1
|
Shirsath KR, Patil VK, Awathale SN, Goyal SN, Nakhate KT. Pathophysiological and therapeutic implications of neuropeptide S system in neurological disorders. Peptides 2024; 175:171167. [PMID: 38325715 DOI: 10.1016/j.peptides.2024.171167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
Neuropeptide S (NPS) is a 20 amino acids-containing neuroactive molecule discovered by the reverse pharmacology method. NPS is detected in specific brain regions like the brainstem, amygdala, and hypothalamus, while its receptor (NPSR) is ubiquitously expressed in the central nervous system (CNS). Besides CNS, NPS and NPSR are also expressed in the peripheral nervous system. NPSR is a G-protein coupled receptor that primarily uses Gq and Gs signaling pathways to mediate the actions of NPS. In animal models of Parkinsonism and Alzheimer's disease, NPS exerts neuroprotective effects. NPS suppresses oxidative stress, anxiety, food intake, and pain, and promotes arousal. NPSR facilitates reward, reinforcement, and addiction-related behaviors. Genetic variation and single nucleotide polymorphism in NPSR are associated with depression, schizophrenia, rheumatoid arthritis, and asthma. NPS interacts with several neurotransmitters including glutamate, noradrenaline, serotonin, corticotropin-releasing factor, and gamma-aminobutyric acid. It also modulates the immune system via augmenting pro-inflammatory cytokines and plays an important role in the pathogenesis of rheumatoid arthritis and asthma. In the present review, we discussed the distribution profile of NPS and NPSR, signaling pathways, and their importance in the pathophysiology of various neurological disorders. We have also proposed the areas where further investigations on the NPS system are warranted.
Collapse
Affiliation(s)
- Kamini R Shirsath
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule 424001, Maharashtra, India
| | - Vaishnavi K Patil
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule 424001, Maharashtra, India
| | - Sanjay N Awathale
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule 424001, Maharashtra, India
| | - Sameer N Goyal
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule 424001, Maharashtra, India
| | - Kartik T Nakhate
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule 424001, Maharashtra, India.
| |
Collapse
|
2
|
Ouyang X, Su M, Xue D, Dong L, Niu H, Li W, Liu Y, Wang K, Shao L. Design, synthesis, and biological evaluation of acyl sulfonamide derivatives with spiro cycles as Na V1.7 inhibitors for antinociception. Bioorg Med Chem 2023; 86:117290. [PMID: 37137269 DOI: 10.1016/j.bmc.2023.117290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/30/2023] [Accepted: 04/13/2023] [Indexed: 05/05/2023]
Abstract
Chronic pain, as an unmet medical need, severely impacts the quality of life. The voltage-gated sodium channel NaV1.7 preferentially expressed in sensory neurons of dorsal root ganglia (DRG) serves a promising target for pain therapy. Here, we report the design, synthesis, and evaluation of a series of acyl sulfonamide derivatives targeting Nav1.7 for their antinociceptive activities. Among the derivatives tested, the compound 36c was identified as a selective and potent NaV1.7 inhibitor in vitro and exhibited antinociceptive effects in vivo. The identification of 36c not only provides a new insight into the discovery of selective NaV1.7 inhibitors, but also may hold premise for pain therapy.
Collapse
Affiliation(s)
- Xiangshuo Ouyang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai 201203, China
| | - Min Su
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, #1 Ningde Road, Qingdao 266073, China
| | - Dengqi Xue
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai 201203, China
| | - Liying Dong
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, #1 Ningde Road, Qingdao 266073, China
| | - Heling Niu
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, #1 Ningde Road, Qingdao 266073, China
| | - Wei Li
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai 201203, China.
| | - Yani Liu
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, #1 Ningde Road, Qingdao 266073, China.
| | - KeWei Wang
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, #1 Ningde Road, Qingdao 266073, China.
| | - Liming Shao
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai 201203, China; State Key Laboratory of Medical Neurobiology, Fudan University, No. 138 Yixueyuan Road, Shanghai 200032, China.
| |
Collapse
|
3
|
Kushikata T, Hirota K, Saito J, Takekawa D. Roles of Neuropeptide S in Anesthesia, Analgesia, and Sleep. Pharmaceuticals (Basel) 2021; 14:ph14050483. [PMID: 34069327 PMCID: PMC8158725 DOI: 10.3390/ph14050483] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/16/2021] [Accepted: 05/17/2021] [Indexed: 02/07/2023] Open
Abstract
Neuropeptide S (NPS) is an endogenous peptide that regulates various physiological functions, such as immune functions, anxiety-like behaviors, learning and memory, the sleep–wake rhythm, ingestion, energy balance, and drug addiction. These processes include the NPS receptor (NPSR1). The NPS–NPSR1 system is also significantly associated with the onset of disease, as well as these physiologic functions. For example, NPS is involved in bronchial asthma, anxiety and awakening disorders, and rheumatoid arthritis. In this review, among the various functions, we focus on the role of NPS in anesthesia-induced loss of consciousness; analgesia, mainly by anesthesia; and sleep–wakefulness. Progress in the field regarding the functions of endogenous peptides in the brain, including NPS, suggests that these three domains share common mechanisms. Further NPS research will help to elucidate in detail how these three domains interact with each other in their functions, and may contribute to improving the quality of medical care.
Collapse
Affiliation(s)
- Tetsuya Kushikata
- Department of Anesthesiology, Graduate School of Medicine, Hirosaki University, Zaifu 5, Hirosaki 0368562, Japan; (K.H.); (J.S.)
- Correspondence:
| | - Kazuyoshi Hirota
- Department of Anesthesiology, Graduate School of Medicine, Hirosaki University, Zaifu 5, Hirosaki 0368562, Japan; (K.H.); (J.S.)
| | - Junichi Saito
- Department of Anesthesiology, Graduate School of Medicine, Hirosaki University, Zaifu 5, Hirosaki 0368562, Japan; (K.H.); (J.S.)
| | - Daiki Takekawa
- Department of Anesthesia, Hirosaki University Hospital, Honcho 53, Hirosaki 0368563, Japan;
| |
Collapse
|
4
|
Reinscheid RK, Ruzza C. Pharmacology, Physiology and Genetics of the Neuropeptide S System. Pharmaceuticals (Basel) 2021; 14:ph14050401. [PMID: 33922620 PMCID: PMC8146834 DOI: 10.3390/ph14050401] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/14/2021] [Accepted: 04/21/2021] [Indexed: 12/28/2022] Open
Abstract
The Neuropeptide S (NPS) system is a rather ‘young’ transmitter system that was discovered and functionally described less than 20 years ago. This review highlights the progress that has been made in elucidating its pharmacology, anatomical distribution, and functional involvement in a variety of physiological effects, including behavior and immune functions. Early on, genetic variations of the human NPS receptor (NPSR1) have attracted attention and we summarize current hypotheses of genetic linkage with disease and human behaviors. Finally, we review the therapeutic potential of future drugs modulating NPS signaling. This review serves as an introduction to the broad collection of original research papers and reviews from experts in the field that are presented in this Special Issue.
Collapse
Affiliation(s)
- Rainer K. Reinscheid
- Institute of Pharmacology & Toxicology, University Hospital Jena, Friedrich-Schiller University, 07747 Jena, Germany
- Institute of Physiology I, University Hospital Münster, Westfälische-Wilhelms University, 48149 Münster, Germany
- Correspondence: (R.K.R.); (C.R.)
| | - Chiara Ruzza
- Department of Neuroscience and Rehabilitation and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
- Correspondence: (R.K.R.); (C.R.)
| |
Collapse
|
5
|
Electroacupuncture Alleviates Pain-Related Emotion by Upregulating the Expression of NPS and Its Receptor NPSR in the Anterior Cingulate Cortex and Hypothalamus. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:8630368. [PMID: 32104195 PMCID: PMC7035524 DOI: 10.1155/2020/8630368] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 01/07/2020] [Accepted: 01/16/2020] [Indexed: 12/14/2022]
Abstract
Objective Electroacupuncture (EA) is reported effective in alleviating pain-related emotion; however, the underlying mechanism of its effects still needs to be elucidated. The NPS-NPSR system has been validated for the involvement in the modulation of analgesia and emotional behavior. Here, we aimed to investigate the role of the NPS-NPSR system in the anterior cingulate cortex (ACC), hypothalamus, and central amygdala (CeA) in the use of EA to relieve affective pain modeled by complete Freund's adjuvant- (CFA-) evoked conditioned place aversion (C-CPA). Materials and Methods. CFA injection combined with a CPA paradigm was introduced to establish the C-CPA model, and the elevated O-maze (EOM) was used to test the behavioral changes after model establishment. We further explored the expression of NPS and NPSR at the protein and gene levels in the brain regions of interest by immunofluorescence staining and quantitative real-time PCR. Results We observed that EA stimulation delivered to the bilateral Zusanli (ST36) and Kunlun (BL60) acupoints remarkably inhibited sensory pain, pain-evoked place aversion, and anxiety-like behavior. The current study showed that EA significantly enhanced the protein expression of this peptide system in the ACC and hypothalamus, while the elevated expression of NPSR protein alone was just confined to the affected side in the CeA. Moreover, EA remarkably upregulated the mRNA expression of NPS in CeA, ACC, and hypothalamus and NPSR mRNA in the hypothalamus and CeA. Conclusions These data suggest the effectiveness of EA in alleviating affective pain, and these benefits may at least partially be attributable to the upregulation of the NPS-NPSR system in the ACC and hypothalamus.
Collapse
|
6
|
Holanda VAD, Oliveira MC, Souza LS, Lobão-Soares B, André E, Da Silva Junior ED, Guerrini R, Calo G, Ruzza C, Gavioli EC. Dopamine D 1 and D 2 receptors mediate neuropeptide S-induced antinociception in the mouse formalin test. Eur J Pharmacol 2019; 859:172557. [PMID: 31326375 DOI: 10.1016/j.ejphar.2019.172557] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 12/31/2022]
Abstract
Neuropeptide S (NPS) is the endogenous ligand of a G-protein coupled receptor named NPS receptor. The NPS system controls several biological functions, including anxiety, wakefulness, locomotor activity, food intake, and pain transmission. A growing body of evidence supports facilitatory effects for NPS over dopaminergic neurotransmission. The present study was aimed to investigate the role of dopamine receptors signaling in the antinociceptive effects of NPS in the mouse formalin test. The following dopamine receptor antagonists were employed: SCH 23390 (selective dopamine D1 antagonist, 0.05 mg/kg, ip), haloperidol (non-selective dopamine D2-like receptor antagonist; 0.03 mg/kg, ip), and sulpiride (selective dopamine D2-like receptor antagonist; 25 mg/kg, ip). Mice were pretreated with dopamine antagonists before the supraspinal administration of NPS (0.1 nmol, icv). Morphine (5 mg/kg, sc) and indomethacin (10 mg/kg, ip) were used as positive controls to set up the experimental conditions. Morphine-induced antinociceptive effects were observed during phases 1 and 2 of the test, while indomethacin was only active at phase 2. Central NPS significantly reduced formalin-induced nociception during both phases. The systemic administration of SCH 23390 slightly blocked the effects of NPS only during phase 2. Haloperidol prevented NPS-induced antinociceptive effects. Similar to haloperidol, sulpiride also counteracted the antinociceptive effects of NPS in both phases of the formalin test. In conclusion, the present findings suggest that the analgesic effects of NPS are linked with dopaminergic neurotransmission mainly through dopamine D2-like receptor signaling.
Collapse
Affiliation(s)
- Victor A D Holanda
- Department of Biophysics and Pharmacology, Federal University of Rio Grande Do Norte, Natal, RN, Brazil
| | - Matheus C Oliveira
- Department of Biophysics and Pharmacology, Federal University of Rio Grande Do Norte, Natal, RN, Brazil
| | - Lisiane S Souza
- Department of Biophysics and Pharmacology, Federal University of Rio Grande Do Norte, Natal, RN, Brazil
| | - Bruno Lobão-Soares
- Department of Biophysics and Pharmacology, Federal University of Rio Grande Do Norte, Natal, RN, Brazil
| | - Eunice André
- Department of Pharmacology, Federal University of Parana, Curitiba, PR, Brazil
| | - Edilson D Da Silva Junior
- Department of Biophysics and Pharmacology, Federal University of Rio Grande Do Norte, Natal, RN, Brazil
| | - Remo Guerrini
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| | - Girolamo Calo
- Department of Medical Sciences, Section of Pharmacology, and National Institute of Neuroscience, University of Ferrara, Ferrara, Italy
| | - Chiara Ruzza
- Department of Medical Sciences, Section of Pharmacology, and National Institute of Neuroscience, University of Ferrara, Ferrara, Italy
| | - Elaine C Gavioli
- Department of Biophysics and Pharmacology, Federal University of Rio Grande Do Norte, Natal, RN, Brazil.
| |
Collapse
|