1
|
Quan L, Shi L, Zhang S, Yao Q, Yang Q, Zhu Y, Liu Y, Lian C, Chen Y, Shen Z, Duan K, Xia Y. Ectomycorrhizal fungi, two species of Laccaria, differentially block the migration and accumulation of cadmium and copper in Pinus densiflora. CHEMOSPHERE 2023; 334:138857. [PMID: 37187383 DOI: 10.1016/j.chemosphere.2023.138857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/09/2023] [Accepted: 05/04/2023] [Indexed: 05/17/2023]
Abstract
The root tips of host plant species can establish ectomycorrhizae with their fungal partners, thereby altering the responses of the host plants to heavy metal (HM) toxicity. Here, two species of Laccaria, L. bicolor and L. japonica, were investigated in symbiosis with Pinus densiflora to study their potential for promotion of phytoremediation of HM-contaminated soils in pot experiments. The results showed that L. japonica had significantly higher dry biomass than L. bicolor in mycelia grown on modified Melin-Norkrans medium containing elevated levels of cadmium (Cd) or copper (Cu). Meanwhile, the accumulations of Cd or Cu in L. bicolor mycelia were much higher than that in L. japonica at the same level of Cd or Cu. Therefore, L. japonica displayed a stronger tolerance to HM toxicity than L. bicolor in situ. Compared with non-mycorrhizal P. densiflora seedlings, inoculation with two Laccaria species significantly increased the growth of P. densiflora seedlings in absence or presence of HM. The mantle of host roots blocked the uptake and migration of HM, which led to the decrease of Cd and Cu accumulation in the P. densiflora shoots and roots, except for the root Cd accumulation of L. bicolor-mycorrhizal plants when 25 mg kg-1 Cd exposure. Furthermore, HM distribution in mycelia showed Cd and Cu are mainly retained in the cell walls of mycelia. These results provide strong evidence that the two species of Laccaria in this system may have different strategies to assist host tree against HM toxicity.
Collapse
Affiliation(s)
- Lingtong Quan
- College of Life Sciences, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, Nanjing Agricultural University, Nanjing, 210095, China
| | - Liang Shi
- College of Life Sciences, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shijie Zhang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, 210014, China
| | - Qian Yao
- China Tobacco Henan Industrial Co., Ltd, Zhengzhou, 450000, China
| | - Qi Yang
- China Tobacco Henan Industrial Co., Ltd, Zhengzhou, 450000, China
| | - Yongwei Zhu
- College of Life Sciences, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yanli Liu
- Jinpu Landscape Architecture Limited Company, Nanjing, 211100, China
| | - Chunlan Lian
- Asian Research Center for Bioresource and Environmental Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Midori-cho, Nishitokyo, Tokyo, 188-0002, Japan
| | - Yahua Chen
- College of Life Sciences, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhenguo Shen
- College of Life Sciences, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Kun Duan
- China Tobacco Henan Industrial Co., Ltd, Zhengzhou, 450000, China.
| | - Yan Xia
- College of Life Sciences, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|