1
|
Wang DS, Ju L, Pinguelo AG, Kaneshwaran K, Haffey SC, Lecker I, Gohil H, Wheeler MB, Kaustov L, Ariza A, Yu M, Volchuk A, Steinberg BE, Goldenberg NM, Orser BA. Crosstalk between GABA A receptors in astrocytes and neurons triggered by general anesthetic drugs. Transl Res 2024; 267:39-53. [PMID: 38042478 DOI: 10.1016/j.trsl.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/17/2023] [Accepted: 11/29/2023] [Indexed: 12/04/2023]
Abstract
General anesthetic drugs cause cognitive deficits that persist after the drugs have been eliminated. Astrocytes may contribute to such cognition-impairing effects through the release of one or more paracrine factors that increase a tonic inhibitory conductance generated by extrasynaptic γ-aminobutyric acid type A (GABAA) receptors in hippocampal neurons. The mechanisms underlying this astrocyte-to-neuron crosstalk remain unknown. Interestingly, astrocytes express anesthetic-sensitive GABAA receptors. Here, we tested the hypothesis that anesthetic drugs activate astrocytic GABAA receptors to initiate crosstalk leading to a persistent increase in extrasynaptic GABAA receptor function in neurons. We also investigated the signaling pathways in neurons and aimed to identify the paracrine factors released from astrocytes. Astrocytes and neurons from mice were grown in primary cell cultures and studied using in vitro electrophysiological and biochemical assays. We discovered that the commonly used anesthetics etomidate (injectable) and sevoflurane (inhaled) stimulated astrocytic GABAA receptors, which in turn promoted the release paracrine factors, that increased the tonic current in neurons via a p38 MAPK-dependent signaling pathway. The increase in tonic current was mimicked by exogenous IL-1β and abolished by blocking IL-1 receptors; however, unexpectedly, IL-1β and other cytokines were not detected in astrocyte-conditioned media. In summary, we have identified a novel form of crosstalk between GABAA receptors in astrocytes and neurons that engages a p38 MAPK-dependent pathway. Brief commentary BACKGROUND: Many older patients experience cognitive deficits after surgery. Anesthetic drugs may be a contributing factor as they cause a sustained increase in the function of "memory blocking" extrasynaptic GABAA receptors in neurons. Interestingly, astrocytes are required for this increase; however, the mechanisms underlying the astrocyte-to-neuron crosstalk remain unknown. TRANSLATIONAL SIGNIFICANCE: We discovered that commonly used general anesthetic drugs stimulate GABAA receptors in astrocytes, which in turn release paracrine factors that trigger a persistent increase in extrasynaptic GABAA receptor function in neurons via p38 MAPK. This novel form of crosstalk may contribute to persistent cognitive deficits after general anesthesia and surgery.
Collapse
Affiliation(s)
- Dian-Shi Wang
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Li Ju
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Arsène G Pinguelo
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Kirusanthy Kaneshwaran
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Sean C Haffey
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Irene Lecker
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Himaben Gohil
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Michael B Wheeler
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Lilia Kaustov
- Department of Anesthesia, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Anthony Ariza
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - MeiFeng Yu
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Allen Volchuk
- Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Benjamin E Steinberg
- Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Anesthesia and Pain Medicine, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Anesthesiology & Pain Medicine, Temerty Faculty of Medicine, University of Toronto, Room 3318, Medical Sciences Building, 1 King's College Circle, Ontario M5S 1A8, Canada
| | - Neil M Goldenberg
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Department of Anesthesia and Pain Medicine, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Anesthesiology & Pain Medicine, Temerty Faculty of Medicine, University of Toronto, Room 3318, Medical Sciences Building, 1 King's College Circle, Ontario M5S 1A8, Canada; Program in Neurosciences & Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Beverley A Orser
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Department of Anesthesia, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada; Department of Anesthesiology & Pain Medicine, Temerty Faculty of Medicine, University of Toronto, Room 3318, Medical Sciences Building, 1 King's College Circle, Ontario M5S 1A8, Canada.
| |
Collapse
|
2
|
Jia S, Yang H, Huang F, Fan W. Systemic inflammation, neuroinflammation and perioperative neurocognitive disorders. Inflamm Res 2023; 72:1895-1907. [PMID: 37688642 DOI: 10.1007/s00011-023-01792-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/20/2023] [Accepted: 08/22/2023] [Indexed: 09/11/2023] Open
Abstract
Perioperative neurocognitive disorder (PND) is a common disorder following anesthesia and surgery, especially in the elderly. The complex cellular and molecular processes are involved in PND, but the underlying pathogenesis of which remains inconclusive due to conflicting data. A growing body of evidence has been shown that perioperative systemic inflammation plays important roles in the development of PND. We reviewed the relevant literature retrieved by a search in the PubMed database (on July 20, 2023). The search terms used were "delirium", "post operative cognitive dysfunction", "perioperative neurocognitive disorder", "inflammation" and "systemic", alone and in combination. All articles identified were English-language, full-text papers. The ones cited in the review are those that make a substantial contribution to the knowledge about systemic inflammation and PNDs. The aim of this review is to bring together the latest evidence for the understanding of how perioperative systemic inflammation mediates neuroinflammation and brain injury, how the inflammation is regulated and how we can translate these findings into prevention and/or treatment for PND.
Collapse
Affiliation(s)
- Shilin Jia
- Department of Anesthesiology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, 74 Zhongshan Rd 2, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Hui Yang
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Fang Huang
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Wenguo Fan
- Department of Anesthesiology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, 74 Zhongshan Rd 2, Guangzhou, 510080, China.
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.
| |
Collapse
|
3
|
Edo A, Nakamura-Shibasaki M, Tamura T, Hirooka K, Kiuchi Y. Aqueous Flare Changes in Ex-PRESS Glaucoma Shunt Eyes After 4.7 Tesla High-Field Magnetic Resonance Imaging. Transl Vis Sci Technol 2023; 12:3. [PMID: 37126334 PMCID: PMC10153575 DOI: 10.1167/tvst.12.5.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
Purpose Ex-PRESS glaucoma shunt stainless steel devices have been used worldwide for glaucoma treatment. The purpose of this study was to evaluate the safety of high-field magnetic resonance imaging (MRI) for Ex-PRESS-inserted eyes. Methods Using rabbits, we performed Ex-PRESS shunt surgery in one eye in each rabbit and divided the rabbits into MRI and non-MRI groups. In the MRI group, 1 week after Ex-PRESS shunt surgery under low specific absorption rate (SAR) conditions and 1 week later under high SAR conditions, high-field 4.7-Tesla MRI was performed. Aqueous flare counts were measured before and after the Ex-PRESS shunt surgery and each MRI examination. The rabbits in the non-MRI group received only general anesthesia, and aqueous flare counts were measured as for those of the MRI group. Aqueous flare counts were expressed in photon counts per millisecond. Results No dislocation of the Ex-PRESS shunt device was observed after MRI. The flare count ratio (MRI/non-MRI) in Ex-PRESS-inserted eyes 2 hours after high SAR MRI increased significantly compared with that before MRI (0.8 ± 0.3 vs 2.7 ± 0.8; pre-high SAR MRI vs 2 hours after high SAR MRI, respectively; P = 0.01). The day after MRI, the flare count improved spontaneously to the same level as that before MRI. Conclusions Our results indicate that high-field MRI can be performed relatively safely after Ex-PRESS shunt surgery. Translational Relevance This study demonstrates the safety of high-field MRI for Ex-PRESS-inserted eyes using a rabbit model.
Collapse
Affiliation(s)
- Ayaka Edo
- Department of Ophthalmology and Visual Sciences, Graduate School of Biomedical Science, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima, Japan
| | - Momoko Nakamura-Shibasaki
- Department of Ophthalmology and Visual Sciences, Graduate School of Biomedical Science, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima, Japan
| | - Takayuki Tamura
- Department of Radiology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-Ku, Hiroshima, Japan
| | - Kazuyuki Hirooka
- Department of Ophthalmology and Visual Sciences, Graduate School of Biomedical Science, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima, Japan
| | - Yoshiaki Kiuchi
- Department of Ophthalmology and Visual Sciences, Graduate School of Biomedical Science, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima, Japan
| |
Collapse
|
4
|
Salavati S, Mogheiseh A, Nazifi S, Amiri A, Nikahval B. The effects of melatonin on the concentrations of inflammatory cytokines and proteins, serotonin, cortisol and melatonin in ovariohysterectomised female dogs. Vet Med Sci 2023; 9:1103-1113. [PMID: 36913177 DOI: 10.1002/vms3.1112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/28/2023] [Accepted: 02/19/2023] [Indexed: 03/14/2023] Open
Abstract
BACKGROUND Ovariohysterectomy (OHE) induces inflammation and stress in female dogs. The anti-inflammatory effects of melatonin have been reported in several studies. OBJECTIVES The goal of this study was to assess the effects of melatonin on the concentrations of melatonin, cortisol, serotonin, α-1-acid glycoprotein (AGP), serum amyloid A (SAA), c-reactive protein (CRP), interleukin-10 (IL-10), interleukin-8 (IL-8), interleukin-1β (IL-1β) and tumour necrosis factor-α (TNF-α) before and after OHE. METHODS The total number of animals was 25 and aligned in 5 groups. Fifteen dogs were divided into three groups (n = 5): melatonin, melatonin+anaesthesia and melatonin+OHE and received melatonin (0.3 mg/kg, p.o.) on days -1, 0, 1, 2 and 3. Ten dogs were assigned to the control and OHE groups (n = 5) without melatonin treatment. OHE and anaesthesia were performed on day 0. Blood samples were obtained via jugular vein on days -1, 1, 3 and 5. RESULTS Melatonin and serotonin concentrations significantly increased in the melatonin, melatonin+OHE and melatonin+anaesthesia groups compared with the control group, while cortisol concentration decreased in the melatonin+OHE group compared with the OHE group. The concentrations of acute-phase proteins (APPs) and inflammatory cytokines significantly increased after OHE. The CRP, SAA and IL-10 concentrations decreased significantly in the melatonin+OHE group compared with the OHE group. The concentrations of cortisol, APPs and proinflammatory cytokines increased significantly in the melatonin+anaesthesia group compared with the melatonin group. CONCLUSIONS The oral administration of melatonin before and after OHE help controlling the high levels of inflammatory APPs, cytokines and cortisol induced by OHE in female dogs.
Collapse
Affiliation(s)
- Sina Salavati
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Fars, Iran
| | - Asghar Mogheiseh
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Fars, Iran
| | - Saeed Nazifi
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Fars, Iran
| | - Atefeh Amiri
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Fars, Iran
| | - Behrooz Nikahval
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Fars, Iran
| |
Collapse
|
5
|
S-ketamine administration in pregnant mice induces ADHD- and depression-like behaviors in offspring mice. Behav Brain Res 2022; 433:113996. [PMID: 35817136 DOI: 10.1016/j.bbr.2022.113996] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/27/2022] [Accepted: 07/02/2022] [Indexed: 11/20/2022]
Abstract
BACKGROUND Anesthesia and psychotropic drugs in pregnant women may cause long-term effects on the brain development of unborn babies. The authors set out to investigate the neurotoxicity of S-ketamine, which possesses anesthetic and antidepressant effects and may cause attention deficit hyperactivity disorder (ADHD)- and depression-like behaviors in offspring mice. METHODS Pregnant mice were administered with low-, medium-, and high-dose S-ketamine (15, 30, and 60 mg/kg) by intraperitoneal injection for 5 days from gestational day 14-18. At 21 days after birth, an elevated plus-maze test, fear conditioning, open field test, and forced swimming test were used to assess ADHD- and depression-like behaviors. Neuronal amount, glial activation, synaptic function indicated by ki67, and inhibitory presynaptic proteins revealed by GAD2 in the hippocampus, amygdala, habenula nucleus, and lateral hypothalamus (LHA) were determined by immunofluorescence assay. RESULTS All the pregnant mice exposed to high-dose S-ketamine administration had miscarriage after the first injection. Both low-dose and medium-dose S-ketamine administration significantly increased the open-arm time and attenuated frozen time in the fear conditioning, which indicates impulsivity and memory dysfunction-like behaviors. Medium-dose S-ketamine administration reduced locomotor activity in the open field and increased immobility time in the forced swimming test, indicating depression-like behaviors. Changes in astrocytic activation, synaptic dysfunction, and decreased inhibitory presynaptic proteins were found in the hippocampus, amygdala, and habenula nucleus. CONCLUSIONS These results demonstrate that S-ketamine may lead to detrimental effects, including ADHD-and depression-like behaviors in offspring mice. More studies should be promoted to determine the neurotoxicity of S-ketamine in the developing brain.
Collapse
|
6
|
Chen W, He Z, Jiang M. Anti-Inflammatory, Antioxidant and Neuroprotection Effect of Thiopental Sodium on Isoflurane-Induced Cognitive Dysfunction in Rats. INT J PHARMACOL 2021. [DOI: 10.3923/ijp.2021.611.620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
7
|
Lee JJ, Kim DY, Hwang JT, Song DK, Lee HN, Jang JS, Lee SS, Hwang SM, Moon SH, Shim JH. Dexmedetomidine combined with suprascapular nerve block and axillary nerve block has a synergistic effect on relieving postoperative pain after arthroscopic rotator cuff repair. Knee Surg Sports Traumatol Arthrosc 2021; 29:4022-4031. [PMID: 32975624 PMCID: PMC7517062 DOI: 10.1007/s00167-020-06288-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/14/2020] [Indexed: 11/26/2022]
Abstract
PURPOSE Suprascapular nerve block (SSNB) is the most commonly used block for the relief of postoperative pain from arthroscopic rotator cuff repair and can be used in combination with axillary nerve block (ANB). Dexmedetomidine (DEX) is a type of alpha agonist that can elongate the duration of regional block. The aim of this study was to compare the effects of the use of dexmedetomidine combined with SSNB and ANB with those of the use of SSNB and ANB alone on postoperative pain, satisfaction, and pain-related cytokines within the first 48 h after arthroscopic rotator cuff repair. METHODS Forty patients with rotator cuff tears who had undergone arthroscopic rotator cuff repair were enrolled in this single-center, double-blinded randomized controlled trial study. Twenty patients were randomly allocated to group 1 and received ultrasound-guided SSNB and ANB using a mixture of 0.5 ml (50 μg) of DEX and 9.5 ml of 0.75% ropivacaine preemptively. The other 20 patients were allocated to group 2 and underwent ultrasound-guided SSNB and ANB alone using a mixture of 0.5 ml of normal saline and 9.5 ml of ropivacaine. The visual analog scale (VAS) for pain and patient satisfaction (SAT) scores were postoperatively checked within 48 h. The plasma interleukin (IL)-6, IL-8, IL-1β, cortisol, and serotonin levels were also postoperatively measured within 48 h. RESULTS Group 1 showed a significantly lower mean VAS (visual analog scale of pain) score 1, 3, 6, 12, 18 and 24 h after operation, and a significantly higher mean SAT (patient satisfaction) score 1, 3, 6, 12, 18, 24 and 36 h after the operation than group 2. Group 1 showed a significantly lower mean plasma IL-8 level 1 and 48 h after the operation, and a significantly lower mean IL-1β level 48 h after the operation than group 2. Group 1 showed a significantly lower mean plasma serotonin level 12 h after the operation than group 2. The mean timing of rebound pain in group 1 was significantly later than that in group 2 (36 h > 23 h, p = 0.007). Six patients each in groups 1 and 2 showed rebound pain. The others did not show rebound pain. CONCLUSIONS Ultrasound-guided SSNA and ANB with DEX during arthroscopic rotator cuff repair resulted in a significantly lower mean VAS score and a significantly higher mean SAT score within 48 h after the operation than SSNB and ANB alone. Additionally, SSNB and ANB with DEX tended to result in a later mean timing of rebound pain accompanied by significant changes in IL-8, IL-1β, and serotonin levels within 48 h after the operation. The present study could provide the basis for selecting objective parameters of postoperative pain in deciding the optimal use of medication for relieving pain. LEVEL OF EVIDENCE Level I. TRIAL REGISTRATION 2015-20, ClinicalTrials.gov Identifier: NCT04398589. IRB NUMBER 2015-20, Hallym University Chuncheon Sacred Heart Hospital.
Collapse
Affiliation(s)
- Jae Jun Lee
- Anesthesiology and Pain Medicine, Chuncheon Sacred Heart Hospital, Hallym University Medical College, Chuncheon-si, Republic of Korea
| | - Do-Young Kim
- Department of Orthopedic Surgery, Chuncheon Sacred Heart Hospital, Hallym University Medical College, 77, Sakju-ro, Chuncheon-si, Gangwon-do, 24253, Republic of Korea
| | - Jung-Taek Hwang
- Department of Orthopedic Surgery, Chuncheon Sacred Heart Hospital, Hallym University Medical College, 77, Sakju-ro, Chuncheon-si, Gangwon-do, 24253, Republic of Korea.
| | - Dong-Keun Song
- Department of Pharmacology, Hallym University Medical College, Chuncheon-si, Republic of Korea
| | - Han Na Lee
- Anesthesiology and Pain Medicine, Chuncheon Sacred Heart Hospital, Hallym University Medical College, Chuncheon-si, Republic of Korea
| | - Ji Su Jang
- Anesthesiology and Pain Medicine, Chuncheon Sacred Heart Hospital, Hallym University Medical College, Chuncheon-si, Republic of Korea
| | - Sang-Soo Lee
- Department of Orthopedic Surgery, Chuncheon Sacred Heart Hospital, Hallym University Medical College, 77, Sakju-ro, Chuncheon-si, Gangwon-do, 24253, Republic of Korea
| | - Sung Mi Hwang
- Anesthesiology and Pain Medicine, Chuncheon Sacred Heart Hospital, Hallym University Medical College, Chuncheon-si, Republic of Korea
| | - Sung Hoon Moon
- Department of Orthopedic Surgery, Kangwon National University Hospital, Kangwon National University Medical College, Chuncheon-si, Republic of Korea
| | - Jae-Hoon Shim
- Department of Orthopedic Surgery, Chuncheon Sacred Heart Hospital, Hallym University Medical College, 77, Sakju-ro, Chuncheon-si, Gangwon-do, 24253, Republic of Korea
| |
Collapse
|
8
|
Hwang JT, Jang JS, Lee JJ, Song DK, Lee HN, Kim DY, Lee SS, Hwang SM, Kim YB, Lee S. Dexmedetomidine combined with interscalene brachial plexus block has a synergistic effect on relieving postoperative pain after arthroscopic rotator cuff repair. Knee Surg Sports Traumatol Arthrosc 2020; 28:2343-2353. [PMID: 31773201 DOI: 10.1007/s00167-019-05799-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 11/12/2019] [Indexed: 12/30/2022]
Abstract
PURPOSE Interscalene brachial plexus block (ISB) is one of the most commonly used regional blocks in relieving postoperative pain after arthroscopic rotator cuff repair. Dexmedetomidine (DEX) is an alpha 2 agonist that can enhance the effect of regional blocks. The aim of this study was to compare the effects of DEX combined with ISB with ISB alone on postoperative pain, satisfaction, and pain-related cytokines within the first 48 h after arthroscopic rotator cuff repair. METHODS Fifty patients with rotator cuff tears who had undergone arthroscopic rotator cuff repair were enrolled in this single center, double-blinded randomized controlled trial study. Twenty-five patients were randomly allocated to group 1 and received ultrasound-guided ISB using a mixture of 1 ml (100 μg) of DEX and 8 ml of 0.75% ropivacaine preemptively. The other 25 patients were allocated to group 2 and underwent ultrasound-guided ISB alone using a mixture of 1 ml of normal saline and 8 ml of ropivacaine. The visual analog scale (VAS) for pain and patient satisfaction (SAT) scores were checked within 48 h postoperatively. The plasma interleukin (IL)-6, -8, -1β, cortisol, and substance P levels were also measured within 48 h, postoperatively. RESULTS Group 1 showed a significantly lower mean VAS score and a significantly higher mean SAT score than group 2 at 1, 3, 6, 12, and 18 h postoperatively. Compared with group 2, group 1 showed a significantly lower mean plasma IL-6 level at 1, 6, 12, and 48 h postoperatively and a significantly lower mean IL-8 level at 1, 6, 12, 24, and 48 h postoperatively. The mean timing of rebound pain in group 1 was significantly later than that in group 2 (12.7 h > 9.4 h, p = 0.006). CONCLUSIONS Ultrasound-guided ISB with DEX in arthroscopic rotator cuff repair led to a significantly lower mean VAS score and a significantly higher mean SAT score within 48 h postoperatively than ISB alone. In addition, ISB with DEX showed lower mean plasma IL-6 and IL-8 levels than ISB alone within 48 h postoperatively, with delayed rebound pain. LEVEL OF EVIDENCE I. TRIAL REGISTRATION 2013-112, ClinicalTrials.gov Identifier: NCT02766556.
Collapse
Affiliation(s)
- Jung-Taek Hwang
- Department of Orthopedic Surgery, Chuncheon Sacred Heart Hospital, Hallym University Medical College, Chuncheon-si, Republic of Korea
| | - Ji Su Jang
- Anesthesiology and Pain Medicine, Chuncheon Sacred Heart Hospital, Hallym University Medical College, 77, Sakju-ro, Chuncheon-si, Gangwon-do, 24253, Republic of Korea
| | - Jae Jun Lee
- Anesthesiology and Pain Medicine, Chuncheon Sacred Heart Hospital, Hallym University Medical College, 77, Sakju-ro, Chuncheon-si, Gangwon-do, 24253, Republic of Korea.
| | - Dong-Keun Song
- Department of Pharmacology, Hallym University Medical College, Chuncheon-si, Republic of Korea
| | - Han Na Lee
- Anesthesiology and Pain Medicine, Chuncheon Sacred Heart Hospital, Hallym University Medical College, 77, Sakju-ro, Chuncheon-si, Gangwon-do, 24253, Republic of Korea
| | - Do-Young Kim
- Department of Orthopedic Surgery, Chuncheon Sacred Heart Hospital, Hallym University Medical College, Chuncheon-si, Republic of Korea
| | - Sang-Soo Lee
- Department of Orthopedic Surgery, Chuncheon Sacred Heart Hospital, Hallym University Medical College, Chuncheon-si, Republic of Korea
| | - Sung Mi Hwang
- Anesthesiology and Pain Medicine, Chuncheon Sacred Heart Hospital, Hallym University Medical College, 77, Sakju-ro, Chuncheon-si, Gangwon-do, 24253, Republic of Korea
| | - Yong-Been Kim
- Department of Orthopedic Surgery, Chuncheon Sacred Heart Hospital, Hallym University Medical College, Chuncheon-si, Republic of Korea
| | - Sanghyeon Lee
- Department of Orthopedic Surgery, Chuncheon Sacred Heart Hospital, Hallym University Medical College, Chuncheon-si, Republic of Korea
| |
Collapse
|
9
|
Wu Z, Zhang Y, Zhang Y, Zhao P. Sirtuin 2 Inhibition Attenuates Sevoflurane-Induced Learning and Memory Deficits in Developing Rats via Modulating Microglial Activation. Cell Mol Neurobiol 2020; 40:437-446. [PMID: 31713761 DOI: 10.1007/s10571-019-00746-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 10/15/2019] [Indexed: 12/27/2022]
Abstract
Sevoflurane is a widely used inhalational anesthetic in pediatric medicine that has been reported to have deleterious effects on the developing brain. Strategies to mitigate these detrimental effects are lacking. Sirtuin 2 (SIRT2) is a member of nicotinamide adenine dinucleotide (NAD+)-dependent protein deacetylases involved in a wide range of pathophysiological processes. SIRT2 inhibition has emerged as a promising treatment for an array of neurological disorders. However, the direct effects of SIRT2 on anesthesia-induced damage to the immature brain are unclear. Neonatal rats were exposed to 3% sevoflurane or 30% oxygen for 2 h daily with or without SIRT2 inhibitor AK7 pretreatment from postnatal day 7 (P7) to P9. One cohort of rats were euthanized 6, 12, and/or 24 h after the last gas exposure, and brain tissues were harvested for biochemical analysis and/or immunohistochemical examination. Cognitive functions were evaluated using the open field and Morris water maze tests on P25 and P28-32, respectively. SIRT2 was significantly up-regulated in neonatal rat hippocampus at 6 and 12 h post-anesthesia. Pretreatment with SIRT2 inhibitor AK7 reversed sevoflurane-induced hippocampus-dependent cognitive impairments. Furthermore, AK7 administration mitigated sevoflurane-induced neuroinflammation and microglial activation. Concomitantly, AK7 inhibited pro-inflammatory/M1-related markers and increased anti-inflammatory/M2-related markers in microglia. AK7 might prevent sevoflurane-induced neuroinflammation by switching microglia from the M1 to M2 phenotype. Downregulation of SIRT2 may be a novel therapeutic target for alleviating anesthesia-induced developmental neurotoxicity.
Collapse
Affiliation(s)
- Ziyi Wu
- Department of Anesthesiology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Yi Zhang
- Department of Anesthesiology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Yinong Zhang
- Department of Anesthesiology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Ping Zhao
- Department of Anesthesiology, Shengjing Hospital, China Medical University, Shenyang, China.
| |
Collapse
|
10
|
Pang X, Zhang P, Zhou Y, Zhao J, Liu H. Dexmedetomidine pretreatment attenuates isoflurane-induced neurotoxicity via inhibiting the TLR2/NF-κB signaling pathway in neonatal rats. Exp Mol Pathol 2020; 112:104328. [DOI: 10.1016/j.yexmp.2019.104328] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 10/25/2019] [Accepted: 10/30/2019] [Indexed: 12/18/2022]
|
11
|
Sun XY, Zheng T, Yang X, Liu L, Gao SS, Xu HB, Song YT, Tong K, Yang L, Gao Y, Wu T, Hao JR, Lu C, Ma T, Gao C. HDAC2 hyperexpression alters hippocampal neuronal transcription and microglial activity in neuroinflammation-induced cognitive dysfunction. J Neuroinflammation 2019; 16:249. [PMID: 31796106 PMCID: PMC6889553 DOI: 10.1186/s12974-019-1640-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/12/2019] [Indexed: 02/08/2023] Open
Abstract
Background Inflammation can induce cognitive dysfunction in patients who undergo surgery. Previous studies have demonstrated that both acute peripheral inflammation and anaesthetic insults, especially isoflurane (ISO), are risk factors for memory impairment. Few studies are currently investigating the role of ISO under acute peri-inflammatory conditions, and it is difficult to predict whether ISO can aggravate inflammation-induced cognitive deficits. HDACs, which are essential for learning, participate in the deacetylation of lysine residues and the regulation of gene transcription. However, the cell-specific mechanism of HDACs in inflammation-induced cognitive impairment remains unknown. Methods Three-month-old C57BL/6 mice were treated with single versus combined exposure to LPS injected intraperitoneally (i.p.) to simulate acute abdominal inflammation and isoflurane to investigate the role of anaesthesia and acute peripheral inflammation in cognitive impairment. Behavioural tests, Western blotting, ELISA, immunofluorescence, qRT-PCR, and ChIP assays were performed to detect memory, the expressions of inflammatory cytokines, HDAC2, BDNF, c-Fos, acetyl-H3, microglial activity, Bdnf mRNA, c-fos mRNA, and Bdnf and c-fos transcription in the hippocampus. Results LPS, but not isoflurane, induced neuroinflammation-induced memory impairment and reduced histone acetylation by upregulating histone deacetylase 2 (HDAC2) in dorsal hippocampal CaMKII+ neurons. The hyperexpression of HDAC2 in neurons was mediated by the activation of microglia. The decreased level of histone acetylation suppressed the transcription of Bdnf and c-fos and the expressions of BDNF and c-Fos, which subsequently impaired memory. The adeno-associated virus ShHdac2, which suppresses Hdac2 after injection into the dorsal hippocampus, reversed microglial activation, hippocampal glutamatergic BDNF and c-Fos expressions, and memory deficits. Conclusions Reversing HDAC2 in hippocampal CaMKII+ neurons exert a neuroprotective effect against neuroinflammation-induced memory deficits.
Collapse
Affiliation(s)
- Xiao-Yu Sun
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Teng Zheng
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.,Department of Anesthesiology, the First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| | - Xiu Yang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Le Liu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Shen-Shen Gao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Han-Bing Xu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Yu-Tong Song
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Kun Tong
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Li Yang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Ya Gao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Tong Wu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Jing-Ru Hao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Chen Lu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Tao Ma
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Can Gao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China. .,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
12
|
Wang L, Yang X, Wu H. Juvenile Rats Show Altered Gut Microbiota After Exposure to Isoflurane as Neonates. Neurochem Res 2019; 44:776-786. [PMID: 30603984 DOI: 10.1007/s11064-018-02707-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 12/14/2018] [Accepted: 12/22/2018] [Indexed: 12/22/2022]
Abstract
Inhaled anesthetic agents may be neurotoxic to the developing brain of a neonatal rodent. Isoflurane is a commonly used volatile anesthetic agent for maintenance of general anesthesia in various types of surgery. Neonatal exposure to isoflurane has been implicated in long-term neurocognitive dysfunction in children. The mechanisms of isoflurane-induced neurotoxicity have not been fully elucidated. Disruption of gut microbiota is currently attracting considerable interest as a vital pathogeny of some neurologic disorders. In the rat model, it is unknown whether neonatal exposure to isoflurane impacts the gut microbiota composition of juvenile animals. In the present study, postnatal 7-day-old male rats were exposed to 1 minimum alveolar concentration isoflurane for 4 h. Non-anesthetized rats served as controls. The fecal microbiomes of rats were observed using 16S RNA sequencing technique on postnatal day 42. Results indicated that composition of gut microbiota of isoflurane-exposed rats was different from controls. Several bacteria taxa in isoflurane-exposed rats were different from those of controls at various taxonomic levels. In particular, the abundance of Firmicutes, Proteobacteria, Clostridia, Clostridiales, and Lachnospiraceae were significantly increased in exposed rats and the abundance of Bacteroidetes, Actinobacteria, Bacteroidia and Bacteroidaceae were significantly decreased compared to controls. These results may offer new insights into the pathogenesis of isoflurane-induced neurotoxicity.
Collapse
Affiliation(s)
- Likuan Wang
- Department of Anesthesiology, Peking University School and Hospital of Stomatology, #22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, China.
| | - Xudong Yang
- Department of Anesthesiology, Peking University School and Hospital of Stomatology, #22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, China
| | - Haiyin Wu
- Department of Anesthesiology, Peking University School and Hospital of Stomatology, #22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, China
| |
Collapse
|
13
|
Ben-Ari Y. Oxytocin and Vasopressin, and the GABA Developmental Shift During Labor and Birth: Friends or Foes? Front Cell Neurosci 2018; 12:254. [PMID: 30186114 PMCID: PMC6110879 DOI: 10.3389/fncel.2018.00254] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 07/24/2018] [Indexed: 12/15/2022] Open
Abstract
Oxytocin (OT) and vasopressin (AVP) are usually associated with sociability and reduced stress for the former and antidiuretic agent associated with severe stress and pathological conditions for the latter. Both OT and AVP play major roles during labor and birth. Recent contradictory studies suggest that they might exert different roles on the GABA excitatory/inhibitory developmental shift. We reported (Tyzio et al., 2006) that at birth, OT exerts a neuro-protective action mediated by an abrupt reduction of intracellular chloride levels ([Cl-]i) that are high in utero, reinforcing GABAergic inhibition and modulating the generation of the first synchronized patterns of cortical networks. This reduction of [Cl-]i levels is abolished in rodent models of Fragile X Syndrome and Autism Spectrum Disorders, and its restoration attenuates the severity of the pathological sequels, stressing the importance of the shift at birth (Tyzio et al., 2014). In contrast, Kaila and co-workers (Spoljaric et al., 2017) reported excitatory GABA actions before and after birth that are modulated by AVP but not by OT, challenging both the developmental shift and the roles of OT. Here, I analyze the differences between these studies and suggest that the ratio AVP/OT like that of excitatory/inhibitory GABA depend on stress and pathological conditions.
Collapse
Affiliation(s)
- Yehezkel Ben-Ari
- Neurochlore and Ben-Ari Institute of Neuroarcheology (IBEN), Marseille, France
| |
Collapse
|
14
|
Complement receptors C5aR1 and C5aR2 act differentially during the early immune response after bone fracture but are similarly involved in bone repair. Sci Rep 2017; 7:14061. [PMID: 29070810 PMCID: PMC5656620 DOI: 10.1038/s41598-017-14444-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 10/10/2017] [Indexed: 12/31/2022] Open
Abstract
Severely injured patients frequently suffer compromised fracture healing because of systemic post-traumatic inflammation. An important trigger of the posttraumatic immune response is the complement anaphylatoxin C5a, which acts via two receptors, C5aR1 and C5aR2, expressed on immune and bone cells. The blockade of C5a-mediated inflammation during the early inflammatory phase was demonstrated to improve fracture healing after severe injury. However, the distinct roles of the two complement receptors C5aR1 and C5aR2 in bone has to date not been studied. Here, we investigated bone turnover and regeneration in mice lacking either C5aR1 or C5aR2 in a model of isolated fracture and after severe injury, combining the fracture with an additional thoracic trauma. Both C5aR1−/− and C5aR2−/− mice displayed an increased bone mass compared to wild-type controls due to reduced osteoclast formation and increased osteoblast numbers, respectively. Following fracture, the inflammatory response was differently affected in these strains: It was decreased in C5aR1−/− mice but enhanced in C5aR2−/− mice. Both strains exhibited impaired fracture healing, disturbed osteoclastogenesis and delayed cartilage-to-bone transformation. Thus, our data suggest that C5aR1 and C5aR2 differentially regulate the immune response after fracture and are required for effective cartilage-to-bone transformation in the fracture callus and for undisturbed bone healing.
Collapse
|
15
|
Ideno S, Seki H, Morisaki H. Was isoflurane the only cause of IL-1β upregulation? J Anesth 2017; 31:795. [DOI: 10.1007/s00540-017-2322-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 02/04/2017] [Indexed: 10/20/2022]
|