autophagy has both protective and detrimental functions, which are determined by different signaling pathways and conditions. Targeting the activation of autophagy can be a promising new therapeutic strategy for treating cardiovascular disease.
Collapse
Affiliation(s)
- Xiao-Long Lin
- Department of Pathology, Hui Zhou Third People's Hospital, Guangzhou Medical University, Huizhou, Guangdong 516002, P.R. China
| | - Wei-Jin Xiao
- Department of Pathology, The Central Hospital of Shaoyang, Hunan 422000, P.R. China
| | - Le-Le Xiao
- School of Medicine, Huzhou University, Huzhou, Zhejiang 313000, P.R. China
| | - Mi-Hua Liu
- Department of Infectious Diseases, Centre for Lipid Research and Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
22
|
Anti-apoptosis in nonmyocytes and pro-autophagy in cardiomyocytes: two strategies against postinfarction heart failure through regulation of cell death/degeneration. Heart Fail Rev 2018; 23:759-772. [DOI: 10.1007/s10741-018-9708-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
23
|
Abstract
Anesthetic agents provide patient comfort and optimize conditions for surgical and procedural interventions. These agents have been shown to modulate autophagy, which is a cellular mechanism that maintains tissue homeostasis by degrading and recycling excess, aged, or dysfunctional proteins. However, it is not always clear if upregulated autophagy is beneficial or harmful. This review assesses the anesthetic effects on autophagy. In the vast majority of studies, anesthetic modulation of autophagy is beneficial for cell survival.
Collapse
Affiliation(s)
- Fan Ye
- Department of Anesthesiology, University of Virginia, Charlottesville, VA, USA
| | - Zhi-Yi Zuo
- Department of Anesthesiology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
24
|
Giricz Z, Varga ZV, Koncsos G, Nagy CT, Görbe A, Mentzer RM, Gottlieb RA, Ferdinandy P. Autophagosome formation is required for cardioprotection by chloramphenicol. Life Sci 2017; 186:11-16. [PMID: 28778689 DOI: 10.1016/j.lfs.2017.07.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 07/26/2017] [Accepted: 07/31/2017] [Indexed: 01/07/2023]
Abstract
AIMS Chloramphenicol (CAP), a broad spectrum antibiotic, was shown to protect the heart against ischemia/reperfusion (I/R) injury. CAP also induces autophagy, however, it is not known whether CAP-induced cardioprotection is mediated by autophagy. Therefore, here we aimed to assess whether activation of autophagy is required for the infarct size limiting effect of CAP and to identify which component of CAP-induced autophagy contributes to cardioprotection against I/R injury. MAIN METHODS Hearts of Sprague-Dawley rats were perfused in Langendorff mode with Krebs-Henseleit solution containing either vehicle (CON), 300μM CAP (CAP), CAP and an inhibitor of autophagosome-lysosome fusion chloroquine (CAP+CQ), or an inhibitor of autophagosome formation, the functional null mutant TAT-HA-Atg5K130R protein (CAP+K130R), and K130R or CQ alone, respectively. After 35min of aerobic perfusion, hearts were subjected to 30min global ischemia and 2h reperfusion. Autophagy was determined by immunoblot against LC3 from left atrial tissue. Infarct size was measured by TTC staining, coronary flow was measured, and the release of creatine kinase (CK) was assessed from the coronary effluent. KEY FINDINGS CAP treatment induced autophagy, increased phosphorylation of Erk1/2 in the myocardium and significantly reduced infarct size and CK release. Autophagy inhibitor TAT-HA-Atg5K130R abolished cardioprotection by CAP, while in CAP+CQ hearts infarct size and CK release were reduced similarly to as seen in the CAP-treated group. CONCLUSION This is the first demonstration that autophagosome formation but not autophagosomal clearance is required for CAP-induced cardioprotection. SIGNIFICANCE Inducing autophagy sequestration might yield novel therapeutic options against acute ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Zoltán Giricz
- Cardiovascular and Metabolic Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary.
| | - Zoltán V Varga
- Cardiovascular and Metabolic Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Gábor Koncsos
- Cardiovascular and Metabolic Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Csilla Terézia Nagy
- Cardiovascular and Metabolic Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Anikó Görbe
- Cardiovascular and Metabolic Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | | | | | - Péter Ferdinandy
- Cardiovascular and Metabolic Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary; Pharmahungary Group, Szeged, Hungary
| |
Collapse
|
25
|
Kassan A, Pham U, Nguyen Q, Reichelt ME, Cho E, Patel PM, Roth DM, Head BP, Patel HH. Caveolin-3 plays a critical role in autophagy after ischemia-reperfusion. Am J Physiol Cell Physiol 2016; 311:C854-C865. [PMID: 27707689 PMCID: PMC5206298 DOI: 10.1152/ajpcell.00147.2016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 10/03/2016] [Indexed: 12/21/2022]
Abstract
Autophagy is a dynamic recycling process responsible for the breakdown of misfolded proteins and damaged organelles, providing nutrients and energy for cellular renovation and homeostasis. Loss of autophagy is associated with cardiovascular diseases. Caveolin-3 (Cav-3), a muscle-specific isoform, is a structural protein within caveolae and is critical to stress adaptation in the heart. Whether Cav-3 plays a role in regulating autophagy to modulate cardiac stress responses remains unknown. In the present study, we used HL-1 cells, a cardiac muscle cell line, with stable Cav-3 knockdown (Cav-3 KD) and Cav-3 overexpression (Cav-3 OE) to study the impact of Cav-3 in regulation of autophagy. We show that traditional stimulators of autophagy (i.e., rapamycin and starvation) result in upregulation of the process in Cav-3 OE cells while Cav-3 KD cells have a blunted response. Cav-3 coimmunoprecipitated with beclin-1 and Atg12, showing an interaction of caveolin with autophagy-related proteins. In the heart, autophagy may be a major regulator of protection from ischemic stress. We found that Cav-3 KD cells have a decreased expression of autophagy markers [beclin-1, light chain (LC3-II)] after simulated ischemia and ischemia-reperfusion (I/R) compared with WT, whereas OE cells showed increased expression. Moreover, Cav-3 KD cells showed increased cell death and higher level of apoptotic proteins (cleaved caspase-3 and cytochrome c) with suppressed mitochondrial function in response to simulated ischemia and I/R, whereas Cav-3 OE cells were protected and had preserved mitochondrial function. Taken together, these results indicate that autophagy regulates adaptation to cardiac stress in a Cav-3-dependent manner.
Collapse
Affiliation(s)
- Adam Kassan
- Department of Anesthesiology, University of California, San Diego, La Jolla, California.,Sam and Rose Stein Institute for Research on Aging, Department of Psychiatry, School of Medicine, University of California, San Diego, California.,Veterans Affairs San Diego Healthcare System, San Diego, California; and
| | - Uyen Pham
- Department of Anesthesiology, University of California, San Diego, La Jolla, California.,Veterans Affairs San Diego Healthcare System, San Diego, California; and
| | - Quynhmy Nguyen
- Department of Anesthesiology, University of California, San Diego, La Jolla, California.,Veterans Affairs San Diego Healthcare System, San Diego, California; and
| | - Melissa E Reichelt
- School of Biomedical Sciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Eunbyul Cho
- Department of Anesthesiology, University of California, San Diego, La Jolla, California.,Veterans Affairs San Diego Healthcare System, San Diego, California; and
| | - Piyush M Patel
- Department of Anesthesiology, University of California, San Diego, La Jolla, California.,Veterans Affairs San Diego Healthcare System, San Diego, California; and
| | - David M Roth
- Department of Anesthesiology, University of California, San Diego, La Jolla, California.,Veterans Affairs San Diego Healthcare System, San Diego, California; and
| | - Brian P Head
- Department of Anesthesiology, University of California, San Diego, La Jolla, California.,Veterans Affairs San Diego Healthcare System, San Diego, California; and
| | - Hemal H Patel
- Department of Anesthesiology, University of California, San Diego, La Jolla, California; .,Veterans Affairs San Diego Healthcare System, San Diego, California; and
| |
Collapse
|
26
|
Zhou YF, Wang QX, Zhou HY, Chen G. Autophagy activation prevents sevoflurane-induced neurotoxicity in H4 human neuroglioma cells. Acta Pharmacol Sin 2016; 37:580-8. [PMID: 27041458 DOI: 10.1038/aps.2016.6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 01/19/2016] [Indexed: 12/13/2022] Open
Abstract
AIM The inhaled anesthetic sevoflurane may induce cognitive impairment in both animals and humans. Previous study has shown that sevoflurane triggers ER stress and may lead to apoptosis in rat hippocampal neurons. In this study, we examined whether sevoflurane caused autophagy and its contributions to sevoflurane induced neuronal cell injury. METHODS H4 human neuroglioma cells were exposed to 4.1% sevoflurane for 6 h. Cell viability and apoptosis ratio were assessed using a CCK8 kit and flow cytometry, respectively. Autophagosomes in the cells were detected using GFP-LC3 plasmid transfection or transmission electronic microscopy. The expression of LC3B, p62/SQSTM, C/EBP homologous protein (CHOP) and glucose-related protein 78 (GRP78) was assessed with Western blotting. RESULTS Sevoflurane treatment induced apoptosis and markedly increased the LC3-II level and GFP-LC3 puncta number, decreased p62 expression in H4 cells. Activation of autophagy by rapamycin (1 μmol/L) significantly reduced sevoflurane-induced apoptosis and increased cell viability, whereas inhibition of autophagy with 3-MA (5 mmol/L) caused the opposite effects. Furthermore, sevoflurane treatment markedly increased the expression of CHOP and GRP78, two hallmark proteins of ER stress. Inhibition of ER stress by 4-phenylbutyrate (500 μmol/L) abrogated sevoflurane-induced autophagy and apoptosis, and improved the viability. Moreover, sevoflurane-stimulated expression of CHOP and GRP78 was inhibited by rapamycin, but further enhanced by 3-MA. CONCLUSION Sevoflurane treatment induces ER stress and activates autophagy, which antagonizes sevoflurane-induced apoptosis in H4 human neuroglioma cells. The results suggest that autophagy may be a potential therapeutic target in preventing sevoflurane-induced neurotoxicity.
Collapse
|
27
|
Liu C, Liu Y, Shen Z, Miao L, Zhang K, Wang F, Li Y. Sevoflurane Preconditioning Reduces Intestinal Ischemia-Reperfusion Injury: Role of Protein Kinase C and Mitochondrial ATP-Sensitive Potassium Channel. PLoS One 2015; 10:e0141426. [PMID: 26505750 PMCID: PMC4624762 DOI: 10.1371/journal.pone.0141426] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 09/06/2015] [Indexed: 12/21/2022] Open
Abstract
Ischemic preconditioning (IPC) has been considered to be a potential therapy to reduce ischemia-reperfusion injury (IRI) since the 1980s. Our previous study indicated that sevoflurane preconditioning (SPC) also reduced intestinal IRI in rats. However, whether the protective effect of SPC is similar to IPC and the mechanisms of SPC are unclear. Thus, we compared the efficacy of SPC and IPC against intestinal IRI and the role of protein kinase C (PKC) and mitochondrial ATP-sensitive potassium channel (mKATP) in SPC. A rat model of intestinal IRI was used in this study. The superior mesenteric artery (SMA) was clamped for 60 min followed by 120 min of reperfusion. Rats with IPC underwent three cycles of SMA occlusion for 5 min and reperfusion for 5 min before intestinal ischemia. Rats with SPC inhaled sevoflurane at 0.5 minimum alveolar concentration (MAC) for 30 min before the intestinal ischemic insult. Additionally, the PKC inhibitor Chelerythrine (CHE) or mKATP inhibitor 5-Hydroxydecanoic (5-HD) was injected intraperitoneally before sevoflurane inhalation. Both SPC and IPC ameliorated intestinal IRI-induced histopathological changes, decreased Chiu’s scores, reduced terminal deoxyribonucleotide transferase-mediated dUTP nick end labeling (TUNEL) positive cells in the epithelium, and inhibited the expression of malondialdehyde (MDA) and tumor necrosis factor-α (TNF-α). These protective effects of SPC were similar to those of IPC. Pretreatment with PKC or mKATP inhibitor abolished SPC—induced protective effects by increasing Chiu’s scores, down-regulated the expression of Bcl-2 and activated caspase-3. Our results suggest that pretreatment with 0.5 MAC sevoflurane is as effective as IPC against intestinal IRI. The activation of PKC and mKATP may be involved in the protective mechanisms of SPC.
Collapse
Affiliation(s)
- Chuiliang Liu
- Department of Anesthesiology, ChanCheng Center Hospital, Foshan, Guangdong, China
| | - Yanhui Liu
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhiwen Shen
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Liping Miao
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Kun Zhang
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Fei Wang
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- * E-mail: (YJL); (FW)
| | - Yujuan Li
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- * E-mail: (YJL); (FW)
| |
Collapse
|
28
|
Abstract
BACKGROUND It has been known that skeletal muscles show atrophic changes after prolonged sedation or general anesthesia. Whether these effects are due to anesthesia itself or disuse during anesthesia has not been fully clarified. Autophagy dysregulation has been implicated in muscle-wasting conditions. This study tested the hypothesis that the magnitude of skeletal muscle autophagy is affected by both anesthesia and immobility. METHODS The extent of autophagy was analyzed chronologically during general anesthesia. In vivo microscopy was performed using green fluorescent protein-tagged LC3 for the detection of autophagy using sternomastoid muscles of live mice during pentobarbital anesthesia (n = 6 and 7). Western blotting and histological analyses were also conducted on tibialis anterior muscles (n = 3 to 5). To distinguish the effect of anesthesia from that due to disuse, autophagy was compared between animals anesthetized with pentobarbital and those immobilized by short-term denervation without continuation of anesthesia. Conversely, tibialis anterior and sternomastoid muscles were electrically stimulated during anesthesia. RESULTS Western blots and microscopy showed time-dependent autophagy up-regulation during pentobarbital anesthesia, peaking at 3 h (728.6 ± 93.5% of basal level, mean ± SE). Disuse by denervation without sustaining anesthesia did not lead to equivalent autophagy, suggesting that anesthesia is essential to cause autophagy. In contrast, contractile stimulation of the tibialis anterior and sternomastoid muscles significantly reduced the autophagy up-regulation during anesthesia (85% at 300 min). Ketamine, ketamine plus xylazine, isoflurane, and propofol also up-regulated autophagy. CONCLUSIONS Short-term disuse without anesthesia does not lead to autophagy, but anesthesia with disuse leads to marked up-regulation of autophagy.
Collapse
|
29
|
Breuer T, Maes K, Rossaint R, Marx G, Scheers H, Bergs I, Bleilevens C, Gayan-Ramirez G, Bruells CS. Sevoflurane Exposure Prevents Diaphragmatic Oxidative Stress During Mechanical Ventilation but Reduces Force and Affects Protein Metabolism Even During Spontaneous Breathing in a Rat Model. Anesth Analg 2015; 121:73-80. [DOI: 10.1213/ane.0000000000000736] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
30
|
The divergent roles of autophagy in ischemia and preconditioning. Acta Pharmacol Sin 2015; 36:411-20. [PMID: 25832421 PMCID: PMC4387298 DOI: 10.1038/aps.2014.151] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 12/20/2014] [Indexed: 12/11/2022] Open
Abstract
Autophagy is an evolutionarily conserved and lysosome-dependent process for degrading and recycling cellular constituents. Autophagy is activated following an ischemic insult or preconditioning, but it may exert dual roles in cell death or survival during these two processes. Preconditioning or lethal ischemia may trigger autophagy via multiple signaling pathways involving endoplasmic reticulum (ER) stress, AMPK/TSC/mTOR, Beclin 1/BNIP3/SPK2, and FoxO/NF-κB transcription factors, etc. Autophagy then interacts with apoptotic and necrotic signaling pathways to regulate cell death. Autophagy may also maintain cell function by removing protein aggregates or damaged mitochondria. To date, the dual roles of autophagy in ischemia and preconditioning have not been fully clarified. The purpose of the present review is to summarize the recent progress in the mechanisms underlying autophagy activation during ischemia and preconditioning. A better understanding of the dual effects of autophagy in ischemia and preconditioning could help to develop new strategies for the preventive treatment of ischemia.
Collapse
|
31
|
Alleman RJ, Katunga LA, Nelson MAM, Brown DA, Anderson EJ. The "Goldilocks Zone" from a redox perspective-Adaptive vs. deleterious responses to oxidative stress in striated muscle. Front Physiol 2014; 5:358. [PMID: 25278906 PMCID: PMC4166897 DOI: 10.3389/fphys.2014.00358] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 09/02/2014] [Indexed: 01/17/2023] Open
Abstract
Consequences of oxidative stress may be beneficial or detrimental in physiological systems. An organ system's position on the “hormetic curve” is governed by the source and temporality of reactive oxygen species (ROS) production, proximity of ROS to moieties most susceptible to damage, and the capacity of the endogenous cellular ROS scavenging mechanisms. Most importantly, the resilience of the tissue (the capacity to recover from damage) is a decisive factor, and this is reflected in the disparate response to ROS in cardiac and skeletal muscle. In myocytes, a high oxidative capacity invariably results in a significant ROS burden which in homeostasis, is rapidly neutralized by the robust antioxidant network. The up-regulation of key pathways in the antioxidant network is a central component of the hormetic response to ROS. Despite such adaptations, persistent oxidative stress over an extended time-frame (e.g., months to years) inevitably leads to cumulative damages, maladaptation and ultimately the pathogenesis of chronic diseases. Indeed, persistent oxidative stress in heart and skeletal muscle has been repeatedly demonstrated to have causal roles in the etiology of heart disease and insulin resistance, respectively. Deciphering the mechanisms that underlie the divergence between adaptive and maladaptive responses to oxidative stress remains an active area of research for basic scientists and clinicians alike, as this would undoubtedly lead to novel therapeutic approaches. Here, we provide an overview of major types of ROS in striated muscle and the divergent adaptations that occur in response to them. Emphasis is placed on highlighting newly uncovered areas of research on this topic, with particular focus on the mitochondria, and the diverging roles that ROS play in muscle health (e.g., exercise or preconditioning) and disease (e.g., cardiomyopathy, ischemia, metabolic syndrome).
Collapse
Affiliation(s)
- Rick J Alleman
- Departments of Physiology, East Carolina University Greenville, NC, USA ; East Carolina Diabetes and Obesity Institute, East Carolina University Greenville, NC, USA
| | - Lalage A Katunga
- East Carolina Diabetes and Obesity Institute, East Carolina University Greenville, NC, USA ; Pharmacology and Toxicology, Brody School of Medicine, East Carolina University Greenville, NC, USA
| | - Margaret A M Nelson
- East Carolina Diabetes and Obesity Institute, East Carolina University Greenville, NC, USA ; Pharmacology and Toxicology, Brody School of Medicine, East Carolina University Greenville, NC, USA
| | - David A Brown
- Departments of Physiology, East Carolina University Greenville, NC, USA ; East Carolina Diabetes and Obesity Institute, East Carolina University Greenville, NC, USA
| | - Ethan J Anderson
- East Carolina Diabetes and Obesity Institute, East Carolina University Greenville, NC, USA ; Pharmacology and Toxicology, Brody School of Medicine, East Carolina University Greenville, NC, USA
| |
Collapse
|