1
|
Yang F, Zou YQ, Li M, Luo WJ, Chen GZ, Wu XZ. Intervertebral foramen injection of plerixafor attenuates neuropathic pain after chronic compression of the dorsal root ganglion: Possible involvement of the down-regulation of Nav1.8 and Nav1.9. Eur J Pharmacol 2021; 908:174322. [PMID: 34256084 DOI: 10.1016/j.ejphar.2021.174322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 06/07/2021] [Accepted: 07/07/2021] [Indexed: 10/20/2022]
Abstract
Neuropathic pain is a common chronic pain condition with major impact on quality of life. However, its physiopathologic mechanism remains unknown and pain management is still a challenge. Accumulating evidence indicated that C-X-C chemokine receptor type 4 (CXCR4) played a critical role in the process of pain. Thus, the present study aimed to investigate whether intervertebral foramen injection of CXCR4 antagonist, plerixafor, was able to relieve neuropathic pain and explore the possible underlying mechanism. Chronic compression of the dorsal root ganglion (CCD) was established as a typical model of neuropathic pain. The results indicated that CCD induced multiple pain-related behaviors and the expression of CXCR4, Nav1.8 and Nav1.9 was significantly increased in compressed dorsal root ganglion (DRG) neurons. Knocking down CXCR4 expression could significantly reduce neuropathic pain and intervertebral foramen plerixafor injection (IVFP) dramatically decreased the up-regulation of Nav1.8 and Nav1.9 and attenuated neuropathic pain. The analgesic duration of IVFP was maintained at least for 24 h which was much longer than intervertebral foramen injection of Nav1.8 blocker and local anesthetics. Therefore, our study provided evidence that IVFP could reduce the expression of Nav1.8 and Nav1.9 in DRG neurons which might contribute to, at least in part, the analgesic effect of plerixafor on CCD-induced neuropathic pain. It is concluded that IVFP was an effective and applicable treatment approach for neuropathic pain.
Collapse
Affiliation(s)
- Fei Yang
- Department of Anesthesiology and Perioperative Medicine, 900 Hospital of the Joint Logistic Support Force / Fuzong Clinical Medical College, Fujian Medical University, Fuzhou 350025, Fujian, PR China; Department of Anesthesiology and Perioperative Medicine, Dongfang Hospital, Xiamen University, Fuzhou 350025, Fujian, PR China; Laboratory of Pain Research, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, Fujian, PR China
| | - Yi-Qing Zou
- Department of Anesthesiology and Perioperative Medicine, 900 Hospital of the Joint Logistic Support Force / Fuzong Clinical Medical College, Fujian Medical University, Fuzhou 350025, Fujian, PR China; Department of Anesthesiology and Perioperative Medicine, Dongfang Hospital, Xiamen University, Fuzhou 350025, Fujian, PR China
| | - Min Li
- Department of Anesthesiology and Perioperative Medicine, 900 Hospital of the Joint Logistic Support Force / Fuzong Clinical Medical College, Fujian Medical University, Fuzhou 350025, Fujian, PR China; Department of Anesthesiology and Perioperative Medicine, Dongfang Hospital, Xiamen University, Fuzhou 350025, Fujian, PR China
| | - Wen-Jun Luo
- Department of Anesthesiology, Chinese PLA General Hospital of Central Theater Command, Wuhan 430070, Hubei, PR China
| | - Guo-Zhong Chen
- Department of Anesthesiology and Perioperative Medicine, 900 Hospital of the Joint Logistic Support Force / Fuzong Clinical Medical College, Fujian Medical University, Fuzhou 350025, Fujian, PR China; Department of Anesthesiology and Perioperative Medicine, Dongfang Hospital, Xiamen University, Fuzhou 350025, Fujian, PR China.
| | - Xiao-Zhi Wu
- Department of Anesthesiology and Perioperative Medicine, 900 Hospital of the Joint Logistic Support Force / Fuzong Clinical Medical College, Fujian Medical University, Fuzhou 350025, Fujian, PR China; Department of Anesthesiology and Perioperative Medicine, Dongfang Hospital, Xiamen University, Fuzhou 350025, Fujian, PR China.
| |
Collapse
|
2
|
Islam J, Kc E, Oh BH, Moon HC, Park YS. Pain modulation effect on motor cortex after optogenetic stimulation in shPKCγ knockdown dorsal root ganglion-compressed Sprague-Dawley rat model. Mol Pain 2020; 16:1744806920943685. [PMID: 32865105 PMCID: PMC7466896 DOI: 10.1177/1744806920943685] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/03/2020] [Accepted: 06/08/2020] [Indexed: 12/14/2022] Open
Abstract
Neuropathic pain can be generated by chronic compression of dorsal root ganglion (CCD). Stimulation of primary motor cortex can disrupt the nociceptive sensory signal at dorsal root ganglion level and reduce pain behaviors. But the mechanism behind it is still implicit. Protein kinase C gamma is known as an essential enzyme for the development of neuropathic pain, and specific inhibitor of protein kinase C gamma can disrupt the sensory signal and reduce pain behaviors. Optogenetic stimulation has been emerged as a new and promising conducive method for refractory neuropathic pain. The aim of this study was to provide evidence whether optical stimulation of primary motor cortex can modulate chronic neuropathic pain in CCD rat model. Animals were randomly divided into CCD group, sham group, and control group. Dorsal root ganglion-compressed neuropathic pain model was established in animals, and knocking down of protein kinase C gamma was also accomplished. Pain behavioral scores were significantly improved in the short hairpin Protein Kinase C gamma knockdown CCD animals during optic stimulation. Ventral posterolateral thalamic firing inhibition was also observed during light stimulation on motor cortex in CCD animal. We assessed alteration of pain behaviors in pre-light off, stimulation-light on, and post-light off state. In vivo extracellular recording of the ventral posterolateral thalamus, viral expression in the primary motor cortex, and protein kinase C gamma expression in dorsal root ganglion were investigated. So, optical cortico-thalamic inhibition by motor cortex stimulation can improve neuropathic pain behaviors in CCD animal, and knocking down of protein kinase C gamma plays a conducive role in the process. This study provides feasibility for in vivo optogenetic stimulation on primary motor cortex of dorsal root ganglion-initiated neuropathic pain.
Collapse
Affiliation(s)
- Jaisan Islam
- Department of Neuroscience, College of Medicine, Chungbuk National University, Republic of Korea
| | - Elina Kc
- Department of Neuroscience, College of Medicine, Chungbuk National University, Republic of Korea
| | - Byeong Ho Oh
- Department of Neurosurgery, College of Medicine, Chungbuk National University, Chungbuk National University Hospital, Republic of Korea
| | - Hyeong Cheol Moon
- Department of Neuroscience, College of Medicine, Chungbuk National University, Republic of Korea
- Department of Neurosurgery, Gamma Knife Icon Center, Chungbuk National University Hospital, Republic of Korea
| | - Young Seok Park
- Department of Neuroscience, College of Medicine, Chungbuk National University, Republic of Korea
- Department of Neurosurgery, College of Medicine, Chungbuk National University, Chungbuk National University Hospital, Republic of Korea
- Department of Neurosurgery, Gamma Knife Icon Center, Chungbuk National University Hospital, Republic of Korea
| |
Collapse
|
3
|
Caliskan T, Sirin DY, Karaarslan N, Yilmaz I, Ozbek H, Akyuva Y, Kaplan N, Kaya YE, Simsek AT, Guzelant AY, Ates O. Effects of etanercept, a tumor necrosis factor receptor fusion protein, on primary cell cultures prepared from intact human intervertebral disc tissue. Exp Ther Med 2019; 18:69-76. [PMID: 31258639 PMCID: PMC6566078 DOI: 10.3892/etm.2019.7559] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 02/06/2019] [Indexed: 02/06/2023] Open
Abstract
The aim of the present study was to investigate the effects of etanercept (ETA), a tumor necrosis factor (TNF) inhibitor, on human cell cultures prepared from intact intervertebral disc tissue. ETA is used as a treatment for cases of rheumatoid arthritis, psoriatic arthritis, axial spondyloarthritis and ankylosing spondylitis accompanied by moderate or severe joint pain. ETA was applied to primary cell cultures [annulus fibrosus and nucleus pulposus (NP) from intact intervertebral disc tissue]. Cell cultures without ETA treatment served as the control group. Morphological and quantitative molecular analyses of the two groups were performed. The number of viable cells and cell proliferation decreased in the ETA-treated cultures as compared with those in the control group. Furthermore, in the treatment group, the chondroadherin gene, an NP-specific marker, was not expressed after 24 h. By contrast, the cartilage oligo matrix protein was expressed 24, 48 and 72 h post-ETA treatment, while its expression was significantly lower than that in the control group. In addition, the expression of interleukin-1β, as well as matrix metallopeptidase-7 and -19, was markedly decreased. Overall, the cell proliferation and gene expression in the ETA-treated cells were significantly different from those in the control group (P<0.05). These results suggest that the treatment duration and dosage of TNF inhibitors, which are used to suppress active inflammation, should be considered in the clinical setting. These biological agents may delay the healing of intervertebral disc tissue damage by slowing cell proliferation and altering gene expression via anabolic and catabolic pathways.
Collapse
Affiliation(s)
- Tezcan Caliskan
- Department of Neurosurgery, Namik Kemal University School of Medicine, Tekirdag 59100, Turkey
| | - Duygu Yasar Sirin
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Namik Kemal University, Tekirdag 59100, Turkey
| | - Numan Karaarslan
- Department of Neurosurgery, Namik Kemal University School of Medicine, Tekirdag 59100, Turkey
| | - Ibrahim Yilmaz
- Department of Medical Pharmacology, Istanbul Medipol University School of Medicine, Istanbul 34810, Turkey
| | - Hanefi Ozbek
- Department of Medical Pharmacology, Istanbul Medipol University School of Medicine, Istanbul 34810, Turkey
| | - Yener Akyuva
- Department of Neurosurgery, Gaziosmanpasa Taksim Training and Research Hospital, Istanbul 34433, Turkey
| | - Necati Kaplan
- Department of Neurosurgery, Corlu Reyap Hospital, Istanbul Rumeli University, Tekirdag 59680, Turkey
| | - Yasin Emre Kaya
- Department of Orthopedic and Traumatology, Abant Izzet Basal University School of Medicine, Bolu 14000, Turkey
| | - Abdullah Talha Simsek
- Department of Neurosurgery, Namik Kemal University School of Medicine, Tekirdag 59100, Turkey
| | - Aliye Yildirim Guzelant
- Department of Physical Medicine and Rehabilitation, Corlu Reyap Hospital, Istanbul Rumeli University, Tekirdag 59680, Turkey
| | - Ozkan Ates
- Department of Neurosurgery, Esencan Hospital, Istanbul Esenyurt University, Istanbul 34570, Turkey
| |
Collapse
|
4
|
Role of Na V1.6 and Na Vβ4 Sodium Channel Subunits in a Rat Model of Low Back Pain Induced by Compression of the Dorsal Root Ganglia. Neuroscience 2019; 402:51-65. [PMID: 30699332 DOI: 10.1016/j.neuroscience.2019.01.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/08/2019] [Accepted: 01/11/2019] [Indexed: 01/18/2023]
Abstract
Low back pain is a common cause of chronic pain and disability. It is modeled in rodents by chronically compressing the lumbar dorsal root ganglia (DRG) with small metal rods, resulting in ipsilateral mechanical and cold hypersensitivity, and hyperexcitability of sensory neurons. Sodium channels are implicated in this hyperexcitability, but the responsible isoforms are unknown. In this study, we used siRNA-mediated knockdown of the pore-forming NaV1.6 and regulatory NaVβ4 sodium channel isoforms that have been previously implicated in a different model of low back pain caused by locally inflaming the L5 DRG. Knockdown of either subunit markedly reduced spontaneous pain and mechanical and cold hypersensitivity induced by DRG compression, and reduced spontaneous activity and hyperexcitability of sensory neurons with action potentials <1.5 msec (predominately cells with myelinated axons, based on conduction velocities measured in a subset of cells) 4 days after DRG compression. These results were similar to those previously obtained in the DRG inflammation model and some neuropathic pain models, in which sensory neurons other than nociceptors seem to play key roles. The cytokine profiles induced by DRG compression and DRG inflammation were also very similar, with upregulation of several type 1 pro-inflammatory cytokines and downregulation of type 2 anti-inflammatory cytokines. Surprisingly, the cytokine profile was largely unaffected by NaVβ4 knockdown in either model. The NaV1.6 channel, and the NaVβ4 subunit that can regulate NaV1.6 to enhance repetitive firing, play key roles in both models of low back pain; targeting the abnormal spontaneous activity they generate may have therapeutic value.
Collapse
|
5
|
A Dual Noradrenergic Mechanism for the Relief of Neuropathic Allodynia by the Antidepressant Drugs Duloxetine and Amitriptyline. J Neurosci 2018; 38:9934-9954. [PMID: 30249798 DOI: 10.1523/jneurosci.1004-18.2018] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 06/27/2018] [Accepted: 07/22/2018] [Indexed: 12/21/2022] Open
Abstract
In addition to treating depression, antidepressant drugs are also a first-line treatment for neuropathic pain, which is pain secondary to lesion or pathology of the nervous system. Despite the widespread use of these drugs, the mechanism underlying their therapeutic action in this pain context remains partly elusive. The present study combined data collected in male and female mice from a model of neuropathic pain and data from the clinical setting to understand how antidepressant drugs act. We show two distinct mechanisms by which the selective inhibitor of serotonin and noradrenaline reuptake duloxetine and the tricyclic antidepressant amitriptyline relieve neuropathic allodynia. One of these mechanisms is acute, central, and requires descending noradrenergic inhibitory controls and α2A adrenoceptors, as well as the mu and delta opioid receptors. The second mechanism is delayed, peripheral, and requires noradrenaline from peripheral sympathetic endings and β2 adrenoceptors, as well as the delta opioid receptors. We then conducted a transcriptomic analysis in dorsal root ganglia, which suggested that the peripheral component of duloxetine action involves the inhibition of neuroimmune mechanisms accompanying nerve injury, including the downregulation of the TNF-α-NF-κB signaling pathway. Accordingly, immunotherapies against either TNF-α or Toll-like receptor 2 (TLR2) provided allodynia relief. We also compared duloxetine plasma levels in the animal model and in patients and we observed that patients' drug concentrations were compatible with those measured in animals under chronic treatment involving the peripheral mechanism. Our study highlights a peripheral neuroimmune component of antidepressant drugs that is relevant to their delayed therapeutic action against neuropathic pain.SIGNIFICANCE STATEMENT In addition to treating depression, antidepressant drugs are also a first-line treatment for neuropathic pain, which is pain secondary to lesion or pathology of the nervous system. However, the mechanism by which antidepressant drugs can relieve neuropathic pain remained in part elusive. Indeed, preclinical studies led to contradictions concerning the anatomical and molecular substrates of this action. In the present work, we overcame these apparent contradictions by highlighting the existence of two independent mechanisms. One is rapid and centrally mediated by descending controls from the brain to the spinal cord and the other is delayed, peripheral, and relies on the anti-neuroimmune action of chronic antidepressant treatment.
Collapse
|
6
|
Bollenbach M, Salvat E, Daubeuf F, Wagner P, Yalcin I, Humo M, Letellier B, Becker LJ, Bihel F, Bourguignon JJ, Villa P, Obrecht A, Frossard N, Barrot M, Schmitt M. Phenylpyridine-2-ylguanidines and rigid mimetics as novel inhibitors of TNFα overproduction: Beneficial action in models of neuropathic pain and of acute lung inflammation. Eur J Med Chem 2018; 147:163-182. [PMID: 29432948 DOI: 10.1016/j.ejmech.2018.01.049] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 01/13/2018] [Accepted: 01/16/2018] [Indexed: 10/18/2022]
Abstract
4-phenylpyridin-2-yl-guanidine (5b): a new inhibitor of the overproduction of pro-inflammatory cytokines (TNFα and Il1β) was identified from a high-throughput screening of a chemical library on human peripheral blood mononuclear cells (PBMCs) after LPS stimulation. Derivatives, homologues and rigid mimetics of 5b were designed and synthesized, and their cytotoxicity and ability to inhibit TNFα overproduction were evaluated. Among them, compound 5b and its mimetic 12 (2-aminodihydroquinazoline) showed similar inhibitory activities, and were evaluated in vivo in models of lung inflammation and neuropathic pain in mice. In particular, compound 12 proved to be active (5 mg/kg, ip) in both models.
Collapse
Affiliation(s)
- Maud Bollenbach
- CNRS, Université de Strasbourg, UMR7200 Laboratoire d' Innovation Thérapeutique, 67401 Illkirch, France; Labex MEDALIS, 67000 Strasbourg, France
| | - Eric Salvat
- CNRS, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, 67000 Strasbourg, France; Hôpitaux universitaires de Strasbourg, Centre d'Evaluation et de Traitement de la Douleur, 67000 Strasbourg, France
| | - François Daubeuf
- CNRS, Université de Strasbourg, UMR7200 Laboratoire d' Innovation Thérapeutique, 67401 Illkirch, France; CNRS, Université de Strasbourg, UMS3286 PCBIS Plateforme de chimie biologique intégrative, 67400 Illkirch, France; Labex MEDALIS, 67000 Strasbourg, France
| | - Patrick Wagner
- CNRS, Université de Strasbourg, UMR7200 Laboratoire d' Innovation Thérapeutique, 67401 Illkirch, France; Labex MEDALIS, 67000 Strasbourg, France
| | - Ipek Yalcin
- CNRS, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, 67000 Strasbourg, France
| | - Muris Humo
- CNRS, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, 67000 Strasbourg, France
| | - Baptiste Letellier
- CNRS, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, 67000 Strasbourg, France
| | - Léa J Becker
- CNRS, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, 67000 Strasbourg, France
| | - Frédéric Bihel
- CNRS, Université de Strasbourg, UMR7200 Laboratoire d' Innovation Thérapeutique, 67401 Illkirch, France; Labex MEDALIS, 67000 Strasbourg, France
| | - Jean-Jacques Bourguignon
- CNRS, Université de Strasbourg, UMR7200 Laboratoire d' Innovation Thérapeutique, 67401 Illkirch, France; Labex MEDALIS, 67000 Strasbourg, France
| | - Pascal Villa
- CNRS, Université de Strasbourg, UMS3286 PCBIS Plateforme de chimie biologique intégrative, 67400 Illkirch, France; Labex MEDALIS, 67000 Strasbourg, France
| | - Adeline Obrecht
- CNRS, Université de Strasbourg, UMS3286 PCBIS Plateforme de chimie biologique intégrative, 67400 Illkirch, France; Labex MEDALIS, 67000 Strasbourg, France
| | - Nelly Frossard
- CNRS, Université de Strasbourg, UMR7200 Laboratoire d' Innovation Thérapeutique, 67401 Illkirch, France; Labex MEDALIS, 67000 Strasbourg, France
| | - Michel Barrot
- CNRS, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, 67000 Strasbourg, France
| | - Martine Schmitt
- CNRS, Université de Strasbourg, UMR7200 Laboratoire d' Innovation Thérapeutique, 67401 Illkirch, France; Labex MEDALIS, 67000 Strasbourg, France.
| |
Collapse
|
7
|
Investigation of the Effect of Diabetes on Radiculopathy Induced by Nucleus Pulposus Application to the DRG in a Spontaneously Diabetic Rat Model. Spine (Phila Pa 1976) 2017; 42:1749-1756. [PMID: 28658037 DOI: 10.1097/brs.0000000000002299] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN A controlled, interventional animal study. OBJECTIVE The aim of this study was to evaluate the effect of diabetes mellitus (DM) on radiculopathy due to lumbar disc herniation (LDH), by investigating pain-related behavior and the expression of tumor necrosis factor-alpha (TNF-α) and growth-associated protein 43 (GAP43) in type 2 diabetic rats following application of nucleus pulposus (NP) to the dorsal root ganglion (DRG). SUMMARY OF BACKGROUND DATA Previous clinical studies suggested negative effects of DM on radiculopathy due to LDH, and that inflammation and nerve regeneration could interact with DM and radiculopathy. METHODS We applied autologous NP to the left L5 DRG of adult male Wistar rats and Goto-Kakizaki rats. Behavioral testing measured the mechanical withdrawal threshold of rats. We immunohistochemically evaluated the localization of ionized calcium-binding adapter molecule-1 (Iba-1), receptor of advanced glycation end products (RAGE), and TNF-α in DRGs. TNF-α and GAP43 expression levels in DRG were determined by quantitative real-time PCR and western blotting. RESULTS The mechanical withdrawal threshold significantly declined in the non-DM NP group compared with the non-DM sham group for 28 days, whereas the decline in threshold extended to 35 days in the DM NP group compared with the DM sham group. RAGE and TNF-α expression in DRGs was colocalized in Iba-1 positive cells. The non-DM NP rats had higher TNF-α protein expression levels versus the non-DM sham rats on day 7, and the DM NP group had higher levels versus the DM sham group on days 7 and 14. The non-DM NP group had higher GAP43 mRNA expression than the non-DM sham group for 28 days, while the DM NP group had a higher level than the DM sham group for 35 days. CONCLUSION DM prolongs the pain-related behavior caused by NP. The prolonged inflammation and nerve regeneration could elucidate the pathogenesis of continuous pain of radiculopathy initiated by LDH. LEVEL OF EVIDENCE N /A.
Collapse
|
8
|
Localized Sympathectomy Reduces Mechanical Hypersensitivity by Restoring Normal Immune Homeostasis in Rat Models of Inflammatory Pain. J Neurosci 2017; 36:8712-25. [PMID: 27535916 DOI: 10.1523/jneurosci.4118-15.2016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 07/09/2016] [Indexed: 12/28/2022] Open
Abstract
UNLABELLED Some forms of chronic pain are maintained or enhanced by activity in the sympathetic nervous system (SNS), but attempts to model this have yielded conflicting findings. The SNS has both pro- and anti-inflammatory effects on immunity, confounding the interpretation of experiments using global sympathectomy methods. We performed a "microsympathectomy" by cutting the ipsilateral gray rami where they entered the spinal nerves near the L4 and L5 DRG. This led to profound sustained reductions in pain behaviors induced by local DRG inflammation (a rat model of low back pain) and by a peripheral paw inflammation model. Effects of microsympathectomy were evident within one day, making it unlikely that blocking sympathetic sprouting in the local DRGs or hindpaw was the sole mechanism. Prior microsympathectomy greatly reduced hyperexcitability of sensory neurons induced by local DRG inflammation observed 4 d later. Microsympathectomy reduced local inflammation and macrophage density in the affected tissues (as indicated by paw swelling and histochemical staining). Cytokine profiling in locally inflamed DRG showed increases in pro-inflammatory Type 1 cytokines and decreases in the Type 2 cytokines present at baseline, changes that were mitigated by microsympathectomy. Microsympathectomy was also effective in reducing established pain behaviors in the local DRG inflammation model. We conclude that the effect of sympathetic fibers in the L4/L5 gray rami in these models is pro-inflammatory. This raises the possibility that therapeutic interventions targeting gray rami might be useful in some chronic inflammatory pain conditions. SIGNIFICANCE STATEMENT Sympathetic blockade is used for many pain conditions, but preclinical studies show both pro- and anti-nociceptive effects. The sympathetic nervous system also has both pro- and anti-inflammatory effects on immune tissues and cells. We examined effects of a very localized sympathectomy. By cutting the gray rami to the spinal nerves near the lumbar sensory ganglia, we avoided widespread sympathetic denervation. This procedure profoundly reduced mechanical pain behaviors induced by a back pain model and a model of peripheral inflammatory pain. One possible mechanism was reduction of inflammation in the sympathetically denervated regions. This raises the possibility that therapeutic interventions targeting gray rami might be useful in some inflammatory conditions.
Collapse
|
9
|
Dagar A, Kumar R, Kashyap A, Prabhat V, Lal H, Kumar L. Transforaminal epidural Etanercept for the treatment of prolapsed lumbar intervertebral disc induced sciatica. J Clin Orthop Trauma 2017; 8:148-152. [PMID: 28720991 PMCID: PMC5498758 DOI: 10.1016/j.jcot.2016.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/04/2016] [Accepted: 10/10/2016] [Indexed: 10/20/2022] Open
Abstract
STUDY DESIGN Hospital based prospective study. OBJECTIVE To study clinical response of transforaminal epidural Etanercept for lumbar prolapsed intervertebral disc induced sciatica. METHOD Patients presenting to O.P.D and Emergency services of our hospital were screened for inclusion and exclusion criteria & suitable candidates were enrolled in study. Patients received 2 transforaminal epidural injections of Etanercept 2 mg, 2 weeks apart, and were assessed for efficacy at 2 week, 1 month and 3 months after the second injection. Primary outcome was based on Visual Analog Scale for leg (VASL) and back pain (VASB) and secondary outcome was based on Modified Oswestry back related disability index (ODI). RESULTS 31 of 33 enrolled patients completed study. Patients showed clinically and statistically significant (p < 0.001) reduction in VASL, VASB and ODI. There was no incidence of adverse events. CONCLUSION Epidural Etanercept is promising and effective non-operative treatment for patients with sciatica. But these results need to be confirmed by a randomized controlled trial.
Collapse
Affiliation(s)
- Ashish Dagar
- Corresponding author at: 146, V.P.O Dhansa, New Delhi, India.146, V.P.O DhansaNew DelhiIndia
| | | | | | | | | | | |
Collapse
|
10
|
Prevalence and Location of Neuropathic Pain in Lumbar Spinal Disorders: Analysis of 1804 Consecutive Patients With Primary Lower Back Pain. Spine (Phila Pa 1976) 2016; 41:1224-1231. [PMID: 26967122 DOI: 10.1097/brs.0000000000001553] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN A cross-sectional study of 1804 consecutive patients. OBJECTIVE The aim of this study was to investigate the prevalence of pathological pain and its distribution features in patients with chronic lumbar spinal disorders. SUMMARY OF BACKGROUND DATA Clinical spinal disorders can involve pathological neuropathic pain (NeP) as well as physiological nociceptive pain (NocP), as they have varied pathology, including spinal cord injury, stenosis, and compression. A study conducted by the Japanese Society for Spine Surgery and Related Research (JSSR) has determined a prevalence of 29.4% for NeP in patients with lumbar spinal disorder. However, the data did not include information on pain location. METHODS Patients aged 20 to 79 years with chronic lower back pain (≥3 months, visual analog scale score ≥30) were recruited from 137 JSSR-related institutions. Patient data included an NeP screening questionnaire score and pain location (lower back, buttock, and legs). The association between the pain pathology and its location was analyzed statistically using the unpaired t test and Chi-square test followed by Fisher test. P < 0.05 was considered significant. RESULTS Low back pain subjects showed 31.9% of NeP prevalence, and the pain distribution showed [NocP(%)/NeP(%)] low back pain only cases: 44/22, while low back pain with leg pain cases showed a prevalence of 56/78. This indicates that low back pain alone can significantly induce NocP rather than NeP (P < 0.01). Buttock pain was revealed to significantly induce both lower back pain and leg pain with NeP properties (P < 0.01). Leg pain was revealed to be predominantly neuropathic, especially when it included peripheral pain (P < 0.01). CONCLUSION Low back pain with no buttock pain induces NocP rather than NeP. Buttock pain is significantly associated with NeP prevalence whether or not leg pain exists. Leg pain can increase the prevalence of NeP, especially when it contains a peripheral element. LEVEL OF EVIDENCE 3.
Collapse
|
11
|
Ibrahim SIA, Strong JA, Zhang JM. Mineralocorticoid Receptor, A Promising Target for Improving Management of Low Back Pain by Epidural Steroid Injections. ACTA ACUST UNITED AC 2016; 3:177-184. [PMID: 28956026 PMCID: PMC5611848 DOI: 10.24015/japm.2016.0023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
AIM OF REVIEW Low back pain is a major health problem in United States and worldwide. In this review, we aim to show that mineralocorticoid receptor (MR) activation has a critical role in the initiation of immune and inflammatory responses, which in turn can impact the effectiveness of the currently used steroids for epidural injections in low back pain management since most steroids activate MR in addition to the primary target, glucocorticoid receptor (GR). Moreover, we would like to determine some of the benefits of blocking the MR-induced negative effects. Overall, we propose a novel therapeutic approach for low back pain management by using a combination of a MR antagonist and a GR agonist in the epidural injections. METHOD We will first introduce the societal cost of low back pain and discuss how epidural steroid injections became a popular treatment for this condition. We will then describe several preclinical models used for the study of low back pain conditions and the findings with respect to the role of MR in the development of inflammatory low back pain. RECENT FINDINGS MR has pro-inflammatory effects in many tissues which can counteract the anti-inflammatory effects induced by GR activation. Blocking MR using the selective MR antagonist eplerenone can reduce pain and sensory neuron excitability in experimental models of low back pain. Moreover, combining the MR antagonist with clinically used steroids is more effective in reducing pain behaviors than using the steroids alone. SUMMARY MR antagonists are promising candidates to increase the effectiveness of currently used steroids. Since the activation of the MR is evident in preclinical models of low back pain, blocking its deleterious effects can be beneficial in managing inflammatory pain conditions.
Collapse
Affiliation(s)
- Shaimaa I A Ibrahim
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, USA.,Graduate Program in Molecular, Cellular, and Biochemical Pharmacology, University of Cincinnati, Cincinnati, USA
| | - Judith A Strong
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, USA
| | - Jun-Ming Zhang
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, USA
| |
Collapse
|
12
|
Abstract
Perispinal injection is a novel emerging method of drug delivery to the central nervous system (CNS). Physiological barriers prevent macromolecules from efficiently penetrating into the CNS after systemic administration. Perispinal injection is designed to use the cerebrospinal venous system (CSVS) to enhance delivery of drugs to the CNS. It delivers a substance into the anatomic area posterior to the ligamentum flavum, an anatomic region drained by the external vertebral venous plexus (EVVP), a division of the CSVS. Blood within the EVVP communicates with the deeper venous plexuses of the CSVS. The anatomical basis for this method originates in the detailed studies of the CSVS published in 1819 by the French anatomist Gilbert Breschet. By the turn of the century, Breschet's findings were nearly forgotten, until rediscovered by American anatomist Oscar Batson in 1940. Batson confirmed the unique, linear, bidirectional and retrograde flow of blood between the spinal and cerebral divisions of the CSVS, made possible by the absence of venous valves. Recently, additional supporting evidence was discovered in the publications of American neurologist Corning. Analysis suggests that Corning's famous first use of cocaine for spinal anesthesia in 1885 was in fact based on Breschet's anatomical findings, and accomplished by perispinal injection. The therapeutic potential of perispinal injection for CNS disorders is highlighted by the rapid neurological improvement in patients with otherwise intractable neuroinflammatory disorders that may ensue following perispinal etanercept administration. Perispinal delivery merits intense investigation as a new method of enhanced delivery of macromolecules to the CNS and related structures.
Collapse
Affiliation(s)
- Edward Lewis Tobinick
- Institute of Neurological Recovery, 2300 Glades Road, Suite 305E, Boca Raton, FL, 33431, USA.
| |
Collapse
|
13
|
Malik KM, Nelson A, Benzon H. Disease-modifying Antirheumatic Drugs for the Treatment of Low Back Pain: A Systematic Review of the Literature. Pain Pract 2016; 16:629-41. [PMID: 26032559 DOI: 10.1111/papr.12323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 04/07/2015] [Indexed: 02/07/2023]
Abstract
Low back pain (LBP) is a common source of pain and disability, which has an enormous adverse impact on affected individuals and the community as a whole. The etiologies of LBP are protean and local inflammation contributes to the majority of these processes. Although an array of potent disease-modifying anti-rheumatic drugs (DMARDs), which are typically anti-inflammatory in character, have become clinically available only corticosteroids are routinely used for the treatment of LBP. To further investigate this potentially underutilized therapy, we reviewed the available literature to determine the role of DMARDs in the treatment of LBP. Our results show that the current DMARD use for LBP is indeed limited in scope and is characterized by isolated use and empiric selection of drugs from a range of available DMARDs. Moreover, the dose, frequency, and route of drug administration are selected arbitrarily and deviated from treatment protocols proposed for the management of other inflammatory conditions. The literature published on this topic is of low quality, and the results of the reviewed trials were inconclusive or demonstrated only short-term efficacy of these medications. Based on the findings of this review, we recommend that the future DMARD use for LBP is initially limited to patients with debilitating disease who are unresponsive to conventional treatments, and the criteria for drug selection and routes of drug administration are clearly defined and may be modeled after treatment protocols for other inflammatory conditions.
Collapse
Affiliation(s)
- Khalid M Malik
- Department of Anesthesiology, Northwestern University, Chicago, Illinois, U.S.A
| | - Ariana Nelson
- Department of Anesthesiology, Northwestern University, Chicago, Illinois, U.S.A
| | - Honorio Benzon
- Department of Anesthesiology, Northwestern University, Chicago, Illinois, U.S.A
| |
Collapse
|
14
|
Kremer M, Yalcin I, Nexon L, Wurtz X, Ceredig RA, Daniel D, Hawkes RA, Salvat E, Barrot M. The antiallodynic action of pregabalin in neuropathic pain is independent from the opioid system. Mol Pain 2016; 12:12/0/1744806916633477. [PMID: 27030724 PMCID: PMC4956392 DOI: 10.1177/1744806916633477] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 01/22/2016] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Clinical management of neuropathic pain, which is pain arising as a consequence of a lesion or a disease affecting the somatosensory system, partly relies on the use of anticonvulsant drugs such as gabapentinoids. Therapeutic action of gabapentinoids such as gabapentin and pregabalin, which act by the inhibition of calcium currents through interaction with the α2δ-1 subunit of voltage-dependent calcium channels, is well documented. However, some aspects of the downstream mechanisms are still to be uncovered. Using behavioral, genetic, and pharmacological approaches, we tested whether opioid receptors are necessary for the antiallodynic action of acute and/or long-term pregabalin treatment in the specific context of neuropathic pain. RESULTS Using the cuff model of neuropathic pain in mice, we show that acute pregabalin administration at high dose has a transitory antiallodynic action, while prolonged oral pregabalin treatment leads to sustained antiallodynic action, consistent with clinical observations. We show that pregabalin remains fully effective in μ-opioid receptor, in δ-opioid receptor and in κ-opioid receptor deficient mice, either female or male, and its antiallodynic action is not affected by acute naloxone. Our work also shows that long-term pregabalin treatment suppresses tumor necrosis factor-α overproduction induced by sciatic nerve constriction in the lumbar dorsal root ganglia. CONCLUSIONS We demonstrate that neither acute nor long-term antiallodynic effect of pregabalin in a context of neuropathic pain is mediated by the endogenous opioid system, which differs from opioid treatment of pain and antidepressant treatment of neuropathic pain. Our data are also supportive of an impact of gabapentinoid treatment on the neuroimmune aspect of neuropathic pain.
Collapse
Affiliation(s)
- Mélanie Kremer
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Strasbourg, France Université de Strasbourg, Strasbourg, France
| | - Ipek Yalcin
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Strasbourg, France
| | - Laurent Nexon
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Strasbourg, France
| | - Xavier Wurtz
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Strasbourg, France Université de Strasbourg, Strasbourg, France
| | - Rhian Alice Ceredig
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Strasbourg, France Université de Strasbourg, Strasbourg, France
| | - Dorothée Daniel
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Strasbourg, France
| | - Rachael Aredhel Hawkes
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Strasbourg, France Université de Strasbourg, Strasbourg, France
| | - Eric Salvat
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Strasbourg, France Centre d'Etude et de Traitement de la Douleur, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Michel Barrot
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Strasbourg, France
| |
Collapse
|
15
|
A Randomized, Placebo-controlled Trial of the Analgesic Efficacy and Safety of the p38 MAP Kinase Inhibitor, Losmapimod, in Patients With Neuropathic Pain From Lumbosacral Radiculopathy. Clin J Pain 2015; 31:283-93. [DOI: 10.1097/ajp.0000000000000122] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
16
|
Ignatowski TA, Spengler RN, Tobinick E. Authors' reply to Whitlock: Perispinal etanercept for post-stroke neurological and cognitive dysfunction: scientific rationale and current evidence. CNS Drugs 2014; 28:1207-13. [PMID: 25373629 PMCID: PMC4246125 DOI: 10.1007/s40263-014-0212-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Tracey A. Ignatowski
- Department of Pathology and Anatomical Sciences and Program for Neuroscience, School of Medicine and Biomedical Sciences, The State University of New York, Buffalo, NY USA
| | | | - Edward Tobinick
- Institute of Neurological Recovery, 2300 Glades Road Suite 305E, Boca Raton, FL 33431 USA
| |
Collapse
|
17
|
Rijsdijk M, van Wijck AJM, Kalkman CJ, Yaksh TL. The effects of glucocorticoids on neuropathic pain: a review with emphasis on intrathecal methylprednisolone acetate delivery. Anesth Analg 2014; 118:1097-112. [PMID: 24781577 DOI: 10.1213/ane.0000000000000161] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Methylprednisolone acetate (MPA) has a long history of use in the treatment of sciatic pain and other neuropathic pain syndromes. In several of these syndromes, MPA is administered in the epidural space. On a limited basis, MPA has also been injected intrathecally in patients suffering from postherpetic neuralgia and complex regional pain syndrome. The reports on efficacy of intrathecal administration of MPA in neuropathic pain patients are contradictory, and safety is debated. In this review, we broadly consider mechanisms whereby glucocorticoids exert their action on spinal cascades relevant to the pain arising after nerve injury and inflammation. We then focus on the characteristics of the actions of MPA in pharmacokinetics, efficacy, and safety when administered in the intrathecal space.
Collapse
Affiliation(s)
- Mienke Rijsdijk
- From the *Department of Anesthesiology, Pain Clinic, University Medical Center Utrecht, Utrecht, The Netherlands; and †Department of Anesthesiology, University of California San Diego, San Diego, California
| | | | | | | |
Collapse
|
18
|
Chen YJ, Wang YH, Wang CZ, Ho ML, Kuo PL, Huang MH, Chen CH. Effect of low level laser therapy on chronic compression of the dorsal root ganglion. PLoS One 2014; 9:e89894. [PMID: 24594641 PMCID: PMC3942382 DOI: 10.1371/journal.pone.0089894] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Accepted: 01/28/2014] [Indexed: 11/18/2022] Open
Abstract
Dorsal root ganglia (DRG) are vulnerable to physical injury of the intervertebral foramen, and chronic compression of the DRG (CCD) an result in nerve root damage with persistent morbidity. The purpose of this study was to evaluate the effects of low level laser therapy (LLLT) on the DRG in a CCD model and to determine the mechanisms underlying these effects. CCD rats had L-shaped stainless-steel rods inserted into the fourth and fifth lumbar intervertebral foramen, and the rats were then subjected to 0 or 8 J/cm2 LLLT for 8 consecutive days following CCD surgery. Pain and heat stimuli were applied to test for hyperalgesia following CCD. The levels of TNF-α, IL-1β and growth-associated protein-43 (GAP-43) messenger RNA (mRNA) expression were measured via real-time PCR, and protein expression levels were analyzed through immunohistochemical analyses. Our data indicate that LLLT significantly decreased the tolerable sensitivity to pain and heat stimuli in the CCD groups. The expression levels of the pro-inflammatory cytokines TNF-α and IL-1β were increased following CCD, and we found that these increases could be reduced by the application of LLLT. Furthermore, the expression of GAP-43 was enhanced by LLLT. In conclusion, LLLT was able to enhance neural regeneration in rats following CCD and improve rat ambulatory behavior. The therapeutic effects of LLLT on the DRG during CCD may be exerted through suppression of the inflammatory response and induction of neuronal repair genes. These results suggest potential clinical applications for LLLT in the treatment of compression-induced neuronal disorders.
Collapse
Affiliation(s)
- Yi-Jen Chen
- Department of Physical Medicine and Rehabilitation, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yan-Hsiung Wang
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chau-Zen Wang
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Mei-Ling Ho
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Graduate Institute of Medicine, School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Po-Lin Kuo
- Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Mao-Hsiung Huang
- Department of Physical Medicine and Rehabilitation, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Department of Physical Medicine and Rehabilitation, Faculty of Medicine, School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chia-Hsin Chen
- Department of Physical Medicine and Rehabilitation, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Department of Physical Medicine and Rehabilitation, Faculty of Medicine, School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Physical Medicine and Rehabilitation, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan
| |
Collapse
|
19
|
Coelho S, Bastos-Pereira A, Fraga D, Chichorro J, Zampronio A. Etanercept reduces thermal and mechanical orofacial hyperalgesia following inflammation and neuropathic injury. Eur J Pain 2014; 18:957-67. [DOI: 10.1002/j.1532-2149.2013.00441.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2013] [Indexed: 12/31/2022]
Affiliation(s)
- S.C. Coelho
- Department of Pharmacology; Federal University of Paraná; Curitiba Brazil
| | | | - D. Fraga
- Department of Pharmacology; Federal University of Paraná; Curitiba Brazil
| | - J.G. Chichorro
- Department of Pharmacology; Federal University of Paraná; Curitiba Brazil
| | - A.R. Zampronio
- Department of Pharmacology; Federal University of Paraná; Curitiba Brazil
| |
Collapse
|
20
|
Abstract
There is increasing recognition of the involvement of the immune signaling molecule, tumor necrosis factor (TNF), in the pathophysiology of stroke and chronic brain dysfunction. TNF plays an important role both in modulating synaptic function and in the pathogenesis of neuropathic pain. Etanercept is a recombinant therapeutic that neutralizes pathologic levels of TNF. Brain imaging has demonstrated chronic intracerebral microglial activation and neuroinflammation following stroke and other forms of acute brain injury. Activated microglia release TNF, which mediates neurotoxicity in the stroke penumbra. Recent observational studies have reported rapid and sustained improvement in chronic post-stroke neurological and cognitive dysfunction following perispinal administration of etanercept. The biological plausibility of these results is supported by independent evidence demonstrating reduction in cognitive dysfunction, neuropathic pain, and microglial activation following the use of etanercept, as well as multiple studies reporting improvement in stroke outcome and cognitive impairment following therapeutic strategies designed to inhibit TNF. The causal association between etanercept treatment and reduction in post-stroke disability satisfy all of the Bradford Hill Criteria: strength of the association; consistency; specificity; temporality; biological gradient; biological plausibility; coherence; experimental evidence; and analogy. Recognition that chronic microglial activation and pathologic TNF concentration are targets that may be therapeutically addressed for years following stroke and other forms of acute brain injury provides an exciting new direction for research and treatment.
Collapse
|
21
|
Contribution of macrophages to peripheral neuropathic pain pathogenesis. Life Sci 2013; 93:870-81. [DOI: 10.1016/j.lfs.2013.10.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Revised: 09/10/2013] [Accepted: 10/05/2013] [Indexed: 11/24/2022]
|
22
|
Yu J, Fu P, Zhang Y, Liu S, Cui D. Pregabalin alters nociceptive behavior and expression level of P2X3 receptor in the spinal dorsal horn in a rat model induced by chronic compression of the dorsal root ganglion. Anat Rec (Hoboken) 2013; 296:1907-12. [PMID: 24136739 DOI: 10.1002/ar.22816] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Accepted: 08/05/2013] [Indexed: 01/07/2023]
Abstract
P2X3 receptors are present in the spinal dorsal horn (SDH) and play an essential role in the regulation of nociception and pain. Pregabalin (PGB) has been used as a new antiepileptic drug in the treatment of neuropathic pain. However, it is unclear whether PGB-induced analgesia was associated with the P2X3 receptor in SDH. Here, rats were randomly divided into four groups (n = 12 per group), including 2 sham operation groups, which was treated by normal saline (Sham + NS group) or PGB (Sham + PGB group), other 2 groups with chronic compression of the dorsal root ganglion, a normal saline-treated CCD group (CCD+NS group), and a PGB-treated CCD group (CCD + PGB group). A rat model of neuropathic pain was used by compressing the right L4 and L5 dorsal root ganglia. Each group was evaluated using the mechanical withdrawal threshold (MWT). The mRNA and protein levels of the P2X3 receptor in the ipsilateral SDH were measured by RT-PCR, western blot, and immunofluorescence on 14 day after CCD operation. CCD rats showed the highest mechanical hyperalgesia and the lowest pain threshold in the four groups. Simultaneously, CCD rats showed higher P2X3 mRNA and protein expression in ipsilateral side of the SDH than the sham operation rats. However, the MWT was increased and expression of P2X3 mRNA and protein in the ipsilateral SDH in CCD rats was decreased 3 days after PGB treatment. Thus, PGB may partially reverse mechanical hyperalgesia in CCD rats by inhibiting P2X3 receptor expression in the ipsilateral SDH.
Collapse
Affiliation(s)
- Jianfeng Yu
- Department of Anesthesiology, Weifang Medical University, Shandong Province, People's Republic of China
| | | | | | | | | |
Collapse
|
23
|
Strong JA, Xie W, Bataille FJ, Zhang JM. Preclinical studies of low back pain. Mol Pain 2013; 9:17. [PMID: 23537369 PMCID: PMC3617092 DOI: 10.1186/1744-8069-9-17] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 03/18/2013] [Indexed: 12/12/2022] Open
Abstract
Chronic low back pain is a major cause of disability and health care costs. Current treatments are inadequate for many patients. A number of preclinical models have been developed that attempt to mimic aspects of clinical conditions that contribute to low back pain. These involve application of nucleus pulposus material near the lumbar dorsal root ganglia (DRG), chronic compression of the DRG, or localized inflammation of the DRG. These models, which are primarily implemented in rats, have many common features including behavioral hypersensitivity of the hindpaw, enhanced excitability and spontaneous activity of sensory neurons, and locally elevated levels of inflammatory mediators including cytokines. Clinically, epidural injection of steroids (glucocorticoids) is commonly used when more conservative treatments fail, but clinical trials evaluating these treatments have yielded mixed results. There are relatively few preclinical studies of steroid effects in low back pain models. One preclinical study suggests that the mineralocorticoid receptor, also present in the DRG, may have pro-inflammatory effects that oppose the activation of the glucocorticoid receptor. Although the glucocorticoid receptor is the target of anti-inflammatory steroids, many clinically used steroids activate both receptors. This could be one explanation for the limited effects of epidural steroids in some patients. Additional preclinical research is needed to address other possible reasons for limited efficacy of steroids, such as central sensitization or presence of an ongoing inflammatory stimulus in some forms of low back pain.
Collapse
Affiliation(s)
- Judith A Strong
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0531, USA
| | | | | | | |
Collapse
|
24
|
Tobinick E, Kim NM, Reyzin G, Rodriguez-Romanacce H, DePuy V. Selective TNF inhibition for chronic stroke and traumatic brain injury: an observational study involving 629 consecutive patients treated with perispinal etanercept. CNS Drugs 2012; 26:1051-70. [PMID: 23100196 DOI: 10.1007/s40263-012-0013-2] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Brain injury from stroke and traumatic brain injury (TBI) may result in a persistent neuroinflammatory response in the injury penumbra. This response may include microglial activation and excess levels of tumour necrosis factor (TNF). Previous experimental data suggest that etanercept, a selective TNF inhibitor, has the ability to ameliorate microglial activation and modulate the adverse synaptic effects of excess TNF. Perispinal administration may enhance etanercept delivery across the blood-CSF barrier. OBJECTIVE The objective of this study was to systematically examine the clinical response following perispinal administration of etanercept in a cohort of patients with chronic neurological dysfunction after stroke and TBI. METHODS After approval by an independent external institutional review board (IRB), a chart review of all patients with chronic neurological dysfunction following stroke or TBI who were treated open-label with perispinal etanercept (PSE) from November 1, 2010 to July 14, 2012 at a group medical practice was performed. RESULTS The treated cohort included 629 consecutive patients. Charts of 617 patients following stroke and 12 patients following TBI were reviewed. The mean age of the stroke patients was 65.8 years ± 13.15 (range 13-97). The mean interval between treatment with PSE and stroke was 42.0 ± 57.84 months (range 0.5-419); for TBI the mean interval was 115.2 ± 160.22 months (range 4-537). Statistically significant improvements in motor impairment, spasticity, sensory impairment, cognition, psychological/behavioural function, aphasia and pain were noted in the stroke group, with a wide variety of additional clinical improvements noted in individuals, such as reductions in pseudobulbar affect and urinary incontinence. Improvements in multiple domains were typical. Significant improvement was noted irrespective of the length of time before treatment was initiated; there was evidence of a strong treatment effect even in the subgroup of patients treated more than 10 years after stroke and TBI. In the TBI cohort, motor impairment and spasticity were statistically significantly reduced. DISCUSSION Irrespective of the methodological limitations, the present results provide clinical evidence that stroke and TBI may lead to a persistent and ongoing neuroinflammatory response in the brain that is amenable to therapeutic intervention by selective inhibition of TNF, even years after the acute injury. CONCLUSION Excess TNF contributes to chronic neurological, neuropsychiatric and clinical impairment after stroke and TBI. Perispinal administration of etanercept produces clinical improvement in patients with chronic neurological dysfunction following stroke and TBI. The therapeutic window extends beyond a decade after stroke and TBI. Randomized clinical trials will be necessary to further quantify and characterize the clinical response.
Collapse
Affiliation(s)
- Edward Tobinick
- Institute of Neurological Recovery, 100 UCLA Medical Plaza, Suites 205-210, Los Angeles, CA 90095, USA.
| | | | | | | | | |
Collapse
|
25
|
Benoist M. The Michel Benoist and Robert Mulholland yearly European Spine Journal review: a survey of the "medical" articles in the European Spine Journal, 2011. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2011; 21:185-94. [PMID: 22189696 DOI: 10.1007/s00586-011-2126-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 12/13/2011] [Indexed: 01/07/2023]
Affiliation(s)
- Michel Benoist
- Département de Rhumatologie, Service de Chirurgie Orthopédique, Hôpital Beaujon, 100 Boulevard Général Leclerc, 92118 Clichy, France.
| |
Collapse
|