1
|
Cunningham ME, Kelly NH, Rawlins BA, Boachie-Adjei O, van der Meulen MCH, Hidaka C. Lumbar spine intervertebral disc gene delivery of BMPs induces anterior spine fusion in lewis rats. Sci Rep 2022; 12:16847. [PMID: 36207369 PMCID: PMC9547004 DOI: 10.1038/s41598-022-21208-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/23/2022] [Indexed: 11/09/2022] Open
Abstract
Minimally invasive techniques and biological autograft alternatives such as the bone morphogenetic proteins (BMPs) can reduce morbidity associated with spinal fusions. This study was a proof-of-concept for gene-therapy-mediated anterior spine fusion that could be adapted to percutaneous technique for clinical use. Isogeneic bone marrow stromal cells genetically programmed to express b-galactosidase (LACZ, a marker gene), BMP2, BMP7, a mixture of BMP2 and BMP7 infected cells (homodimers, HM), or BMP2/7 heterodimers (HT) were implanted into the discs between lumbar vertebrae 4 and 5 (L4/5) and L5/6 of male Lewis rats. Spine stiffening was monitored at 4, 8 and 12 weeks using noninvasive-induced angular displacement (NIAD) testing. At 12 weeks isolated spines were assessed for fusion and bone formation by palpation, biomechanical testing [four-point bending stiffness, moment to failure in extension, and in vitro angular displacement (IVAD)], faxitron x-rays, microCT, and histology. Progressive loss of NIAD occurred in only the HT group (p < 0.001), and biomechanical tests correlated with the NIAD results. Significant fusion occurred only in the HT group (94% of animals with one or both levels) as assessed by palpation (p < 0.001), which predicted HT bone production assessed by faxitron (p ≤ 0.001) or microCT (p < 0.023). Intervertebral bridging bone was consistently observed only in HT-treated specimens. Induced bone was located anterior and lateral to the disc space, with no bone formation noted within the disc. Percutaneous anterior spine fusions may be possible clinically, but induction of bone inside the disc space remains a challenge.
Collapse
Affiliation(s)
- Matthew E Cunningham
- HSS Research Institute, Hospital for Special Surgery, 515 E 71st Street, New York, NY, 10021, USA. .,Weill Cornell Medical College, 1300 York Avenue, Lc501, New York, NY, 10065, USA. .,Hospital for Special Surgery, 535 East 70th Street, New York, NY, 10021, USA.
| | - Natalie H Kelly
- HSS Research Institute, Hospital for Special Surgery, 515 E 71st Street, New York, NY, 10021, USA
| | - Bernard A Rawlins
- HSS Research Institute, Hospital for Special Surgery, 515 E 71st Street, New York, NY, 10021, USA.,Weill Cornell Medical College, 1300 York Avenue, Lc501, New York, NY, 10065, USA.,Hospital for Special Surgery, 535 East 70th Street, New York, NY, 10021, USA
| | - Oheneba Boachie-Adjei
- HSS Research Institute, Hospital for Special Surgery, 515 E 71st Street, New York, NY, 10021, USA.,Weill Cornell Medical College, 1300 York Avenue, Lc501, New York, NY, 10065, USA
| | - Marjolein C H van der Meulen
- HSS Research Institute, Hospital for Special Surgery, 515 E 71st Street, New York, NY, 10021, USA.,Meinig School of Biomedical Engineering and Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Chisa Hidaka
- HSS Research Institute, Hospital for Special Surgery, 515 E 71st Street, New York, NY, 10021, USA
| |
Collapse
|
2
|
Sosakul T, Tuchpramuk P, Suvannapruk W, Srion A, Rungroungdouyboon B, Suwanprateeb J. Evaluation of tissue ingrowth and reaction of a porous polyethylene block as an onlay bone graft in rabbit posterior mandible. J Periodontal Implant Sci 2020; 50:106-120. [PMID: 32395389 PMCID: PMC7192824 DOI: 10.5051/jpis.2020.50.2.106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 12/22/2019] [Accepted: 02/12/2020] [Indexed: 01/13/2023] Open
Abstract
Purpose A new form of porous polyethylene, characterized by higher porosity and pore interconnectivity, was developed for use as a tissue-integrated implant. This study evaluated the effectiveness of porous polyethylene blocks used as an onlay bone graft in rabbit mandible in terms of tissue reaction, bone ingrowth, fibrovascularization, and graft-bone interfacial integrity. Methods Twelve New Zealand white rabbits were randomized into 3 treatment groups according to the study period (4, 12, or 24 weeks). Cylindrical specimens measuring 5 mm in diameter and 4.5 mm in thickness were placed directly on the body of the mandible without bone bed decortication, fixed in place with a titanium screw, and covered with a collagen membrane. Histologic and histomorphometric analyses were done using hematoxylin and eosin-stained bone slices. Interfacial shear strength was tested to quantify graft-bone interfacial integrity. Results The porous polyethylene graft was observed to integrate with the mandibular bone and exhibited tissue-bridge connections. At all postoperative time points, it was noted that the host tissues had grown deep into the pores of the porous polyethylene in the direction from the interface to the center of the graft. Both fibrovascular tissue and bone were found within the pores, but most bone ingrowth was observed at the graft-mandibular bone interface. Bone ingrowth depth and interfacial shear strength were in the range of 2.76-3.89 mm and 1.11-1.43 MPa, respectively. No significant differences among post-implantation time points were found for tissue ingrowth percentage and interfacial shear strength (P>0.05). Conclusions Within the limits of the study, the present study revealed that the new porous polyethylene did not provoke any adverse systemic reactions. The material promoted fibrovascularization and displayed osteoconductive and osteogenic properties within and outside the contact interface. Stable interfacial integration between the graft and bone also took place.
Collapse
Affiliation(s)
- Teerapan Sosakul
- Department of Prosthodontics, Khon Kaen University Faculty of Dentistry, Khon Kaen, Thailand
| | - Pongsatorn Tuchpramuk
- Office of Academic Affairs, Mahasarakham University Faculty of Veterinary Sciences, Maha Sarakham, Thailand
| | - Waraporn Suvannapruk
- Biofunctional Materials and Devices Research Group, National Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency, Pathumthani, Thailand
| | - Autcharaporn Srion
- Biofunctional Materials and Devices Research Group, National Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency, Pathumthani, Thailand
| | - Bunyong Rungroungdouyboon
- Department of Mechanical Engineering, Thammasat University Faculty of Engineering, Pathumthani, Thailand
| | - Jintamai Suwanprateeb
- Biofunctional Materials and Devices Research Group, National Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency, Pathumthani, Thailand
| |
Collapse
|
3
|
Gao Y, Li J, Cui H, Zhang F, Sun Y, Li Z, Ding W, Shen Y, Zhang W. Comparison of intervertebral fusion rates of different bone graft materials in extreme lateral interbody fusion. Medicine (Baltimore) 2019; 98:e17685. [PMID: 31689790 PMCID: PMC6946436 DOI: 10.1097/md.0000000000017685] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
To compare imaging indicators and clinical effects of extreme lateral interbody fusion (XLIF) using allogenic bone, autologous bone marrow + allogenic bone, and rhBMP-2 + allogenic bone as bone graft materials in the treatment of degenerative lumbar diseases.This was a retrospective study of 93 patients with lumbar interbody fusion who underwent the extreme lateral approach from May 2016 to December 2017. According to the different bone graft materials, patients were divided into allogenic bone groups (group A, 31 cases), rhBMP-2 + allogenic bone (group B, 32 cases), and autologous bone marrow + allogenic bone (group C, 30 cases). There were no significant differences in gender, age, lesion segment, preoperative intervertebral space height, and preoperative Oswestry Dysfunction Index (ODI) and visual analogue scale (VAS) scores among the 3 groups (P > .05). Intervertebral space height, bone graft fusion rate, and ODI and VAS scores were compared immediately after surgery, and at 3, 6, and 12 months after surgery.All groups were followed up for 12 months. The intervertebral space height was significantly higher in the 3 groups immediately after surgery and at 3, 6, and 12 months after surgery, in comparison to before surgery (P < .05). There was no significant difference in the intervertebral space height among the 3 groups immediately after surgery and at 3, 6, and 12 months after surgery (P > .05). The fusion rate of group B and C was higher than that of groups A at 3, 6, and 12 months after surgery (P < .05). In the 3 groups, the VAS and ODI scores at 3, 6, and 12 months after surgery were significantly improved compared with the preoperative scores (P < .05). The VAS and ODI scores in groups B and C were significantly higher than those in group A (P < .05), but there was no significant difference between groups B and C (P > .05).The rhBMP-2 + allograft bone combination had good clinical effects and high fusion rate in XLIF.
Collapse
|
4
|
Vertebral body versus iliac crest bone marrow as a source of multipotential stromal cells: Comparison of processing techniques, tri-lineage differentiation and application on a scaffold for spine fusion. PLoS One 2018; 13:e0197969. [PMID: 29795650 PMCID: PMC5967748 DOI: 10.1371/journal.pone.0197969] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 05/13/2018] [Indexed: 01/25/2023] Open
Abstract
The potential use of bone progenitors, multipotential stromal cells (MSCs) helping spine fusion is increasing, but convenient MSC sources and effective processing methods are critical factors yet to be optimised. The aim of this study was to test the effect of bone marrow processing on the MSC abundance and to compare the differentiation capabilities of vertebral body-bone marrow (VB-BM) MSCs versus iliac crest-bone marrow (IC-BM) MSCs. We assessed the effect of the red blood cell lysis (ammonium chloride, AC) and density-gradient centrifugation (Lymphoprep™, LMP), on the extracted VB-BM and IC-BM MSC numbers. The MSC abundance (indicated by colony counts and CD45lowCD271high cell numbers), phenotype, proliferation and tri-lineage differentiation of VB-BM MSCs were compared with donor-matched IC-BM MSCs. Importantly, the MSC attachment and osteogenesis were examined when VB-BM and IC-BM samples were loaded on a beta-tricalcium phosphate scaffold. In contrast to LMP, using AC yielded more colonies from IC-BM and VB-BM aspirates (p = 0.0019 & p = 0.0201 respectively). For IC-BM and VB-BM, the colony counts and CD45lowCD271high cell numbers were comparable (p = 0.5186, p = 0.2640 respectively). Furthermore, cultured VB-BM MSCs exhibited the same phenotype, proliferative and adipogenic potential, but a higher osteogenic and chondrogenic capabilities than IC-BM MSCs (p = 0.0010 and p = 0.0005 for calcium and glycosaminoglycan (GAG) levels, respectively). The gene expression data confirmed higher chondrogenesis for VB-BM MSCs than IC-BM MSCs, but osteogenic gene expression levels were comparable. When loaded on Vitoss™, both MSCs showed a similar degree of attachment and survival, but a better osteogenic ability was detected for VB-BM MSCs as measured by alkaline phosphatase activity (p = 0.0386). Collectively, the BM processing using AC had more MSC yield than using LMP. VB-BM MSCs have a comparable phenotype and proliferative capacity, but higher chondrogenesis and osteogenesis with or without using scaffold than donor-matched IC-BM MSCs. Given better accessibility, VB-BM could be an ideal MSC source for spinal bone fusion.
Collapse
|
5
|
Evans NR, Davies EM, Dare CJ, Oreffo RO. Tissue engineering strategies in spinal arthrodesis: the clinical imperative and challenges to clinical translation. Regen Med 2013; 8:49-64. [PMID: 23259805 DOI: 10.2217/rme.12.106] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Skeletal disorders requiring the regeneration or de novo production of bone present considerable reconstructive challenges and are one of the main driving forces for the development of skeletal tissue engineering strategies. The skeletal or mesenchymal stem cell is a fundamental requirement for osteogenesis and plays a pivotal role in the design and application of these strategies. Research activity has focused on incorporating the biological role of the mesenchymal stem cell with the developing fields of material science and gene therapy in order to create a construct that is not only capable of inducing host osteoblasts to produce bone, but is also osteogenic in its own right. This review explores the clinical need for reparative approaches in spinal arthrodesis, identifying recent tissue engineering strategies employed to promote spinal fusion, and considers the ongoing challenges to successful clinical translation.
Collapse
Affiliation(s)
- Nick R Evans
- Bone & Joint Research Group, Centre for Human Development, Stem Cells & Regeneration, Human Development & Health, Institute of Developmental Sciences, Southampton General Hospital, Southampton, UK.
| | | | | | | |
Collapse
|
6
|
Canto FRT, Garcia SB, Issa JPM, Marin A, Del-Bel E, Defino HLA. Influência da decorticação vertebral na neoformação dos tecidos da interface do enxerto ósseo. ACTA ORTOPEDICA BRASILEIRA 2010. [DOI: 10.1590/s1413-78522010000400002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
OBJETIVO: Determinar a influência da decorticação dos elementos posteriores da coluna vertebral na integração do enxerto ósseo, considerando a avaliação quantitativa e qualitativa dos tecidos (ósseo, cartilaginoso e fibroso) da interface entre o leito receptor e o enxerto ósseo. MÉTODOS: Foram utilizados 24 ratos Wistar, divididos em dois grupos de acordo com a realização da decorticação do leito receptor do enxerto. Foi utilizado enxerto autólogo derivado dos processos espinhosos das duas primeiras vértebras lombares. A neoformação tecidual na interface entre o leito receptor e seu enxerto ósseo foi avaliada após três semanas por meio de análise histomorfométrica. RESULTADOS: No grupo de animais com o leito receptor decorticado a média da porcentagem de osso neoformado foi de 40%±6,1, e 7,7%± 3,5 no grupo não decorticado (p=0,0001). A média da porcentagem de formação do tecido cartilaginoso no grupo decorticado foi de 7,2%±3,5, no não decorticado de 10,9%±5,6 (p=0,1123). A formação de tecido fibroso no grupo decorticado apresentou média de 8,6%±3,9 e no não decorticado e 24%±10,1, (p=0,0002). CONCLUSÕES: A decorticação acelerou o processo histológico da integração do enxerto ósseo. Ocorrendo maior produção de tecido ósseo neoformado e predomínio da ossificação do tipo intramembranosa no grupo de animais nos quais a decorticação foi realizada.
Collapse
|
7
|
McLain RF, Boehm CA, Rufo-Smith C, Muschler GF. Transpedicular aspiration of osteoprogenitor cells from the vertebral body: progenitor cell concentrations affected by serial aspiration. Spine J 2009; 9:995-1002. [PMID: 19837006 DOI: 10.1016/j.spinee.2009.08.455] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2009] [Revised: 06/25/2009] [Accepted: 08/26/2009] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Spinal fusion is facilitated when the fusion site is augmented with autograft bone. Iliac crest, long the preferred source of autograft material, is the site of frequent complications and pain. Connective tissue progenitor cells (CTPs) aspirated from marrow provide a promising alternative to traditional autograft harvest. The vertebral body represents an even larger potential reservoir of progenitor cells than the ilium. PURPOSE To test the hypothesis that a suitable concentration of osteoprogenitor cells can be aspirated from different depths of the vertebral body, maintaining progenitor cell concentrations comparable to the "gold standard," the iliac crest, even after sequential aspirations along the same transpedicular axis. STUDY DESIGN Prospective clinical investigation quantifying CTP concentrations within the vertebral body relative to depth of sequential aspirations. PATIENT SAMPLE Adult men and women undergoing elective posterior lumbar fusion and pedicle screw instrumentation (six men and seven women, mean age 56 years [range 40-74 years]). OUTCOME MEASURES Cell count, CTP concentration (CTPs/cc marrow), and CTP prevalence (CTPs/million cells) were calculated for both individual and pooled aspirate samples. METHODS Thirteen patients were enrolled into an institutional review board-approved protocol studying transpedicular aspiration of marrow progenitor cells. Connective tissue progenitor cells were aspirated from four depths along the transpedicular axis of the vertebral body and quantified according to cell concentration and CTP prevalence. Histochemical analysis of alkaline phosphatase-positive colony-forming units (CFUs) provided the prevalence of vertebral CTPs relative to depth of aspiration, vertebral level, age, and gender. RESULTS Four 2.0cc aspirations were obtained from each pedicle of lumbar vertebrae selected for pedicle screw fixation (four 2.0cc aspirates from each of four pedicles). Aspirates of vertebral marrow demonstrated comparable or greater concentrations of CFUs compared with standards previously established for the iliac crest. Overall, the 208 aspirations from 26 vertebral bodies provided a mean CTP concentration of 741.5+/-976.2 CTPs per cubic centimeter of marrow, ranging from a mean concentration of 1316+/-1473 CTPs per cubic centimeter of marrow at superficial (30mm) aspirations to 439+/-557 CTPs per cubic centimeter marrow at deepest (45mm) aspiration depths (p<.00002). There were no significant differences relative to vertebral body level, side aspirated, or gender. An age-related decline in cellularity was suggested for vertebral body aspirates. CONCLUSIONS The vertebral body is a potential marrow reservoir for aspiration of autograft osteogenic CTPs that can be used to augment spinal fusion. The cancellous bone within that portion of the vertebral body routinely cannulated during pedicle screw placement allows serial aspirations with only modest depletion of progenitor cell concentrations or dilution with peripheral blood. Connective tissue progenitor cell concentrations from all depths were comparable to the mean levels previously established for the iliac crest. The ability to simultaneously harvest progenitor cells for graft augmentation while preparing the pilot hole for pedicle screw fixation will expand the potential for cell harvest techniques for fusion augmentation and reduce the need for iliac crest harvest.
Collapse
Affiliation(s)
- Robert F McLain
- Department of Orthopaedic Surgery, The Cleveland Clinic Center for Spine Health, The Cleveland Clinic Foundation, Cleveland, OH 44195, USA.
| | | | | | | |
Collapse
|
8
|
Rao RD, Gourab K, Bagaria VB, Shidham VB, Metkar U, Cooley BC. The effect of platelet-rich plasma and bone marrow on murine posterolateral lumbar spine arthrodesis with bone morphogenetic protein. J Bone Joint Surg Am 2009; 91:1199-206. [PMID: 19411469 DOI: 10.2106/jbjs.g.01375] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Recombinant human bone morphogenetic protein-2 (rhBMP-2) has had limited success in stimulating osteogenesis at the site of posterolateral lumbar spine arthrodesis when used at the currently approved human dose for anterior lumbar interbody arthrodesis. The objective of the present study was to investigate the effect of co-administration of fresh harvested autologous bone marrow aspirate and platelet-rich plasma on rhBMP-2-mediated in vivo murine posterolateral lumbar spine arthrodesis. METHODS Forty adult male mice underwent posterolateral intertransverse process arthrodesis from L4 to L6. In three experimental groups, a collagen sponge was placed on each side, overlaying the decorticated transverse processes. Each collagen sponge was presoaked for fifteen minutes with 31 microg of rhBMP-2 in a 100-microL solution containing either saline solution (n = 10), platelet-rich plasma (n = 10), or donor bone-marrow cells (n = 10). Control mice underwent decortication alone (n = 10). The lumbar spine was harvested four weeks after surgery, and spinal fusion was evaluated on the basis of radiographs, computed tomography, and histological analysis. RESULTS Control mice showed no evidence of spinal fusion. The rate of fusion was radiographically and histologically similar in all three experimental groups. The area, volume, and density of the fusion mass were significantly greater (p < 0.05) for the group treated with rhBMP-2 and bone marrow as compared with the group treated with rhBMP-2 alone. The group treated with rhBMP-2 and platelet-rich plasma had intermediate fusion area and density. Histologically, the spines treated with rhBMP-2 alone consistently showed the presence of cortical bone between the two transverse processes but fewer trabeculae within the fusion mass; bone marrow co-augmentation resulted in more trabeculae within the fusion mass and a thicker cortical perimeter. CONCLUSIONS The present study quantitatively confirmed a synergistic effect of bone marrow cells when added to rhBMP-2 in an in vivo mouse posterolateral lumbar spine fusion model. The volume, area, and density of the fusion mass were significantly increased by augmentation with bone marrow cells.
Collapse
Affiliation(s)
- Raj D Rao
- Department of Orthopaedic Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | | | | | | | | |
Collapse
|
9
|
Canto FRT, Garcia SB, Issa JPM, Marin A, Del Bel EA, Defino HLA. Influence of decortication of the recipient graft bed on graft integration and tissue neoformation in the graft-recipient bed interface. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2008; 17:706-14. [PMID: 18301928 DOI: 10.1007/s00586-008-0642-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Revised: 12/26/2007] [Accepted: 02/01/2008] [Indexed: 10/22/2022]
Abstract
The objective of the present study was to assess the influence of decortication of the posterior elements of the vertebra (recipient bed) and the nature of the bone graft (cortical or cancellous bone) on graft integration and bone, cartilage and fiber neoformation in the interface between the vertebral recipient bed and the bone graft. Seventy-two male Wistar rats were divided into four experimental groups according to the presence or absence of decortication of the posterior vertebral elements and the use of a cortical or cancellous bone graft. Group I--the posterior elements were decorticated and cancellous bone used. Group II--the posterior elements were decorticated and cortical graft was used. Group III--the posterior elements were not decorticated and cancellous graft was used. Group IV--the posterior elements were not decorticated and cortical graft was used. The animals were killed 3, 6 and 9 weeks after surgery and the interface between the posterior elements and the bone graft was subjected to histomorphometric evaluation. Mean percent neoformed bone was 40.8% in group I (decortication and cancellous graft), 39.13% in group II (decortication and cortical graft), 6.13% in group III (non-decorticated and cancellous graft), and 9.27% in group IV (non-decorticated and cortical graft) for animals killed at 3 weeks (P = 0.0005). For animals killed at 6 weeks, the mean percent was 38.53% for group I, 40.40% for group II, 10.27% for group III, and 7.6% for group IV (P = 0.0005), and for animals killed at 9 weeks, the mean was 25.93% for group I, 30.6% for group II, 16.4% for group III, and 18.73% for group IV (P = 0.0026). The mean percent neoformed cartilage tissue was 8.36% for group I, 7.46% for group II, 11.1% for group III, and 9.13% for group IV for the animals killed at 3 weeks (P = 0.6544); 6.6% for group I, 8.07% for group, 7.47% for group III and 6.13% for group IV (P = 0.4889) for animals killed at 6 weeks, and 3.13% for group I, 4.06% for group II, 10.53% for group III and 12.07% for group IV (P = 0.0006) for animals killed at 9 weeks. Mean percent neoformed fibrous tissue was 11% for group I, 6.13% for group II, 26.27% for group III and 21.87% for group IV for animals killed at 3 weeks (P = 0.0008); 7.67% for group I, 7.1% for group II, 9.8% for group III and 10.4% for group IV (P = 0.7880) for animals killed at 6 weeks, and 3.73% for group I, 4.4% for group II, 6.67% for group III and 6.8% for group IV (P = 0.0214) for animals killed at 9 weeks. The statistically significant differences in percent tissue formation were related to decortication of the posterior elements. The use of a cortical or cancellous graft did not influence tissue neoformation. Ossification in the interface of the recipient graft bed was of the intramembranous type in the decorticated animals and endochondral type in the non-decorticated animals.
Collapse
Affiliation(s)
- Fabiano R T Canto
- Department of Biomechanics, Rehabilitation and Medicine of the Locomotor Apparatus, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
10
|
Use of Platelet-Rich Plasma and Bone Marrow-Derived Mesenchymal Stem Cells in Foot and Ankle Surgery. TECHNIQUES IN FOOT AND ANKLE SURGERY 2007. [DOI: 10.1097/btf.0b013e33180621290] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|