1
|
Wen Z, Lin C, Xu X, Ma S, Peng Y, Sun Y, Tang B, Shi L. Ectomycorrhizal community associated with Cedrus deodara in four urban forests of Nantong in East China. FRONTIERS IN PLANT SCIENCE 2023; 14:1226720. [PMID: 37719211 PMCID: PMC10502312 DOI: 10.3389/fpls.2023.1226720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/08/2023] [Indexed: 09/19/2023]
Abstract
Ectomycorrhizal (ECM) fungi play fundamental roles in host plant growth and terrestrial ecosystems. Cedrus deodara is cultivated in several regions in China, has high ecological, economic and medicinal value, for its afforestation and providing timber and wood oil. Here, we investigated ECM colonization status of four urban C. deodara forests in Nantong, East China. We also characterized soil spore banks by conducting bioassay experiments using soils collected from these forests. In total, we identified 19 ECM fungal species, of which 13 species were found in mature forests and 9 species were identified in bioassay experiments, with only 3 species shared. Soil pH and available P content had significant effects on species occurrence in both mature trees and bioassay seedlings on local scales. ECM communities clearly (A = 0.391, p = 0.006) separated mature forests from spore banks. Thelephoracae was the richest family we detected associated with C. deodara, while Trichophaea sp. was the most dominant in mature forests, and Wilcoxina sp. was dominant in spore banks. ECM richness affected the growth of bioassay seedlings, especially after inoculation with 2 ECM species, promoting root growth, significantly (F = 3.028, p = 0.050), but it had no effects on shoots (F = 1.778, p = 0.177). No effect of inoculation rate was found on seedlings growth. To conserve this important tree species, the ECM fungi that are associated with it should be considered.
Collapse
Affiliation(s)
- Zhugui Wen
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng, China
| | - Chunyan Lin
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng, China
| | - Xiaoming Xu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng, China
| | - Simiao Ma
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng, China
| | - Yue Peng
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng, China
| | - Yue Sun
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng, China
| | - Boping Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng, China
| | - Liang Shi
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
2
|
Karlsen-Ayala E, Jusino MA, Gazis R, Smith ME. Habitat matters: The role of spore bank fungi in early seedling establishment of Florida slash pines. FUNGAL ECOL 2023. [DOI: 10.1016/j.funeco.2022.101210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
3
|
Miyamoto Y, Maximov TC, Kononov A, Sugimoto A. Soil propagule banks of ectomycorrhizal fungi associated with <i>Larix cajanderi</i> above the treeline in the Siberian Arctic. MYCOSCIENCE 2022; 63:142-148. [PMID: 37090475 PMCID: PMC10042316 DOI: 10.47371/mycosci.2022.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 05/08/2022] [Accepted: 05/08/2022] [Indexed: 11/16/2022]
Abstract
Microbial symbionts are essential for plant niche expansion into novel habitats. Dormant propagules of ectomycorrhizal (EM) fungi are thought to play an important role in seedling establishment in invasion fronts; however, propagule bank communities above the treeline are poorly understood in the Eurasian Arctic, where treelines are expected to advance under rapid climate change. To investigate the availability of EM fungal propagules, we collected 100 soil samples from Arctic tundra sites and applied bioassay experiments using Larix cajanderi as bait seedlings. We detected 11 EM fungal operational taxonomic units (OTUs) by obtaining entire ITS regions. Suillus clintonianus was the most frequently observed OTU, followed by Cenococcum geophilum and Sebacinales OTU1. Three Suillus and one Rhizopogon species were detected in the bioassay seedlings, indicating the availability of Larix-specific suilloid spores at least 30 km from the contemporary treeline. Spores of S. clintonianus and S. spectabilis remained infective after preservation for 14 mo and heat treatment at 60 °C, implying the durability of the spores. Long-distance dispersal capability and spore resistance to adverse conditions may represent ecological strategies employed by suilloid fungi to quickly associate with emerging seedlings of compatible hosts in treeless habitats.
Collapse
Affiliation(s)
| | - Trofim C. Maximov
- Institute for Biological Problems of Cryolithozone, Siberian Branch of Russian Academy of Sciences
| | | | | |
Collapse
|
4
|
Jiang W, Tang Y, Tong YP, Zhao ZY, Jin ZX, Li J, Zang Y, Li J, Xiong J, Hu JF. Structurally diverse mono-/dimeric triterpenoids from the vulnerable conifer Pseudotsuga gaussenii and their PTP1B inhibitory effects. The Role of Protecting Species Diversity in Support of Chemical Diversity. Bioorg Chem 2022; 124:105825. [DOI: 10.1016/j.bioorg.2022.105825] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 04/04/2022] [Accepted: 04/19/2022] [Indexed: 12/20/2022]
|
5
|
Okada KH, Matsuda Y. Soil spore bank communities of ectomycorrhizal fungi in Pseudotsuga japonica forests and neighboring plantations. MYCORRHIZA 2022; 32:83-93. [PMID: 34989868 DOI: 10.1007/s00572-021-01065-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
Ectomycorrhizal (EcM) fungal spores play an important role in seedling establishment and forest regeneration, especially in areas where compatible host tree species are absent. However, compared to other Pinaceae trees with a wide distribution, limited information is available for the interaction between the endangered Pseudotsuga trees and EcM fungi, especially the spore bank. The aim of this study was to investigate EcM fungal spore bank communities in soil in remnant patches of Japanese Douglas-fir (Pseudotsuga japonica) forest. We conducted a bioassay of 178 soil samples collected from three P. japonica forests and their neighboring arbuscular mycorrhizal artificial plantations, using the more readily available North American Douglas-fir (Pseudotsuga menziesii) as bait seedlings. EcM fungal species were identified by a combination of morphotyping and DNA sequencing of the ITS region. We found that EcM fungal spore banks were present not only in P. japonica forests but also in neighboring plantations. Among the 13 EcM fungal species detected, Rhizopogon togasawarius had the second highest frequency and was found in all plots, regardless of forest type. Species richness estimators differed significantly among forest types. The community structure of EcM fungal spore banks differed significantly between study sites but not between forest types. These results indicate that EcM fungal spore banks are not restricted to EcM forests and extend to surrounding forest dominated by arbuscular mycorrhizal trees, likely owing to the durability of EcM fungal spores in soils.
Collapse
Affiliation(s)
- Keita Henry Okada
- Graduate School of Bioresources, Mie University, 1577 Kurimamachiya, Tsu, Mie, 514-8507, Japan.
| | - Yosuke Matsuda
- Graduate School of Bioresources, Mie University, 1577 Kurimamachiya, Tsu, Mie, 514-8507, Japan
| |
Collapse
|
6
|
Bai Z, Yuan ZQ, Wang DM, Fang S, Ye J, Wang XG, Yuan HS. Ectomycorrhizal fungus-associated determinants jointly reflect ecological processes in a temperature broad-leaved mixed forest. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 703:135475. [PMID: 31767296 DOI: 10.1016/j.scitotenv.2019.135475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/05/2019] [Accepted: 11/09/2019] [Indexed: 06/10/2023]
Abstract
Ectomycorrhizal (ECM) fungi are closely related to vegetation compositions, edaphic properties, and site-specific processes. However, the coevolutionary mechanisms underlying the spatial distributions in floristic and ECM fungal composition in the context of biotic adaptations and abiotic variances remain unclear. We combine a total of 25 ECM fungus-associated environmental variables to impose three types of composite scores and then quantify the environmental gradients of geographical site, soil chemical property and vegetation functional trait across 122 grids of 20 m × 20 m in a 25-hm2 forest plot. Significant dissimilarities in vegetational and ECM fungal abundance and composition existed along the above environmental gradients. Specifically, a contrasting floristic distribution (e.g., Betula platyphylla vs. Tilia mandshurica) existed between the northeastern and southwestern areas and was closely related to the nutrient and moisture gradients (with high levels in the west and low levels in the east). Furthermore, the ECM fungal communities were more abundant in the nutrient-poor and low-moisture environments than in the nutrient-rich and high-moisture environments, and the mixed-forest in the middle-gradient sites between the northeastern and southwestern areas harbored the highest ECM fungal diversity. These findings suggest that predictable within-site vegetation succession is closely related to ECM-associated determinants and the natural spatial heterogeneity of edaphic properties at a local scale.
Collapse
Affiliation(s)
- Zhen Bai
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110164, PR China
| | - Zuo-Qiang Yuan
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110164, PR China
| | - Dong-Mei Wang
- School of pharmacy, Shenyang Pharmaceutical University, 72 Wenhua Road, Shenyang 110016, PR China
| | - Shuai Fang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110164, PR China
| | - Ji Ye
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110164, PR China
| | - Xu-Gao Wang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110164, PR China.
| | - Hai-Sheng Yuan
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110164, PR China.
| |
Collapse
|
7
|
Shi L, Deng X, Yang Y, Jia Q, Wang C, Shen Z, Chen Y. A Cr(VI)-tolerant strain, Pisolithus sp1, with a high accumulation capacity of Cr in mycelium and highly efficient assisting Pinus thunbergii for phytoremediation. CHEMOSPHERE 2019; 224:862-872. [PMID: 30852466 DOI: 10.1016/j.chemosphere.2019.03.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/11/2019] [Accepted: 03/03/2019] [Indexed: 05/18/2023]
Abstract
Ectomycorrhizal (ECM) fungi can improve the growth of pine trees and enhance their tolerance to heavy metal stress, and may also be useful during the afforestation and phytoremediation of polluted regions with pine trees. Hebeloma vinosophyllum (Cr(VI)-sensitive strain) and Pisolithus sp1 ((Cr(VI)-tolerant strain) were selected through liquid culture experiment, and were used in symbiosis with Japanese black pine (Pinus thunbergii) in pot experiments, to determine their potential for improving phytoremediation of Cr(VI)-contaminated soils. Our results indicated that Pisolithus sp1 also had a significantly higher accumulation of Cr than H. vinosophyllum in mycelium under the same Cr(VI) treatments in liquid culture experiment. The tolerance index of Pisolithus sp1 ECM seedlings' shoots and roots to Cr(VI) were significantly higher than that of H. vinosophyllum ECM and non-ectomycorrhizal (NM) seedlings while the total accumulated Cr per seedling in Pisolithus sp1 ECM seedlings were 1.50-1.96 and 2.83-27.75 fold higher that of H. vinosophyllum ECM and NM seedlings, respectively, within 0-800 mg kg-1 Cr(VI) treatments in pot experiments. In addition, the significant differences ratios of photosynthetic rate, stomatal conductance, transpiration rate and intercellular CO2 concentration between Pisolithus sp1 ECM and NM seedlings were significantly higher than those between H. vinosophyllum ECM and NM seedlings under 400 and 800 mg kg-1 Cr(VI) treatments. Compared with the control (no plant), and planting NM or H. vinosophyllum ECM seedlings, the planting of Pisolithus sp1 ECM seedlings significantly reduced the percentage content of exchangeable Cr in the soil.
Collapse
Affiliation(s)
- Liang Shi
- College of Life Sciences, Nanjing Agiricultural University, Nanjing, 210095, China
| | - Xiaopeng Deng
- Yunnan Academy of Tobacco Agriculture Science, Yunnan, 650021, China
| | - Yang Yang
- College of Life Sciences, Nanjing Agiricultural University, Nanjing, 210095, China
| | - Qiyuan Jia
- College of Life Sciences, Nanjing Agiricultural University, Nanjing, 210095, China
| | - Chunchun Wang
- College of Life Sciences, Nanjing Agiricultural University, Nanjing, 210095, China
| | - Zhenguo Shen
- College of Life Sciences, Nanjing Agiricultural University, Nanjing, 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, Nanjing Agiricultural University, Nanjing, 210095, China; National Joint Local Engineering Research Center for Rural Land Resources Use and Consolidation, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yahua Chen
- College of Life Sciences, Nanjing Agiricultural University, Nanjing, 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, Nanjing Agiricultural University, Nanjing, 210095, China; National Joint Local Engineering Research Center for Rural Land Resources Use and Consolidation, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
8
|
Mujic AB, Huang B, Chen MJ, Wang PH, Gernandt DS, Hosaka K, Spatafora JW. Out of western North America: Evolution of the Rhizopogon-Pseudotsuga symbiosis inferred by genome-scale sequence typing. FUNGAL ECOL 2019. [DOI: 10.1016/j.funeco.2018.10.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
9
|
Sugiyama Y, Murata M, Kanetani S, Nara K. Towards the conservation of ectomycorrhizal fungi on endangered trees: native fungal species on Pinus amamiana are rarely conserved in trees planted ex situ. MYCORRHIZA 2019; 29:195-205. [PMID: 30879199 DOI: 10.1007/s00572-019-00887-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 03/05/2019] [Indexed: 06/09/2023]
Abstract
Ectomycorrhizal (ECM) symbiosis is essential for the survival of both host trees and associated ECM fungi. However, during conservation activities of endangered tree species, their ECM symbionts are largely ignored. Here, we investigated ECM fungi in ex situ populations established for the conservation of Pinus amamiana, an endangered species distributed on Yakushima Island, Japan. Our objective was to determine whether ECM fungi in natural forests are conserved in ex situ populations on the same island. In particular, we focused on the existence of Rhizopogon yakushimensis, which is specific to P. amamiana and the most dominant in natural P. amamiana forests. Molecular identification of ECM fungi in resident tree roots and soil propagule banks indicated that ECM fungal species native to natural forests were rarely conserved in ex situ populations. Furthermore, R. yakushimensis was not confirmed in any of the resident root or spore bioassay samples from the ex situ populations. Thus, ECM fungal spores may not be effectively dispersed from natural forests located on the same island. Instead, ECM fungi distributed in other geographical regions occurred more frequently in the ex situ populations, indicating unintentional introductions of non-native ECM fungi from the nurseries where seedlings were raised before transplanting. These findings imply that the current ex situ conservation practices of endangered tree do not work for the conservation of native ECM fungi, and instead may need modification to avoid the risk of introducing non-native ECM fungi near the endangered forest sites.
Collapse
Affiliation(s)
- Yoriko Sugiyama
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8563, Japan.
- Graduate School of Simulation Studies, University of Hyogo, 7-1-28 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan.
| | - Masao Murata
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8563, Japan
| | - Seiichi Kanetani
- Kyushu Research Center, Forestry and Forest Products Research Institute, 4-11-16, Kurokami, Chuo-ku, Kumamoto, 860-0862, Japan
| | - Kazuhide Nara
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8563, Japan
| |
Collapse
|
10
|
Sterkenburg E, Clemmensen KE, Lindahl BD, Dahlberg A. The significance of retention trees for survival of ectomycorrhizal fungi in clear‐cut Scots pine forests. J Appl Ecol 2019. [DOI: 10.1111/1365-2664.13363] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Erica Sterkenburg
- Department of Forest Mycology and Plant PathologySwedish University of Agricultural Sciences Uppsala Sweden
| | - Karina E. Clemmensen
- Department of Forest Mycology and Plant PathologySwedish University of Agricultural Sciences Uppsala Sweden
| | - Björn D. Lindahl
- Department of Soil and EnvironmentSwedish University of Agricultural Sciences Uppsala Sweden
| | - Anders Dahlberg
- Department of Forest Mycology and Plant PathologySwedish University of Agricultural Sciences Uppsala Sweden
| |
Collapse
|
11
|
Shi L, Xue J, Liu B, Dong P, Wen Z, Shen Z, Chen Y. Hydrogen ions and organic acids secreted by ectomycorrhizal fungi, Pisolithus sp1, are involved in the efficient removal of hexavalent chromium from waste water. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 161:430-436. [PMID: 29908454 DOI: 10.1016/j.ecoenv.2018.06.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 05/30/2018] [Accepted: 06/02/2018] [Indexed: 05/27/2023]
Abstract
Pisolithus sp1 is an ectomycorrhizal (ECM) fungi that was chosen during a screening test of six strains of ECM fungi due to its ability to tolerate and remove hexavalent chromium (Cr(VI)). The physiological responses of Pisolithus sp1 to Cr(VI) exposure, the relationship between Pisolithus sp1 and exogenously added organic acids (EAOAs) or Na3VO4 (H+-ATPase inhibitor) and the ability of Pisolithus sp1 to reduce Cr(VI) in liquid culture were also investigated. Hydrogen ions (H+), which were produced directly by Pisolithus sp1, reduced the pH of the medium and played an important role in Cr(VI) reduction; however, Na3VO4 significantly inhibited this process and resulted in a decrease in the Cr(VI) reduction rates. Organic acids were secreted after the reduction in Cr(VI) by Pisolithus sp1, and EAOAs did not significantly affect Cr(VI) reduction; those results revealed the secondary role of organic acids in Cr(VI) reduction. The Cr(VI) removal rate of Pisolithus sp1 approached 99% after Cr(VI) treatment for 12 days. Overall, 75% of the Cr(VI) removal was due to extracellular reduction and 24% was due to adsorption. The results of this study provide a strong basis for using Cr(VI)-tolerant and Cr(VI)-reducing fungi, as well as ectomycorrhiza, in the remediation of Cr(VI)-contaminated sites.
Collapse
Affiliation(s)
- Liang Shi
- College of Life Sciences, Nanjing Agiricultural University, China
| | - Jiawang Xue
- College of Life Sciences, Nanjing Agiricultural University, China
| | - Binhao Liu
- College of Life Sciences, Nanjing Agiricultural University, China
| | - Pengcheng Dong
- College of Life Sciences, Nanjing Agiricultural University, China
| | - Zhugui Wen
- Jiangsu Coastal Area Institute of Agricultural Sciences, Yancheng, Jiangsu, 224002, China
| | - Zhenguo Shen
- College of Life Sciences, Nanjing Agiricultural University, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, Nanjing Agiricultural University, China; National Joint Local Engineering Research Center for Rural Land Resources Use and Consolidation, Nanjing Agricultural University, Nanjing Agiricultural University, Nanjing 210095, China
| | - Yahua Chen
- College of Life Sciences, Nanjing Agiricultural University, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, Nanjing Agiricultural University, China; National Joint Local Engineering Research Center for Rural Land Resources Use and Consolidation, Nanjing Agricultural University, Nanjing Agiricultural University, Nanjing 210095, China.
| |
Collapse
|
12
|
Huang J, Han Q, Li J. Soil propagule bank of ectomycorrhizal fungi associated with Masson pine (Pinus massoniana) grown in a manganese mine wasteland. PLoS One 2018; 13:e0198628. [PMID: 29870548 PMCID: PMC5988271 DOI: 10.1371/journal.pone.0198628] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 05/22/2018] [Indexed: 11/19/2022] Open
Abstract
Ectomycorrhizal (ECM) fungal propagule bank could facilitate the regeneration and plantation of seedlings in disturbed area. In this study, Masson pine (Pinus massoniana) seedlings were used to bait the ECM fungal propagule bank buried in the soils collected from a manganese (Mn) mine wasteland and a non-polluted area in China. After 6-month growth, we found the seedlings grown in the Mn mine soil (Mn:3200 mg kg-1) did not display any toxicity symptoms. Based on morphotyping and ITS-PCR sequencing, we identified a total of 16 ECM fungal OTUs (operative taxonomic units) at 97% similarity threshold, among which 11 OTUs were recovered in the Mn mine soils and 14 in the non-polluted soil. Two soil types shared 9 OTUs and both of them were dominated by a Tylospora sp. Based on those soil propagule banks in Masson pine forests reported in previous, we speculated that some Atheliaceae species may be preferred in the soil propagule bank of some pine species, such as Masson pine. In addition, NMDS ordination displayed geographical position effects on soil propagule banks in five Masson pine forest from three sites at regional scale. In conclusion, Masson pine ECM seedlings could grow well in the Mn wasteland as a suitable tree species used for reforestation application in Mn mineland, in addition, Mn pollution did not alter the dominant ECM fungal species in the soil propagule banks.
Collapse
Affiliation(s)
- Jian Huang
- College of Forestry, Northwest A&F University, Yangling, China
| | - Qisheng Han
- College of Forestry, Northwest A&F University, Yangling, China
- Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang, China
| | - Junjian Li
- Institute of Loess Plateau, Shanxi University, Taiyuan, China
| |
Collapse
|