1
|
Guo Y, Bi Y, Li P, Liu T, Xiao L, Christie P. Arbuscular mycorrhizal fungal inoculum and N 2-fixing plants in ecological reclamation of arid mining areas: nutrient limitation of the moss biocrust microbiome. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:60503-60519. [PMID: 39384675 DOI: 10.1007/s11356-024-35041-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 09/16/2024] [Indexed: 10/11/2024]
Abstract
Ecoenzymatic stoichiometry can reflect the ability of soil microorganisms to acquire energy and nutrients and to determine their response to environmental stresses. However, the drivers of metabolic limitation of the moss biocrust microbiome during the ecological restoration of coal mining areas are poorly understood. Therefore, in this study, enzymatic stoichiometry modeling and high-throughput sequencing were used to simultaneously determine moss biocrust microbial metabolic limitation and its relationship with moss biocrust nutrients and arbuscular mycorrhizal fungal (AMF) diversity in five arid and semi-arid revegetation types (Hippophae rhamnoides, Amorpha fruticosa, Cerasus humilis, Cerasus szechuanica, and Xanthoceras sorbifolium) and two microbial treatments (AMF-inoculated and uninoculated). The activities of moss biocrust carbon (C)-, nitrogen (N)-, and phosphorus (P)-acquiring enzymes and organic carbon fractions in the AMF-inoculated treatment were significantly higher than those in the uninoculated control. Moss biocrust microbial community C and P limitations were observed in the five revegetation types, with lower limitation in general in the AMF-inoculated treatment. Dinitrogen-fixing plants (Amorpha fruticosa and Hippophae rhamnoides) significantly mitigated moss biocrust microbiome C and P limitation, especially in the AMF-inoculated treatment. Furthermore, partial least squares path modeling (PLS-PM) shows that moss biocrust organic carbon fractions (- 0.73 and - 0.81 of the total effects, respectively) and AMF diversity (- 0.73 and - 0.81 of the total effects) had negative effect on microbial C and P limitation, suggesting that more efficient active nutrients and AMF diversity are important factors alleviating limitation of moss biocrust microbial metabolism. This indicates that moss biocrust microbial communities under N2-fixing species with AMF inoculation were more stable under environmental stress; thus, AMF inoculation and/or N2-fixing plants may be recommended as preferred options for the ecological restoration of arid mining areas.
Collapse
Affiliation(s)
- Yun Guo
- State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology (Beijing), Beijing, 100083, China
| | - Yinli Bi
- State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology (Beijing), Beijing, 100083, China.
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an, 710054, China.
- Institute of Ecological Environment Restoration in Mine Areas of West China, Xi'an University of Science and Technology, Xi'an, 710054, China.
| | - Puning Li
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an, 710054, China
- Institute of Ecological Environment Restoration in Mine Areas of West China, Xi'an University of Science and Technology, Xi'an, 710054, China
| | - Tao Liu
- State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology (Beijing), Beijing, 100083, China
| | - Li Xiao
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an, 710054, China
- Institute of Ecological Environment Restoration in Mine Areas of West China, Xi'an University of Science and Technology, Xi'an, 710054, China
| | - Peter Christie
- State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology (Beijing), Beijing, 100083, China
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an, 710054, China
- Institute of Ecological Environment Restoration in Mine Areas of West China, Xi'an University of Science and Technology, Xi'an, 710054, China
| |
Collapse
|
2
|
Han Q, Li Z, Jiang Y, Zhang Z, Qin Y, Liu Z, Liu G. Effects of grassland degradation on diversity of arbuscular mycorrhizal fungi of a pioneer plant. Int Microbiol 2024:10.1007/s10123-024-00564-0. [PMID: 39129035 DOI: 10.1007/s10123-024-00564-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/19/2024] [Accepted: 07/31/2024] [Indexed: 08/13/2024]
Abstract
Arbuscular mycorrhizal fungi (AMF) are obligate symbionts that engage in crucial interactions with plants, playing a vital role in grassland ecology. Our study focuses on the pioneer plant Agropyron cristatum, and we collected soil samples from four degraded grasslands in Yudaokou to investigate the response of community composition to the succession of degraded grasslands. We measured the vegetation status, soil physical and chemical properties, AMF colonization, and spore density in different degraded grasslands. High-throughput sequencing was employed to analyze AMF in soil samples. Correlations among community composition, soil characteristics, and plant factors were studied using principal component and regression analyses. The distribution of AMF in grasslands exhibited variation with different degrees of degradation, with Glomus, Scutellospora, and Diversispora being the dominant genera. The abundance of dominant genera in AMF also varied, showing a gradual increase in the relative abundance of the genus Diversispora with higher degradation levels. AMF diversity decreased from 27.7% to 12.4% throughout the degradation process. Among 180 samples of Agropyron cristatum plants, AMF hyphae and vesicles displayed the highest infection status in non-degraded grasslands and the lowest in severely degraded ones. Peak AMF spore production occurred in August, with maximum values in the 0-10-cm soil layer, and the highest spore densities were found in lightly degraded grasslands. Apart from pH, soil factors exhibited a positive correlation with AMF infection during grassland degradation. Furthermore, changes in AMF community composition were jointly driven by vegetation and soil characteristics, with vegetation coverage and soil organic carbon significantly impacting AMF distribution. Significant differences in AMF variables (spore number and diversity index) were also observed at different soil depths. Grassland successional degradation significantly influences AMF community structure and composition. Our future focus will be on understanding response mechanisms and implementing improvement methods for AMF during grassland degradation and subsequent restoration efforts.
Collapse
Affiliation(s)
- Qiqi Han
- School of Life Sciences, Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Engineering Laboratory of Microbial Breeding and Preservation of Hebei Province, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071002, People's Republic of China
| | - Zichao Li
- School of Life Sciences, Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Engineering Laboratory of Microbial Breeding and Preservation of Hebei Province, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071002, People's Republic of China
| | - Yingjie Jiang
- School of Life Sciences, Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Engineering Laboratory of Microbial Breeding and Preservation of Hebei Province, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071002, People's Republic of China
| | - Zhuo Zhang
- School of Life Sciences, Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Engineering Laboratory of Microbial Breeding and Preservation of Hebei Province, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071002, People's Republic of China
| | - Yuao Qin
- School of Life Sciences, Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Engineering Laboratory of Microbial Breeding and Preservation of Hebei Province, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071002, People's Republic of China
| | - Zhongkuan Liu
- Institute of Agro-Resources and Environment, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050051, China.
| | - Guixia Liu
- School of Life Sciences, Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Engineering Laboratory of Microbial Breeding and Preservation of Hebei Province, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071002, People's Republic of China.
| |
Collapse
|
3
|
Robin-Soriano A, Maurice K, Boivin S, Bourceret A, Laurent-Webb L, Youssef S, Nespoulous J, Boussière I, Berder J, Damasio C, Vincent B, Boukcim H, Ducousso M, Gros-Balthazard M. Absence of Gigasporales and rarity of spores in a hot desert revealed by a multimethod approach. MYCORRHIZA 2024; 34:251-270. [PMID: 39023766 DOI: 10.1007/s00572-024-01160-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/29/2024] [Indexed: 07/20/2024]
Abstract
Hot deserts impose extreme conditions on plants growing in arid soils. Deserts are expanding due to climate change, thereby increasing the vulnerability of ecosystems and the need to preserve them. Arbuscular mycorrhizal fungi (AMF) improve plant fitness by enhancing plant water/nutrient uptake and stress tolerance. However, few studies have focused on AMF diversity and community composition in deserts, and the soil and land use parameters affecting them. This study aimed to comprehensively describe AMF ecological features in a 5,000 km2 arid hyperalkaline region in AlUla, Saudi Arabia. We used a multimethod approach to analyse over 1,000 soil and 300 plant root samples of various species encompassing agricultural, old agricultural, urban and natural ecosystems. Our method involved metabarcoding using 18S and ITS2 markers, histological techniques for direct AMF colonization observation and soil spore extraction and observation. Our findings revealed a predominance of AMF taxa assigned to Glomeraceae, regardless of the local conditions, and an almost complete absence of Gigasporales taxa. Land use had little effect on the AMF richness, diversity and community composition, while soil texture, pH and substantial unexplained stochastic variance drove these compositions in AlUla soils. Mycorrhization was frequently observed in the studied plant species, even in usually non-mycorrhizal plant taxa (e.g. Amaranthaceae, Urticaceae). Date palms and Citrus trees, representing two major crops in the region, however, displayed a very low mycorrhizal frequency and intensity. AlUla soils had a very low concentration of spores, which were mostly small. This study generated new insight on AMF and specific behavioral features of these fungi in arid environments.
Collapse
Affiliation(s)
| | - Kenji Maurice
- AGAP, Univ Montpellier, CIRAD, INRAE, Montpellier, France
| | - Stéphane Boivin
- Department of Research and Development, VALORHIZ, Montferrier sur Lez, France
| | - Amelia Bourceret
- ISYEB, Muséum national d'Histoire naturelle, CNRS, EPHE-PSL, Sorbonne Université, Paris, France
| | - Liam Laurent-Webb
- ISYEB, Muséum national d'Histoire naturelle, CNRS, EPHE-PSL, Sorbonne Université, Paris, France
| | - Sami Youssef
- Department of Research and Development, VALORHIZ, Montferrier sur Lez, France
| | - Jérôme Nespoulous
- Department of Research and Development, VALORHIZ, Montferrier sur Lez, France
| | - Inès Boussière
- AGAP, Univ Montpellier, CIRAD, INRAE, Montpellier, France
| | - Julie Berder
- Department of Research and Development, VALORHIZ, Montferrier sur Lez, France
| | | | - Bryan Vincent
- AGAP, Univ Montpellier, CIRAD, INRAE, Montpellier, France
| | - Hassan Boukcim
- Department of Research and Development, VALORHIZ, Montferrier sur Lez, France
- ASARI, Mohammed VI Polytechnic University, Laâyoune, Morocco
| | - Marc Ducousso
- AGAP, Univ Montpellier, CIRAD, INRAE, Montpellier, France
| | | |
Collapse
|
4
|
Shaaban M. Microbial pathways of nitrous oxide emissions and mitigation approaches in drylands. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120393. [PMID: 38364533 DOI: 10.1016/j.jenvman.2024.120393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/07/2024] [Accepted: 02/11/2024] [Indexed: 02/18/2024]
Abstract
Drylands refer to water scarcity and low nutrient levels, and their plant and biocrust distribution is highly diverse, making the microbial processes that shape dryland functionality particularly unique compared to other ecosystems. Drylands are constraint for sustainable agriculture and risk for food security, and expected to increase over time. Nitrous oxide (N2O), a potent greenhouse gas with ozone reduction potential, is significantly influenced by microbial communities in drylands. However, our understanding of the biological mechanisms and processes behind N2O emissions in these areas is limited, despite the fact that they highly account for total gaseous nitrogen (N) emissions on Earth. This review aims to illustrate the important biological pathways and microbial players that regulate N2O emissions in drylands, and explores how these pathways might be influenced by global changes for example N deposition, extreme weather events, and climate warming. Additionally, we propose a theoretical framework for manipulating the dryland microbial community to effectively reduce N2O emissions using evolving techniques that offer inordinate specificity and efficacy. By combining expertise from different disciplines, these exertions will facilitate the advancement of innovative and environmentally friendly microbiome-based solutions for future climate change vindication approaches.
Collapse
Affiliation(s)
- Muhammad Shaaban
- College of Agriculture, Henan University of Science and Technology, Luoyang, China.
| |
Collapse
|
5
|
Alrajhi K, Bibi S, Abu-Dieyeh M. Diversity, Distribution, and applications of arbuscular mycorrhizal fungi in the Arabian Peninsula. Saudi J Biol Sci 2024; 31:103911. [PMID: 38268781 PMCID: PMC10805673 DOI: 10.1016/j.sjbs.2023.103911] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 12/06/2023] [Accepted: 12/15/2023] [Indexed: 01/26/2024] Open
Abstract
Investigations of arbuscular mycorrhizal fungi (AMF) received extreme interests among scientist including agronomists and environmental scientists. This interest is linked to advantages provided by AMF in enhancing the nutrients of their hosts via improving photosynthetic pigments and antioxidant production. Further, it also positively alters the production of plant hormones. AMF through its associations with plants obtain carbon while in exchange, provide nutrients. AMF have been reported to improve the growth of Tageteserecta, Zea mays, Panicum turgidum, Arachis hypogaea, Triticum aestivum and others. This review further documented the occurrence, diversity, distribution, and agricultural applications of AMF species reported in the Arabian Peninsula. Overall, we documented 20 genera and 61 species of Glomeromycota in the Arabian Peninsula representing 46.51 % of genera and 17.88 % of species of AMF known so far. Funneliformis mosseae has found to be the most widely distributed species followed by Claroideoglomus etuicatum. There are 35 research articles focused on Arabian Peninsula where the stress conditions like drought, salinity and pollutants are prevailed. Only one group studied the influence of AMF on disease resistance, while salinity, drought, and cadmium stresses were investigated in 18, 6, and 4 investigations, respectively. The genus Glomus was the focus of most studies. The conducted research in the Arabian Peninsula is not enough to understand AMF taxonomy and their functional role in plant growth. Expanding the scope of detection of AMF, especially in coastal areas is essential. Future studies on biodiversity of AMF are essential.
Collapse
Affiliation(s)
- Khazna Alrajhi
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Shazia Bibi
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Mohammed Abu-Dieyeh
- Biological Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar
| |
Collapse
|
6
|
Ben Abdallah M, Chamkha M, Karray F, Sayadi S. Microbial diversity in polyextreme salt flats and their potential applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:11371-11405. [PMID: 38180652 DOI: 10.1007/s11356-023-31644-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/17/2023] [Indexed: 01/06/2024]
Abstract
Recent geological, hydrochemical, and mineralogical studies performed on hypersaline salt flats have given insights into similar geo-morphologic features on Mars. These salt-encrusted depressions are widely spread across the Earth, where they are characterized by high salt concentrations, intense UV radiation, high evaporation, and low precipitation. Their surfaces are completely dry in summer; intermittent flooding occurs in winter turning them into transitory hypersaline lakes. Thanks to new approaches such as culture-dependent, culture-independent, and metagenomic-based methods, it is important to study microbial life under polyextreme conditions and understand what lives in these dynamic ecosystems and how they function. Regarding these particular features, new halophilic microorganisms have been isolated from some salt flats and identified as excellent producers of primary and secondary metabolites and granules such as halocins, enzymes, carotenoids, polyhydroxyalkanoates, and exopolysaccharides. Additionally, halophilic microorganisms are implemented in heavy metal bioremediation and hypersaline wastewater treatment. As a result, there is a growing interest in the distribution of halophilic microorganisms around the world that can be looked upon as good models to develop sustainable biotechnological processes for all fields. This review provides insights into diversity, ecology, metabolism, and genomics of halophiles in hypersaline salt flats worldwide as well as their potential uses in biotechnology.
Collapse
Affiliation(s)
- Manel Ben Abdallah
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, BP 1177, 3018, Sfax, Tunisia.
| | - Mohamed Chamkha
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, BP 1177, 3018, Sfax, Tunisia
| | - Fatma Karray
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, BP 1177, 3018, Sfax, Tunisia
| | - Sami Sayadi
- Biotechnology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar
| |
Collapse
|
7
|
Changes of Arbuscular Mycorrhizal Fungal Community and Glomalin in the Rhizosphere along the Distribution Gradient of Zonal Stipa Populations across the Arid and Semiarid Steppe. Microbiol Spectr 2022; 10:e0148922. [PMID: 36214678 PMCID: PMC9602637 DOI: 10.1128/spectrum.01489-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Arbuscular mycorrhizal fungi (AMF) have been reported to have a wide distribution in terrestrial ecosystems and to play a vital role in ecosystem functioning and symbiosis with Stipa grasses. However, exactly how AMF communities in the rhizosphere change and are distributed along different Stipa population with substituted distribution and their relationships remain unclear. Here, the changes and distribution of the rhizosphere AMF communities and their associations between hosts and the dynamic differences in the glomalin-related soil protein (GRSP) in the rhizosphere soil of seven Stipa species with spatial substitution distribution characteristics in arid and semiarid grasslands were investigated. Along with the substituted distribution of the Stipa populations, the community structures, taxa, species numbers, and alpha diversity index values of AMF in the rhizosphere changed. Some AMF taxa appeared only in certain Stipa species, but there was no obvious AMF taxon turnover. When the Stipa baicalensis population was replaced by the Stipa gobica population, the GRSP tended to decline, whereas the carbon contribution of the GRSP tended to increase. Stipa grandis and Stipa krylovii had a great degree of network modularity of the rhizosphere AMF community and exhibited a simple and unstable network structure, while the networks of Stipa breviflora were complex, compact, and highly stable. Furthermore, with the succession of zonal populations, the plant species, vegetation coverage, and climate gradient facilitated the differentiation of AMF community structures and quantities in the rhizospheres of different Stipa species. These findings present novel insights into ecosystem functioning and dynamics correlated with changing environments. IMPORTANCE This study fills a gap in our understanding of the soil arbuscular mycorrhizal fungal community distribution, community composition changes, and diversity of Stipa species along different Stipa population substitution distributions and of their adaptive relationships; furthermore, the differences in the glomalin-related soil protein (GRSP) contents in the rhizospheres of different Stipa species and GRSP's contribution to the grassland organic carbon pool were investigated. These findings provide a theoretical basis for the protection and utilization of regional biodiversity resources and sustainable ecosystem development.
Collapse
|