1
|
Tanideh N, Borzooeian G, Lotfi M, Sani M, Irajie C, Ghaemmaghami P, Koohi-Hosseinabadi O, Tanideh R, Hashempour Sadeghian M, Borzooeian Z, Iraji A. Novel strategy of cartilage repairing via application of P. atlantica with stem cells and collagen. Artif Organs 2021; 45:1405-1421. [PMID: 34152615 DOI: 10.1111/aor.14026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/12/2021] [Accepted: 06/14/2021] [Indexed: 11/30/2022]
Abstract
Osteoarthritis (OA) is an inflammatory joint condition, still lacking effective treatments. Some factors consider as the main causes of OA, including biochemical, mechanical, and genetic factors. The growth of studies confirmed that modern medicine in combination with folk medicine regarding the arrival of reliable, efficient, and safe therapeutic products against OA. In the present study, the effects of various single and combinatorial treatments of knee articular cartilage, including stem cells, collagen, and P. atlantica hydroalcoholic leaves extract were investigated in a rat-induced OA model. On week 12 after OA confirmation, histopathology and radiography assessments were evaluated and the serum and synovial fluid levels of TAC, TNF-α, PEG2, MPO, MMP3, MMP13, and MDA were also measured. Combination therapy of OA-induced rats with hydroalcoholic extract of P. atlantic leaves, stem cells, and collagen considerably increased the efficacy of treatment as evidenced by increasing the TAC and lowering TNF-α, MPO, MMP3, and MMP13 compared to control group and even groups received single therapy. This is in agreement with a high amount of total phenolic compounds and antioxidant capacities of the hydroalcoholic extract of P. atlantic leaves. It is concluded that multifunctional agents targeting the pathophysiology of OA has exhibited significant therapeutic effects against OA.
Collapse
Affiliation(s)
- Nader Tanideh
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology, Shiraz Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Giti Borzooeian
- Department of Biology, Payam Noor University of Isfahan, Isfahan, Iran
| | - Mehrzad Lotfi
- Department of Radiology, Namazee Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahsa Sani
- Department of Tissue Engineering, School of Advanced Medical Science and Technology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Cambyz Irajie
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Parvin Ghaemmaghami
- School of Nursing and Midwifery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Omid Koohi-Hosseinabadi
- Central Research Laboratory, Shiraz University of Medical Sciences, Shiraz, Iran
- Laparoscopy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Romina Tanideh
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Zahra Borzooeian
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA, USA
| | - Aida Iraji
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Central Research Laboratory, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
2
|
Mehrabani D, Khodakaram-Tafti A, Shaterzadeh-Yazdi H, Zamiri B, Omidi M. Comparison of the regenerative effect of adipose-derived stem cells, fibrin glue scaffold, and autologous bone graft in experimental mandibular defect in rabbit. Dent Traumatol 2018; 34:413-420. [PMID: 30187637 DOI: 10.1111/edt.12435] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 08/30/2018] [Accepted: 08/30/2018] [Indexed: 01/13/2023]
Abstract
BACKGROUND/AIMS One of the main concerns for maxillofacial and orthopedic surgeons is finding a method to improve regeneration of large craniofacial bone defects. The aim of this study was to investigate the healing and regenerative effects of fibrin glue associated with adipose-derived stem cells (ADSCs) and fibrin glue scaffold alone with autologous bone grafts in experimental mandibular defects of the rabbit. METHODS Bilateral uni-cortical osteotomies were performed in the mandible of 20 male Dutch rabbits. The animals were randomly divided into 2 equal groups. In one group, the defect on the right side was treated by fibrin glue associated with ADSCs and the defect on the other side remained as the control. In another group, the defect on the right side was treated with fibrin glue and on the left side with autologous bone graft. After 28 and 56 days, five rabbits from each group were evaluated by computed tomography (CT) and histopathological examinations. RESULTS Coronal CT showed a remarkable reconstruction of cortical bone in the fibrin glue associated with ADSCs group at 28 and 56 days post-surgery. Histopathologically, new cortical bony bridge formation was seen increasingly in the fibrin glue, fibrin glue associated with ADSCs, and autologous bone graft groups after 28 days. Statistical analysis of the thickness of new cortical bone in the treatment versus control groups showed a significant difference between fibrin glue alone and fibrin glue associated with ADSCs groups (P = 0.02). No significant difference was found between the fibrin glue associated with ADSCs and the autologous bone graft groups (P > 0.05). CONCLUSIONS The healing process had a significant increase in the thickness of new cortical bone when fibrin glue scaffold associated with ADSCs was used.
Collapse
Affiliation(s)
- Davood Mehrabani
- Stem Cell and Transgenic Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | | - Barbad Zamiri
- Department of Craniomaxillofacial Surgery, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahsa Omidi
- Department of Oral and Maxillofacial Radiology and Dentistry, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|