1
|
Wang H, Xu Y, Zhu S, Li X, Zhang H. Post-Treatment Sevoflurane Protects Against Hypoxic-Ischemic Brain Injury in Neonatal Rats by Downregulating Histone Methyltransferase G9a and Upregulating Nuclear Factor Erythroid 2-Related Factor 2 (NRF2). Med Sci Monit 2021; 27:e930042. [PMID: 34059615 PMCID: PMC8178995 DOI: 10.12659/msm.930042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Perinatal hypoxia and subsequent reduction of cerebral blood flow leads to neonatal hypoxic-ischemic brain injury (HIBI), resulting in severe disability and even death. Preconditioning or post-conditioning with sevoflurane protects against cerebral injury. This study investigated the mechanism of sevoflurane in HIBI. MATERIAL AND METHODS The HIBI model of neonatal rats was established and the model rats were post-treated with sevoflurane. The oxygen-glucose deprivation (OGD) cell model was established, and the OGD cells were transfected with NRF2-siRNA plasmid and post-treated with sevoflurane. The Morris water maze test was used to detect the motor activity, spatial learning, and memory ability of HIBI rats. Histological stainings were performed to observe the area of cerebral infarction, record the number of neurons in the hippocampus, and assess neuron apoptosis. The levels of inflammatory factors were detected by ELISA. The protein levels of histone methyltransferase G9a and histone H3 lysine 9 (H3K9me2) were detected by western blot assay. The apoptosis was detected by flow cytometry. RESULTS Sevoflurane post-treatment significantly shortened the escape latency of HIBI neonatal rats, increased the density of neurons, reduced the area of cerebral infarction, and decreased the levels of inflammatory factors and neuronal apoptosis. Sevoflurane post-treatment decreased G9a and H3K9me2 levels, and G9a level was negatively correlated with NRF2 level. NRF2 silencing reversed the alleviation of sevoflurane post-treatment on OGD-induced cell injury. CONCLUSIONS Sevoflurane post-treatment promotes NRF2 expression by inhibiting G9a and H3K9me2, thus alleviating HIBI in neonatal rats.
Collapse
Affiliation(s)
- HuaiMing Wang
- Department of Anesthesiology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China (mainland)
| | - YiQuan Xu
- Department of Anesthesiology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China (mainland)
| | - Shuying Zhu
- Department of Anesthesiology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China (mainland)
| | - XueMing Li
- Department of Radiology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China (mainland)
| | - HongWei Zhang
- Department of Anesthesiology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China (mainland)
| |
Collapse
|
2
|
Reyes-Corral M, Sola-Idígora N, de la Puerta R, Montaner J, Ybot-González P. Nutraceuticals in the Prevention of Neonatal Hypoxia-Ischemia: A Comprehensive Review of their Neuroprotective Properties, Mechanisms of Action and Future Directions. Int J Mol Sci 2021; 22:2524. [PMID: 33802413 PMCID: PMC7959318 DOI: 10.3390/ijms22052524] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 12/22/2022] Open
Abstract
Neonatal hypoxia-ischemia (HI) is a brain injury caused by oxygen deprivation to the brain due to birth asphyxia or reduced cerebral blood perfusion, and it often leads to lifelong limiting sequelae such as cerebral palsy, seizures, or mental retardation. HI remains one of the leading causes of neonatal mortality and morbidity worldwide, and current therapies are limited. Hypothermia has been successful in reducing mortality and some disabilities, but it is only applied to a subset of newborns that meet strict inclusion criteria. Given the unpredictable nature of the obstetric complications that contribute to neonatal HI, prophylactic treatments that prevent, rather than rescue, HI brain injury are emerging as a therapeutic alternative. Nutraceuticals are natural compounds present in the diet or used as dietary supplements that have antioxidant, anti-inflammatory, or antiapoptotic properties. This review summarizes the preclinical in vivo studies, mostly conducted on rodent models, that have investigated the neuroprotective properties of nutraceuticals in preventing and reducing HI-induced brain damage and cognitive impairments. The natural products reviewed include polyphenols, omega-3 fatty acids, vitamins, plant-derived compounds (tanshinones, sulforaphane, and capsaicin), and endogenous compounds (melatonin, carnitine, creatine, and lactate). These nutraceuticals were administered before the damage occurred, either to the mothers as a dietary supplement during pregnancy and/or lactation or to the pups prior to HI induction. To date, very few of these nutritional interventions have been investigated in humans, but we refer to those that have been successful in reducing ischemic stroke in adults. Overall, there is a robust body of preclinical evidence that supports the neuroprotective properties of nutraceuticals, and these may represent a safe and inexpensive nutritional strategy for the prevention of neonatal HI encephalopathy.
Collapse
Affiliation(s)
- Marta Reyes-Corral
- Neurodevelopment Research Group, Institute of Biomedicine of Seville, IBIS/HUVR/CSIC/US, 41013 Seville, Spain; (M.R.-C.); (N.S.-I.); (P.Y.-G.)
| | - Noelia Sola-Idígora
- Neurodevelopment Research Group, Institute of Biomedicine of Seville, IBIS/HUVR/CSIC/US, 41013 Seville, Spain; (M.R.-C.); (N.S.-I.); (P.Y.-G.)
| | - Rocío de la Puerta
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain;
| | - Joan Montaner
- Neurovascular Research Lab, Institute of Biomedicine of Seville, IBIS/HUVR/CSIC/US, 41013 Seville, Spain
- Department of Neurology and Neurophysiology, Hospital Universitario Virgen Macarena, 41009 Seville, Spain
| | - Patricia Ybot-González
- Neurodevelopment Research Group, Institute of Biomedicine of Seville, IBIS/HUVR/CSIC/US, 41013 Seville, Spain; (M.R.-C.); (N.S.-I.); (P.Y.-G.)
- Department of Neurology and Neurophysiology, Hospital Universitario Virgen Macarena, 41009 Seville, Spain
| |
Collapse
|
3
|
Zhang L, Zhang X, Wu T, Pan X, Wang Z. Isoflurane reduces septic neuron injury by HO‑1‑mediated abatement of inflammation and apoptosis. Mol Med Rep 2020; 23:155. [PMID: 33355378 PMCID: PMC7789092 DOI: 10.3892/mmr.2020.11794] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 11/27/2020] [Indexed: 12/29/2022] Open
Abstract
Sepsis-associated encephalopathy (SAE) frequently occurs in critically ill patients with severe systemic infections. Subanesthetic isoflurane (0.7% ISO) possesses anti-inflammatory, antioxidant and anti-apoptotic properties against a number of human diseases, including brain injury. The activation of heme oxygenase-1 (HO-1) impedes inflammation, oxidation and apoptosis, thus alleviating sepsis-induced brain damage. However, whether 0.7% ISO affords protection against septic neuronal injury involving HO-1 activation is unclear. The present study aimed to investigate the neuroprotective effects of 0.7% ISO and its potential underlying mechanisms in SAE using a mouse model established by cecal ligation and puncture (CLP). The results indicated that the expression and activity of HO-1 in the mouse hippocampus were increased by CLP, and further enhanced by ISO. ISO reduced the death rate, brain water content and blood-brain barrier disruption, but improved the learning and memory functions of CLP-treated mice. ISO significantly decreased the production of pro-inflammatory cytokines and the levels of oxidative indictors in the serum and hippocampus, as well as the number of apoptotic neurons and the expression of pro-apoptotic proteins in the hippocampus. Inversely, anti-inflammatory factors, antioxidative enzymes and anti-apoptotic proteins were markedly increased by ISO administration. However, the neuroprotective effects of ISO were abolished by a HO-1 inhibitor. Overall, these findings suggested that 0.7% ISO alleviated SAE via its anti-inflammatory, antioxidative and anti-apoptotic properties, which involved the activated form of HO-1.
Collapse
Affiliation(s)
- Lina Zhang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Xuece Zhang
- Digestive Department, The Second Affiliated Hospital, Xi'an Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Ting Wu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Xu Pan
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Zhi Wang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| |
Collapse
|
4
|
Evaluation of Altered Glutamatergic Activity in a Piglet Model of Hypoxic-Ischemic Brain Damage Using 1H-MRS. DISEASE MARKERS 2020; 2020:8850816. [PMID: 33029259 PMCID: PMC7532412 DOI: 10.1155/2020/8850816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/05/2020] [Accepted: 09/11/2020] [Indexed: 12/12/2022]
Abstract
Methods Twenty-five newborn piglets were selected and then randomly assigned to the control group (n = 5) and the model group (n = 20) subjected to HI. HI was induced by blocking bilateral carotid blood flow under simultaneous inhalation of a 6% oxygen mixture. 1H-MRS data were acquired from the basal ganglia at the following time points after HI: 6, 12, 24, and 72 h. Changes in protein levels of EAAT2 and GluR2 were determined by immunohistochemical analysis. Correlations among metabolite concentrations, metabolite ratios, and the protein levels of EAAT2 and GluR2 were investigated. Results The Glu level sharply increased after HI, reached a transient low level of depletion that approached the normal level in the control group, and subsequently increased again. Negative correlations were found between concentrations of Glu and EAAT2 protein levels (R s = -0.662, P < 0.001) and between the Glu/creatine (Cr) ratio and EAAT2 protein level (R s = -0.664, P < 0.001). Moreover, changes in GluR2 protein level were significantly and negatively correlated with those in Glu level (the absolute Glu concentration, R s = -0.797, P < 0.001; Glu/Cr, R s = -0.567, P = 0.003). Conclusions Changes in Glu level measured by 1H-MRS were inversely correlated with those in EAAT2 and GluR2 protein levels following HI, and the results demonstrated that 1H-MRS can reflect the early changes of glutamatergic activity in vivo.
Collapse
|
5
|
Bustelo M, Barkhuizen M, van den Hove DLA, Steinbusch HWM, Bruno MA, Loidl CF, Gavilanes AWD. Clinical Implications of Epigenetic Dysregulation in Perinatal Hypoxic-Ischemic Brain Damage. Front Neurol 2020; 11:483. [PMID: 32582011 PMCID: PMC7296108 DOI: 10.3389/fneur.2020.00483] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 05/04/2020] [Indexed: 12/18/2022] Open
Abstract
Placental and fetal hypoxia caused by perinatal hypoxic-ischemic events are major causes of stillbirth, neonatal morbidity, and long-term neurological sequelae among surviving neonates. Brain hypoxia and associated pathological processes such as excitotoxicity, apoptosis, necrosis, and inflammation, are associated with lasting disruptions in epigenetic control of gene expression contributing to neurological dysfunction. Recent studies have pointed to DNA (de)methylation, histone modifications, and non-coding RNAs as crucial components of hypoxic-ischemic encephalopathy (HIE). The understanding of epigenetic dysregulation in HIE is essential in the development of new clinical interventions for perinatal HIE. Here, we summarize our current understanding of epigenetic mechanisms underlying the molecular pathology of HI brain damage and its clinical implications in terms of new diagnostic, prognostic, and therapeutic tools.
Collapse
Affiliation(s)
- Martín Bustelo
- Department of Pediatrics, Maastricht University Medical Center (MUMC), Maastricht, Netherlands.,Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, Netherlands.,Instituto de Ciencias Biomédicas, Facultad de Ciencias Médicas, Universidad Católica de Cuyo, San Juan, Argentina.,Laboratorio de Neuropatología Experimental, Facultad de Medicina, Instituto de Biología Celular y Neurociencias "Prof. E. De Robertis" (IBCN), Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| | - Melinda Barkhuizen
- Department of Pediatrics, Maastricht University Medical Center (MUMC), Maastricht, Netherlands
| | - Daniel L A van den Hove
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, Netherlands.,Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany
| | - Harry Wilhelm M Steinbusch
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, Netherlands
| | - Martín A Bruno
- Instituto de Ciencias Biomédicas, Facultad de Ciencias Médicas, Universidad Católica de Cuyo, San Juan, Argentina
| | - C Fabián Loidl
- Instituto de Ciencias Biomédicas, Facultad de Ciencias Médicas, Universidad Católica de Cuyo, San Juan, Argentina.,Laboratorio de Neuropatología Experimental, Facultad de Medicina, Instituto de Biología Celular y Neurociencias "Prof. E. De Robertis" (IBCN), Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| | - Antonio W Danilo Gavilanes
- Department of Pediatrics, Maastricht University Medical Center (MUMC), Maastricht, Netherlands.,Facultad de Ciencias Médicas, Instituto de Investigación e Innovación de Salud Integral, Universidad Católica de Santiago de Guayaquil, Guayaquil, Ecuador
| |
Collapse
|
6
|
Yang ZY, Zhou L, Meng Q, Shi H, Li YH. An appropriate level of autophagy reduces emulsified isoflurane-induced apoptosis in fetal neural stem cells. Neural Regen Res 2020; 15:2278-2285. [PMID: 32594049 PMCID: PMC7749471 DOI: 10.4103/1673-5374.285004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Autophagy plays essential roles in cell survival. However, the functions and regulation of the autophagy-related proteins Atg5, LC3B, and Beclin 1 during anesthetic-induced developmental neurotoxicity remain unclear. This study aimed to understand the autophagy pathways and mechanisms that affect neurotoxicity, induced by the anesthetic emulsified isoflurane, in rat fetal neural stem cells. Fetal neural stem cells were cultured, in vitro, and neurotoxicity was induced by emulsified isoflurane treatment. The effects of pretreatment with the autophagy inhibitors 3-methyladenine and bafilomycin and the effects of transfection with small interfering RNA against ATG5 (siRNA-Atg5) were observed. Cell viability was determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, and apoptosis was assessed using flow cytometry. Ultrastructural changes were analyzed through transmission electron microscopy. The levels of the autophagy-related proteins LC3B, Beclin 1, Atg5, and P62 and the pro-apoptosis-related protein caspase-3 were analyzed using western blot assay. The inhibition of cell proliferation and that of apoptosis rate increased after treatment with emulsified isoflurane. Autophagolysosomes, monolayer membrane formation due to lysosomal degradation, were observed. The autophagy-related proteins LC3B, Beclin 1, Atg5, and P62 and caspase-3 were upregulated. These results confirm that emulsified isoflurane can induce toxicity and autophagy in fetal neural stem cells. Pre-treatment with 3-methyladenine and bafilomycin increased the apoptosis rate in emulsified isoflurane-treated fetal neural stem cells, which indicated that the complete inhibition of autophagy does not alleviate emulsified isoflurane-induced fetal neural stem cell toxicity. Atg5 expression was decreased significantly by siRNA-Atg5 transfection, and cell proliferation was inhibited. These results verify that the Atg5 autophagy pathway can be regulated to maintain appropriate levels of autophagy, which can inhibit the neurotoxicity induced by emulsified isoflurane anesthetic in fetal neural stem cells.
Collapse
Affiliation(s)
- Ze-Yong Yang
- Department of Anesthesiology, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Embryo Original Disease, Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Lei Zhou
- Department of Anesthesiology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Qiong Meng
- Department of Anesthesiology, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Embryo Original Disease, Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Hong Shi
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Yuan-Hai Li
- Department of Anesthesiology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| |
Collapse
|
7
|
Wang C, Wei Y, Yuan Y, Yu Y, Xie K, Dong B, Shi Y, Wang G. The role of PI3K-mediated AMPA receptor changes in post-conditioning of propofol in brain protection. BMC Neurosci 2019; 20:51. [PMID: 31570094 PMCID: PMC6771103 DOI: 10.1186/s12868-019-0532-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 09/13/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND We aimed to study the role of amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor (AMPAR) glutamate receptor 2 (GluR2) subunit trafficking, and activity changes in short-term neuroprotection provided by propofol post-conditioning. We also aimed to determine the role of phosphoinositide-3-kinase (PI3K) in the regulation of these processes. METHODS Rats underwent 1 h of focal cerebral ischemia followed by 23 h of reperfusion were randomly divided into 6 groups (n = 36 per group): sham- operation (S), ischemia-reperfusion (IR), propofol (P group, propofol 20 mg/kg/h at the onset of reperfusion for 2 h after 60 min of occlusion), and LY294002 (PI3K non-selective antagonist) + sham (L + S, LY294002 of 1.5 mg/kg was infused 30 min before sham operation), LY294002+ ischemia-reperfusion (L + IR, LY294002 of 1.5 mg/kg was infused 30 min before middle cerebral artery occlusion), LY294002 + IR + propofol (L + P, LY294002 of 1.5 mg/kg was infused 30 min before middle cerebral artery occlusion and propofol 20 mg/kg/h at the onset of reperfusion for 2 h after 60 min of occlusion). RESULTS Compared with group IR, rats in group P had significant lower neurologic defect scores and infarct volume. Additionally, consistent with enhanced expression of PI3K-AMPAR GluR2 subunit complex substances in ipsilateral hippocampus, GluR2 subunits showed increased levels in both the plasma and postsynaptic membranes of neurons, while pGluR2 expression was reduced in group P. Furthermore, LY294002, the PI3K non-selective antagonist, blocked those effects. CONCLUSION These observations demonstrated that propofol post-conditioning revealed acute neuroprotective role against transient MCAO in rats. The short-term neuroprotective effect was contributed by enhanced GluR2 subunits trafficking to membrane and postsynaptic membranes of neurons, as well as down-regulated the expression of pGluR2 in damaged hippocampus. Finally, the above-mentioned protective mechanism might be contributed by increased combination of PI3K to AMPAR GluR2 subunit, thus maintained the expression and activation of AMPAR GluR2 in the ipsilateral hippocampus.
Collapse
Affiliation(s)
- Chenxu Wang
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, General Hospital of Tianjin Medical University, No. 154 Anshan Road, Heping District, Tianjin, 300052 People’s Republic of China
| | - Ying Wei
- Department of Anesthesiology, Tianjin People’s Hospital, Tianjin Union Medical Center, Tianjin, 300191 China
| | - Yuan Yuan
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, General Hospital of Tianjin Medical University, No. 154 Anshan Road, Heping District, Tianjin, 300052 People’s Republic of China
| | - Yonghao Yu
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, General Hospital of Tianjin Medical University, No. 154 Anshan Road, Heping District, Tianjin, 300052 People’s Republic of China
| | - Keliang Xie
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, General Hospital of Tianjin Medical University, No. 154 Anshan Road, Heping District, Tianjin, 300052 People’s Republic of China
| | - Beibei Dong
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, General Hospital of Tianjin Medical University, No. 154 Anshan Road, Heping District, Tianjin, 300052 People’s Republic of China
| | - Yuan Shi
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, General Hospital of Tianjin Medical University, No. 154 Anshan Road, Heping District, Tianjin, 300052 People’s Republic of China
| | - Guolin Wang
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, General Hospital of Tianjin Medical University, No. 154 Anshan Road, Heping District, Tianjin, 300052 People’s Republic of China
| |
Collapse
|
8
|
Lu L, Armstrong EA, Yager JY, Unsworth LD. Sustained Release of Dexamethasone from Sulfobutyl Ether β-cyclodextrin Modified Self-Assembling Peptide Nanoscaffolds in a Perinatal Rat Model of Hypoxia-Ischemia. Adv Healthc Mater 2019; 8:e1900083. [PMID: 30977596 DOI: 10.1002/adhm.201900083] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/13/2019] [Indexed: 11/10/2022]
Abstract
Inflammation plays a critical role in the development of hypoxia-ischemia (HI) induced newborn brain damage. A localized, sustained delivery of dexamethasone (Dex) through an intracerebral injection could reduce the inflammatory response in the injured perinatal brain while avoiding unnecessary side effects. Herein, investigated using anionic sulfobutyl ether β-cyclodextrin (SBE-β-CD) to load Dex in the (RADA)4 nanofiber networks as a means of reducing the inflammatory response to HI injury is investigated. The ionic interaction between SBE-β-CD and (RADA)4 dramatically affects nanofiber formation and the stability of the nanoscaffold is highly dependent on the SBE-β-CD/(RADA)4 ratio. It is observed that the Dex release rate is affected by the concentration of SBE-β-CD and (RADA)4 peptide. A higher concentration of SBE-β-CD or (RADA)4 results in a higher drug encapsulation efficiency and slower release rate of Dex. This phenomenon may be related to the structure of fiber bundles. Animal studies show that nanoscaffold loaded with Dex inhibits both microglia activation and glial scar formation compared to controls (Dex alone or nanoscaffold alone) within 2 days of injury. It is thought that this is a step toward building a multifaceted nanoscaffold that can be used to treat HI events in perinates.
Collapse
Affiliation(s)
- Lei Lu
- School of Life Science and EngineeringSouthwest Jiaotong University Chengdu Sichuan 611756 China
- Department of Chemical and Materials EngineeringUniversity of Alberta Edmonton Alberta T6G 2V4 Canada
| | - Edward A. Armstrong
- Department of PediatricsDivision of Pediatric NeurosciencesUniversity of Alberta Edmonton Alberta T6G 1C9 Canada
| | - Jerome Y. Yager
- Department of PediatricsDivision of Pediatric NeurosciencesUniversity of Alberta Edmonton Alberta T6G 1C9 Canada
| | - Larry D. Unsworth
- Department of Chemical and Materials EngineeringUniversity of Alberta Edmonton Alberta T6G 2V4 Canada
| |
Collapse
|
9
|
Xue H, Xu Y, Wang S, Wu ZY, Li XY, Zhang YH, Niu JY, Gao QS, Zhao P. Sevoflurane post-conditioning alleviates neonatal rat hypoxic-ischemic cerebral injury via Ezh2-regulated autophagy. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:1691-1706. [PMID: 31190748 PMCID: PMC6528650 DOI: 10.2147/dddt.s197325] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 03/04/2019] [Indexed: 12/12/2022]
Abstract
Background: When neonatal rats suffer hypoxic-ischemic brain injury (HIBI), autophagy is over-activated in the hippocampus, and inhibition of autophagy provides neuroprotection. The aim of this study was to investigate the possible roles of autophagy and Ezh2-regulated Pten/Akt/mTOR pathway in sevoflurane post-conditioning (SPC)-mediated neuroprotection against HIBI in neonatal rats. Methods: Seven-day-old Sprague–Dawley rats underwent left common artery ligation followed by 2 h hypoxia as described in the Rice–Vannucci model. The roles of autophagy and the Ezh2-regulated Pten/Akt/mTOR signaling pathway in the neuroprotection conferred by SPC were examined by left-side intracerebroventricular injection with the autophagy activator rapamycin and the Ezh2 inhibitor GSK126. Results: SPC was neuroprotective against HIBI through the inhibition of over-activated autophagy in the hippocampus as characterized by the rapamycin-induced reversal of neuronal density, neuronal morphology, cerebral morphology, and the expression of the autophagy markers, LC3B-II and Beclin1. SPC significantly increased the expression of Ezh2, H3K27me3, pAkt, and mTOR and decreased the expression of Pten induced by HI. The Ezh2 inhibitor, GSK126, significantly reversed the SPC-induced changes in expression of H3K27me3, Pten, pAkt, mTOR, LC3B-II, and Beclin1. Ezh2 inhibition also reversed SPC-mediated attenuation of neuronal loss and behavioral improvement in the Morris water maze. Conclusion: These results indicate that SPC inhibits excessive autophagy via the regulation of Pten/Akt/mTOR signaling by Ezh2 to confer neuroprotection against HIBI in neonatal rats.
Collapse
Affiliation(s)
- Hang Xue
- Department of Anesthesiology, Shengjing Hospital, China Medical University, Shenyang 110004, People's Republic of China
| | - Ying Xu
- Department of Anesthesiology, Shengjing Hospital, China Medical University, Shenyang 110004, People's Republic of China
| | - Shuo Wang
- Department of Anesthesiology, Shengjing Hospital, China Medical University, Shenyang 110004, People's Republic of China
| | - Zi-Yi Wu
- Department of Anesthesiology, Shengjing Hospital, China Medical University, Shenyang 110004, People's Republic of China
| | - Xing-Yue Li
- Department of Anesthesiology, Shengjing Hospital, China Medical University, Shenyang 110004, People's Republic of China
| | - Ya-Han Zhang
- Department of Anesthesiology, Shengjing Hospital, China Medical University, Shenyang 110004, People's Republic of China
| | - Jia-Yuan Niu
- Department of Anesthesiology, Shengjing Hospital, China Medical University, Shenyang 110004, People's Republic of China
| | - Qiu-Shi Gao
- Department of Anesthesiology, Shengjing Hospital, China Medical University, Shenyang 110004, People's Republic of China
| | - Ping Zhao
- Department of Anesthesiology, Shengjing Hospital, China Medical University, Shenyang 110004, People's Republic of China
| |
Collapse
|
10
|
P2X7 Receptors Mediate CO-Induced Alterations in Gene Expression in Cultured Cortical Astrocytes—Transcriptomic Study. Mol Neurobiol 2018; 56:3159-3174. [DOI: 10.1007/s12035-018-1302-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 08/06/2018] [Indexed: 01/31/2023]
|
11
|
Postconditioning-induced neuroprotection, mechanisms and applications in cerebral ischemia. Neurochem Int 2017; 107:43-56. [DOI: 10.1016/j.neuint.2017.01.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 01/04/2017] [Accepted: 01/08/2017] [Indexed: 02/07/2023]
|
12
|
Jiang M, Sun L, Feng DX, Yu ZQ, Gao R, Sun YZ, Chen G. Neuroprotection provided by isoflurane pre-conditioning and post-conditioning. Med Gas Res 2017; 7:48-55. [PMID: 28480032 PMCID: PMC5402347 DOI: 10.4103/2045-9912.202910] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Isoflurane, a volatile and inhalational anesthetic, has been extensively used in perioperative period for several decades. A large amount of experimental studies have indicated that isoflurane exhibits neuroprotective properties when it is administrated before or after (pre-conditioning and post-conditioning) neurodegenerative diseases (e.g., hypoxic ischemia, stroke and trauma). Multiple mechanisms are involved in isoflurane induced neuroprotection, including activation of glycine and γ-aminobutyric acid receptors, antagonism of ionic channels and alteration of the function and activity of other cellular proteins. Although neuroprotection provided by isoflurane is observed in many animal studies, convincing evidence is lacking in human trials. Therefore, there is still a long way to go before translating its neuroprotective properties into clinical practice.
Collapse
Affiliation(s)
- Ming Jiang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Liang Sun
- Department of Neurosurgery & Brain and Nerve Research Laboratory, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | | | - Zheng-Quan Yu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Rong Gao
- Department of Neurosurgery, Zhangjiagang First People's Hospital, Soochow University, Zhangjiagang, Jiangsu Province, China
| | - Yuan-Zhao Sun
- Department of Neurosurgery, Huaian Hospital Affiliated of Xuzhou Medical University and Huaian Second People's Hospital, Huaian, Jiangsu Province, China
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China.,Department of Neurosurgery, Zhangjiagang First People's Hospital, Soochow University, Zhangjiagang, Jiangsu Province, China.,Department of Neurosurgery, Huaian Hospital Affiliated of Xuzhou Medical University and Huaian Second People's Hospital, Huaian, Jiangsu Province, China
| |
Collapse
|
13
|
Xu Y, Tian Y, Tian Y, Li X, Zhao P. Autophagy activation involved in hypoxic-ischemic brain injury induces cognitive and memory impairment in neonatal rats. J Neurochem 2016; 139:795-805. [PMID: 27659442 DOI: 10.1111/jnc.13851] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 09/07/2016] [Accepted: 09/12/2016] [Indexed: 12/26/2022]
Abstract
Hypoxic-ischemic brain injury (HIBI) in neonates can lead to lifelong cognitive and memory impairment, but protective strategies are lacking at present. It has been demonstrated that autophagy plays a critical role in HIBI, while the function of autophagy in cognitive and memory impairment induced by HIBI in neonates has not been tested. In this study, we tested the impact of autophagy on the impairment of cognitive function and memory in HIBI neonatal rats by using a Morris water maze and investigated its possible mechanisms, which were established as HIBI model by ligating the left common carotid artery in neonatal rats, followed by 2-h hypoxia. The expression of microtubule-associated protein 1 light chain 3 (LC3)-II increased in HI group 24 h after HI in neonatal rats, while Sequestosome 1 (P62/SQSTM1), phosphorylated cAMP-response element-binding protein (p-CREB) decreased (compared with the sham group, p < 0.05), which were shown in the same left hippocampus CA3 region by immunofluorescence analysis. Brain injury of neonatal rats was aggravated significantly at 7 day after HI, coinciding with the results of Morris water maze. An autophagy inhibitor, 3-methyladenine (3-MA) pretreatment significantly attenuated the increase of LC3II and the loss of P62/SQSTM1 and p-CREB, ameliorated neuronal death, and improved the results of Morris water maze. Our results demonstrate that HIBI in neonatal rats induced excessive autophagy flux, which aggravated brain injury and induced cognitive and memory impairment during adolescence. Inhibition of autophagy reversed the results partly and improved the function of spatial learning and memory by attenuating the reduction of p-CREB. The use of autophagy modulators in the immature brain would create new opportunities for protective strategies clinically in the future.
Collapse
Affiliation(s)
- Ying Xu
- Department of Anesthesiology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Ye Tian
- Department of orthopedics, Shengjing Hospital, China Medical University, Shenyang, China
| | - Yue Tian
- Department of Anesthesiology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Xingyue Li
- Department of Anesthesiology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Ping Zhao
- Department of Anesthesiology, Shengjing Hospital, China Medical University, Shenyang, China
| |
Collapse
|