1
|
Tominaga T, Kaminaka H. In Vitro Hyphal Branching Assay Using Rhizophagus irregularis. Bio Protoc 2024; 14:e5054. [PMID: 39210954 PMCID: PMC11349495 DOI: 10.21769/bioprotoc.5054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/14/2024] [Accepted: 07/15/2024] [Indexed: 09/04/2024] Open
Abstract
Most terrestrial plants are associated with symbiotic Glomeromycotina fungi, commonly known as arbuscular mycorrhizal (AM) fungi. AM fungi increase plant biomass in phosphate-depleted conditions by allocating mineral nutrients to the host; therefore, host roots actively exude various specialized metabolites and orchestrate symbiotic partners. The hyphal branching activity induced by strigolactones (SLs), a category of plant hormones, was previously discovered using an in vitro assay system. For this bioassay, AM fungi of the Gigaspora genus (Gigasporaeae) are commonly used due to their linear hyphal elongation and because the simple branching pattern is convenient for microscopic observation. However, many researchers have also used Glomeraceae fungi, such as Rhizophagus species, as the symbiotic partner of host plants, although they often exhibit a complex hyphal branching pattern. Here, we describe a method to produce and quantify the hyphal branches of the popular model AM fungus Rhizophagus irregularis. In this system, R. irregularis spores are sandwiched between gels, and chemicals of interest are diffused from the surface of the gel to the germinating spores. This method enables the positive effect of a synthetic SL on R. irregularis hyphal branching to be reproduced. This method could thus be useful to quantify the physiological effects of synthesized chemicals or plant-derived specialized metabolites on R. irregularis. Key features • Development of an in vitro hyphal branching assay using germinating spores of Rhizophagus irregularis. • This in vitro assay system builds upon a method developed by Kameoka et al. [1] but modified to make it more applicable to hydrophilic compounds. • Optimized for R. irregularis to count the hyphal branches. • This bioassay requires at least 12 days to be done.
Collapse
Affiliation(s)
- Takaya Tominaga
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | - Hironori Kaminaka
- Faculty of Agriculture, Tottori University, Koyama Minami, Tottori, Japan
| |
Collapse
|
2
|
Yang WT, Li GD, Li JN, Yang CF, Zhang XM, Zhang AL. Comparative Analysis of Rhizosphere and Endophytic Microbial Communities Between Root Rot and Healthy Root of Psammosilene tunicoides. Curr Microbiol 2023; 80:215. [PMID: 37198328 DOI: 10.1007/s00284-023-03290-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 03/28/2023] [Indexed: 05/19/2023]
Abstract
The wild resources of Psammosilene tunicoides have decreased sharply because of the long-term mining and excavation, which has led to the increased demand for its artificial cultivation. However, root rot represents a significant obstacle leading to a poor quality and product of P. tunicoides. Previous reports have not focused on root rot in P. tunicoides. Therefore, this study explores the rhizospheric and root endophytic microbial community structure and composition of healthy and root rot P. tunicoides to understand the mechanism underlying root rot. The properties of the rhizosphere soil were assessed using physiochemical methods, and the bacterial and fungal populations were studied through amplicon sequencing of the 16S rRNA genes and ITS regions in the root and soil. Compared to healthy samples, the pH, hydrolysis N, available P, and available K were significantly decreased in the diseased samples while the organic matter and total organic carbon were significantly increased in the diseased samples. Redundancy analysis (RDA) showed that soil environmental factors are related to changes in the root and rhizosphere soil microbial community of P. tunicoides indicating that the physiochemical properties of soil affect plant health. Alpha diversity analysis showed that the microbial communities of healthy and diseased samples were similar. Some bacterial and fungal genera were significantly increased or decreased (P < 0.05) in diseased P. tunicoides, and certain microbial factors that antagonized root rot were further explored. This study provides an abundant microbial resource for future studies and contributes to improving soil quality and P. tunicoides agricultural production.
Collapse
Affiliation(s)
- Wen T Yang
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, Yunnan University of Chinese Medicine, Yuhua Road, Chenggong District, Kunming, 650500, Yunnan, People's Republic of China
| | - Guo D Li
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, Yunnan University of Chinese Medicine, Yuhua Road, Chenggong District, Kunming, 650500, Yunnan, People's Republic of China
| | - Jun N Li
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, Yunnan University of Chinese Medicine, Yuhua Road, Chenggong District, Kunming, 650500, Yunnan, People's Republic of China
| | - Cheng F Yang
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, Yunnan University of Chinese Medicine, Yuhua Road, Chenggong District, Kunming, 650500, Yunnan, People's Republic of China
| | - Xiao M Zhang
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, Yunnan University of Chinese Medicine, Yuhua Road, Chenggong District, Kunming, 650500, Yunnan, People's Republic of China
| | - Ai L Zhang
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, Yunnan University of Chinese Medicine, Yuhua Road, Chenggong District, Kunming, 650500, Yunnan, People's Republic of China.
| |
Collapse
|
3
|
Sahraei SE, Sánchez-García M, Montoliu-Nerin M, Manyara D, Bergin C, Rosendahl S, Rosling A. Whole genome analyses based on single, field collected spores of the arbuscular mycorrhizal fungus Funneliformis geosporum. MYCORRHIZA 2022; 32:361-371. [PMID: 36161535 PMCID: PMC9560946 DOI: 10.1007/s00572-022-01091-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/13/2022] [Indexed: 06/02/2023]
Abstract
Arbuscular mycorrhizal (AM) fungi are ubiquitous mutualistic symbionts of most terrestrial plants and many complete their lifecycles underground. Whole genome analysis of AM fungi has long been restricted to species and strains that can be maintained under controlled conditions that facilitate collection of biological samples. There is some evidence suggesting that AM fungi can adapt to culture resulting in phenotypic and possibly also genotypic changes in the fungi. In this study, we used field isolated spores of AM fungi and identified them as Funneliformis geosporum based on morphology and phylogenetic analyses. We separately assembled the genomes of two representative spores using DNA sequences of 19 and 22 individually amplified nuclei. The genomes were compared with previously published data from other members of Glomeraceae including two strains of F. mosseae. No significant differences were observed among the species in terms of gene content, while the single nucleotide polymorphism density was higher in the strains of F. geosporum than in the strains of F. mosseae. In this study, we demonstrate that it is possible to sequence and assemble genomes from AM fungal spores sampled in the field, which opens up the possibility to include uncultured AM fungi in phylogenomic and comparative genomic analysis and to study genomic variation in natural populations of these important plant symbionts.
Collapse
Affiliation(s)
| | - Marisol Sánchez-García
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
- Department of Forest Mycology and Plant Pathology, Uppsala Biocentre, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Merce Montoliu-Nerin
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - David Manyara
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Claudia Bergin
- Microbial Single Cell Genomics Facility, Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Søren Rosendahl
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Anna Rosling
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
4
|
Nasslahsen B, Prin Y, Ferhout H, Smouni A, Duponnois R. Management of Plant Beneficial Fungal Endophytes to Improve the Performance of Agroecological Practices. J Fungi (Basel) 2022; 8:1087. [PMID: 36294652 PMCID: PMC9604847 DOI: 10.3390/jof8101087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/08/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022] Open
Abstract
By dint of the development of agroecological practices and organic farming, stakeholders are becoming more and more aware of the importance of soil life and banning a growing number of pesticide molecules, promoting the use of plant bio-stimulants. To justify and promote the use of microbes in agroecological practices and sustainable agriculture, a number of functions or services often are invoked: (i) soil health, (ii) plant growth promotion, (iii) biocontrol, (iv) nutrient acquiring, (v) soil carbon storage, etc. In this paper, a review and a hierarchical classification of plant fungal partners according to their ecosystemic potential with regard to the available technologies aiming at field uses will be discussed with a particular focus on interactive microbial associations and functions such as Mycorrhiza Helper Bacteria (MHB) and nurse plants.
Collapse
Affiliation(s)
- Bouchra Nasslahsen
- Laboratoire des Symbioses Tropicales & Méditerranéennes, Institut de Recherche pour le Développement, Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Institut National de Recherche pour L’agriculture, L’alimentation et L’environnement, Institut Agro Montpellier, Université de Montpellier, 34398 Montpellier, France
- Société Agronutrition, 31390 Carbonne, France
- Laboratoire de Biotechnologie et Physiologie Végétales, Faculté des Sciences, Université Mohammed V de Rabat, Rabat 10000, Morocco
| | - Yves Prin
- Laboratoire des Symbioses Tropicales & Méditerranéennes, Institut de Recherche pour le Développement, Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Institut National de Recherche pour L’agriculture, L’alimentation et L’environnement, Institut Agro Montpellier, Université de Montpellier, 34398 Montpellier, France
| | | | - Abdelaziz Smouni
- Laboratoire de Biotechnologie et Physiologie Végétales, Faculté des Sciences, Université Mohammed V de Rabat, Rabat 10000, Morocco
- Laboratoire Mixte International—LMI AMIR, Rabat 10000, Morocco
| | - Robin Duponnois
- Laboratoire des Symbioses Tropicales & Méditerranéennes, Institut de Recherche pour le Développement, Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Institut National de Recherche pour L’agriculture, L’alimentation et L’environnement, Institut Agro Montpellier, Université de Montpellier, 34398 Montpellier, France
| |
Collapse
|
5
|
Campos-López A, Uribe-López JA, Cázares-Ordoñez V, Garibay-Orijel R, Valdez-Cruz NA, Trujillo-Roldán MA. Quercetin and 1-methyl-2-oxindole mimic root signaling that promotes spore germination and mycelial growth of Gigaspora margarita. MYCORRHIZA 2022; 32:177-191. [PMID: 35194685 DOI: 10.1007/s00572-022-01074-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 02/10/2022] [Indexed: 05/20/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) are obligate biotrophs, and the difficulty of growing them in asymbiotic or monoxenic (AMF + root) conditions limits research and their large-scale production as biofertilizer. We hypothesized that a combination of flavanols and strigolactones can mimic complex root signaling during the presymbiotic stages of AMF. We evaluated the germination, mycelial growth, branching, and auxiliary cell clusters formation by Gigaspora margarita during the presymbiotic stage in the presence (or absence) of transformed Cichorium intybus roots in basal culture medium enriched with glucose, a flavonol (quercetin or biochanin A) and a strigolactone analogue (1-Methyl-2-oxindole or indole propionic acid). With quercetin (5 µM), methyl oxindole (2.5 nM), and glucose (8.2 g/L) in the absence of roots, the presymbiotic mycelium of G. margarita grew without cytoplasmic retraction and produced auxiliary cells over 71 days similar to presymbiotic mycelium in the presence of roots but without glucose, strigolactones, and flavonols. Our results indicate that glucose and a specific combination of certain concentrations of a flavonol and a strigolactone might be used in asymbiotic or monoxenic liquid or semisolid cultures to stimulate AMF inoculant bioprocesses.
Collapse
Affiliation(s)
- Alberto Campos-López
- Programa de Investigación de Producción de Biomoléculas, Departamento de Biología Molecular and Biotecnología, Unidad de Bioprocesos, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México. AP. 70228, México D.F., CP. 04510. Av. Universidad 3000, Cd. Universitaria, Coyoacán, 04510, Ciudad de México, México
| | - Jaime A Uribe-López
- Programa de Investigación de Producción de Biomoléculas, Departamento de Biología Molecular and Biotecnología, Unidad de Bioprocesos, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México. AP. 70228, México D.F., CP. 04510. Av. Universidad 3000, Cd. Universitaria, Coyoacán, 04510, Ciudad de México, México
- Corporación Colombiana de Investigación Agropecuaria, AGROSAVIA. Km 14 Vía Mosquera - Bogotá, 250047, Bogotá, Colombia
| | - Verna Cázares-Ordoñez
- Programa de Investigación de Producción de Biomoléculas, Departamento de Biología Molecular and Biotecnología, Unidad de Bioprocesos, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México. AP. 70228, México D.F., CP. 04510. Av. Universidad 3000, Cd. Universitaria, Coyoacán, 04510, Ciudad de México, México
| | - Roberto Garibay-Orijel
- Instituto de Biología, Universidad Nacional Autónoma de México. Av. Universidad, 3000, Cd. Universitaria, Coyoacán, 04510, Ciudad de México, México
| | - Norma A Valdez-Cruz
- Programa de Investigación de Producción de Biomoléculas, Departamento de Biología Molecular and Biotecnología, Unidad de Bioprocesos, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México. AP. 70228, México D.F., CP. 04510. Av. Universidad 3000, Cd. Universitaria, Coyoacán, 04510, Ciudad de México, México
| | - Mauricio A Trujillo-Roldán
- Programa de Investigación de Producción de Biomoléculas, Departamento de Biología Molecular and Biotecnología, Unidad de Bioprocesos, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México. AP. 70228, México D.F., CP. 04510. Av. Universidad 3000, Cd. Universitaria, Coyoacán, 04510, Ciudad de México, México.
| |
Collapse
|
6
|
Floc’h JB, Hamel C, Laterrière M, Tidemann B, St-Arnaud M, Hijri M. Long-Term Persistence of Arbuscular Mycorrhizal Fungi in the Rhizosphere and Bulk Soils of Non-host Brassica napus and Their Networks of Co-occurring Microbes. FRONTIERS IN PLANT SCIENCE 2022; 13:828145. [PMID: 35283923 PMCID: PMC8914178 DOI: 10.3389/fpls.2022.828145] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/25/2022] [Indexed: 05/25/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) are obligate plant symbionts that improve the nutrition and health of their host. Most, but not all the crops form a symbiosis with AMF. It is the case for canola (Brassica napus), an important crop in the Canadian Prairies that is known to not form this association. From 2008 to 2018, an experiment was replicated at three locations of the Canadian Prairies and it was used to assess the impact of canola on the community of AMF naturally occurring in three cropping systems, canola monoculture, or canola in two different rotation systems (2-years, canola-wheat and 3-years, barley-pea-canola). We sampled canola rhizosphere and bulk soils to: (i) determine diversity and community structure of AMF, we expected that canola will negatively impact AMF communities in function of its frequency in crop rotations and (ii) wanted to assess how these AMF communities interact with other fungi and bacteria. We detected 49 AMF amplicon sequence variants (ASVs) in canola rhizosphere and bulk soils, confirming the persistence of a diversified AMF community in canola-planted soil, even after 10 years of canola monoculture, which was unexpected considering that canola is among non-mycorrhizal plants. Network analysis revealed a broad range of potential interactions between canola-associated AMF and some fungal and bacterial taxa. We report for the first time that two AMF, Funneliformis mosseae and Rhizophagus iranicus, shared their bacterial cohort almost entirely in bulk soil. Our results suggest the existence of non-species-specific AMF-bacteria or AMF-fungi relationships that could benefit AMF in absence of host plants. The persistence of an AMF community in canola rhizosphere and bulk soils brings a new light on AMF ecology and leads to new perspectives for further studies about AMF and soil microbes interactions and AMF subsistence without mycotrophic host plants.
Collapse
Affiliation(s)
- Jean-Baptiste Floc’h
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, Montréal, QC, Canada
- Quebec Research and Development Centre, Agriculture and Agri-Food Canada, Québec, QC, Canada
| | - Chantal Hamel
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, Montréal, QC, Canada
- Quebec Research and Development Centre, Agriculture and Agri-Food Canada, Québec, QC, Canada
| | - Mario Laterrière
- Quebec Research and Development Centre, Agriculture and Agri-Food Canada, Québec, QC, Canada
| | - Breanne Tidemann
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, AB, Canada
| | - Marc St-Arnaud
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, Montréal, QC, Canada
| | - Mohamed Hijri
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, Montréal, QC, Canada
- African Genome Center, Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
| |
Collapse
|
7
|
Sun X, Feng J, Shi J. Stimulation of Hyphal Ramification and Sporulation in Funneliformis mosseae by Root Extracts Is Host Phosphorous Status-Dependent. J Fungi (Basel) 2022; 8:jof8020181. [PMID: 35205935 PMCID: PMC8876493 DOI: 10.3390/jof8020181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/04/2022] [Accepted: 02/10/2022] [Indexed: 02/01/2023] Open
Abstract
A simulation of the environment inhabited by arbuscular mycorrhizal (AM) fungi could provide clues as to how to cultivate these obligate biotrophs axenically. Host intraradical and rhizospheric environments, root extracts and exudates in particular, would be crucial for AM fungi to complete their life cycles. In this study, we analyzed and compared the effects of root exudates (RE) and root extracts (RET) of white clover (Trifolium repens) on the asymbiotic growth of the AM fungus Funneliformis mosseae in vitro, and furtherly analyzed the chemical components of different RET with the LC-MS/MS technique in order to establish an asymbiotic cultivation system for this important and hardly domesticated AM fungus. RET is superior to RE in stimulating spore germination, hyphal elongation and branching, and secondary spore formation (p < 0.05). RET-induced effects were dependent on phosphate supplement levels, and the RET obtained following the treatment with low levels of phosphorus significantly promoted hyphal growth and sporulation (p < 0.05). A few newly formed secondary spores showed limited colonization of white clover roots. The low phosphorus-induced effects could be ascribed to the metabolic adjustment (mainly lipids and organic acids) of white clover roots under low phosphate conditions. Our findings demonstrate that the low phosphate-induced RET boosts the asymbiotic growth of AM fungus, and thus offers an alternative way to fulfill the life cycle of AM fungi asymbiotically.
Collapse
Affiliation(s)
- Xueguang Sun
- Institute for Forest Resources & Environment of Guizhou, Guizhou University, Guiyang 550025, China;
- Key Laboratory of Forest Cultivation in Plateau Moutain of Guizhou Province, Guizhou University, Guiyang 550025, China
- College of Forestry, Guizhou University, Guiyang 550025, China
- Correspondence:
| | - Jingwei Feng
- Institute for Forest Resources & Environment of Guizhou, Guizhou University, Guiyang 550025, China;
- Key Laboratory of Forest Cultivation in Plateau Moutain of Guizhou Province, Guizhou University, Guiyang 550025, China
- College of Forestry, Guizhou University, Guiyang 550025, China
| | - Jing Shi
- School of Sociology, Guizhou Minzu University, Guiyang 550025, China;
| |
Collapse
|
8
|
Abstract
Rhizophagus irregularis is one of the most extensively studied arbuscular mycorrhizal fungi (AMF) that forms symbioses with and improves the performance of many crops. Lack of transformation protocol for R. irregularis renders it challenging to investigate molecular mechanisms that shape the physiology and interactions of this AMF with plants. Here, we used all published genomics, transcriptomics, and metabolomics resources to gain insights into the metabolic functionalities of R. irregularis by reconstructing its high-quality genome-scale metabolic network that considers enzyme constraints. Extensive validation tests with the enzyme-constrained metabolic model demonstrated that it can be used to (i) accurately predict increased growth of R. irregularis on myristate with minimal medium; (ii) integrate enzyme abundances and carbon source concentrations that yield growth predictions with high and significant Spearman correlation (ρS = 0.74) to measured hyphal dry weight; and (iii) simulate growth rate increases with tighter association of this AMF with the host plant across three fungal structures. Based on the validated model and system-level analyses that integrate data from transcriptomics studies, we predicted that differences in flux distributions between intraradical mycelium and arbuscles are linked to changes in amino acid and cofactor biosynthesis. Therefore, our results demonstrated that the enzyme-constrained metabolic model can be employed to pinpoint mechanisms driving developmental and physiological responses of R. irregularis to different environmental cues. In conclusion, this model can serve as a template for other AMF and paves the way to identify metabolic engineering strategies to modulate fungal metabolic traits that directly affect plant performance. IMPORTANCE Mounting evidence points to the benefits of the symbiotic interactions between the arbuscular mycorrhiza fungus Rhizophagus irregularis and crops; however, the molecular mechanisms underlying the physiological responses of this fungus to different host plants and environments remain largely unknown. We present a manually curated, enzyme-constrained, genome-scale metabolic model of R. irregularis that can accurately predict experimentally observed phenotypes. We show that this high-quality model provides an entry point into better understanding the metabolic and physiological responses of this fungus to changing environments due to the availability of different nutrients. The model can be used to design metabolic engineering strategies to tailor R. irregularis metabolism toward improving the performance of host plants.
Collapse
|