1
|
Garay RP. Recent clinical trials with stem cells to slow or reverse normal aging processes. FRONTIERS IN AGING 2023; 4:1148926. [PMID: 37090485 PMCID: PMC10116573 DOI: 10.3389/fragi.2023.1148926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/24/2023] [Indexed: 04/25/2023]
Abstract
Aging is associated with a decline in the regenerative potential of stem cells. In recent years, several clinical trials have been launched in order to evaluate the efficacy of mesenchymal stem cell interventions to slow or reverse normal aging processes (aging conditions). Information concerning those clinical trials was extracted from national and international databases (United States, EU, China, Japan, and World Health Organization). Mesenchymal stem cell preparations were in development for two main aging conditions: physical frailty and facial skin aging. With regard to physical frailty, positive results have been obtained in phase II studies with intravenous Lomecel-B (an allogeneic bone marrow stem cell preparation), and a phase I/II study with an allogeneic preparation of umbilical cord-derived stem cells was recently completed. With regard to facial skin aging, positive results have been obtained with an autologous preparation of adipose-derived stem cells. A further sixteen clinical trials for physical frailty and facial skin aging are currently underway. Reducing physical frailty with intravenous mesenchymal stem cell administration can increase healthy life expectancy and decrease costs to the public health system. However, intravenous administration runs the risk of entrapment of the stem cells in the lungs (and could raise safety concerns). In addition to aesthetic purposes, clinical research on facial skin aging allows direct evaluation of tissue regeneration using sophisticated and precise methods. Therefore, research on both conditions is complementary, which facilitates a global vision.
Collapse
Affiliation(s)
- Ricardo P. Garay
- Pharmacology and Therapeutics, Craven, 91360 Villemoisson-sur-Orge, France
- CNRS, National Centre of Scientific Research, Paris, France
- *Correspondence: Ricardo P. Garay,
| |
Collapse
|
2
|
Autologous mesenchymal stem cells in the treatment of spinal aneurysmal bone cyst. Pathol Res Pract 2021; 229:153722. [PMID: 34952421 DOI: 10.1016/j.prp.2021.153722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/22/2021] [Accepted: 11/25/2021] [Indexed: 11/20/2022]
Abstract
PURPOSE We retrospectively analyzed a cohort of patients treated at our Centre with bone marrow concentrated (BMC) injection for aneurysmal bone cyst (ABC) of the spine, in order to propose this treatment as a valid alternative for the management of ABCs. METHODS Fourteen patients (6 male, 8 female) were treated between June 2014 to December 2019 with BMC injection for ABC of the spine. The mean age was 15.5 years. The mean follow up was 37.4 months (range 12-60 months). The dimension of the cyst and the degree of ossification were measured by Computed Tomography (CT) scans before the treatment and during follow-up visits. RESULTS Six patients received a single dose of BMC, five patients received two doses and in three patients three doses of BMC were administered. The mean ossification of the cyst (expressed in Hounsfield units) increased statistically from 43.48 ± 2.36 HU to 161.71 ± 23.48 HU during follow-up time and the ossification was associated to an improvement of the clinical outcomes. The mean ossification over time was significantly higher in patients treated with a single injection compared to patients treated with multiple injections. No significant difference in ossification was found between cervical and non-cervical localization of the cyst. Moreover, the initial size of the cyst was not statistically associated with the degree of ossification during follow-up CONCLUSIONS: Results of this paper reinforce our previous evidence on the use of BMC as a valid alternative for spinal ABC management when SAE treatment is contraindicated or ineffective.
Collapse
|
3
|
Otsuka T, Maeda Y, Kurose T, Nakagawa K, Mitsuhara T, Kawahara Y, Yuge L. Comparisons of Neurotrophic Effects of Mesenchymal Stem Cells Derived from Different Tissues on Chronic Spinal Cord Injury Rats. Stem Cells Dev 2021; 30:865-875. [PMID: 34148410 DOI: 10.1089/scd.2021.0070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cell-based therapies with mesenchymal stem cells (MSCs) are considered as promising strategies for spinal cord injury (SCI). MSCs have unique characteristics due to differences in the derived tissues. However, relatively few studies have focused on differences in the therapeutic effects of MSCs derived from different tissues. In this study, the therapeutic effects of adipose tissue-derived MSCs, bone marrow-derived MSCs, and cranial bone-derived MSCs (cMSCs) on chronic SCI model rats were compared. MSCs were established from the collected adipose tissue, bone marrow, and cranial bone. Neurotrophic factor expression of each MSC type was analyzed by real-time PCR. SCI rats were established using the weight-drop method and transplanted intravenously with MSCs at 4 weeks after SCI. Hindlimb motor function was evaluated from before injury to 4 weeks after transplantation. Endogenous neurotrophic factor and neural repair factor expression in spinal cord (SC) tissue were examined by real-time PCR and western blot analyses. Although there were no differences in the expression levels of cell surface markers and multipotency, expression of Bdnf, Ngf, and Sort1 (Nt-3) was relatively higher in cMSCs. Transplantation of cMSCs improved motor function of chronic SCI model rats. Although there was no difference in the degree of engraftment of transplanted cells in the injured SC tissue, transplantation of cMSCs enhanced Bdnf, TrkB, and Gap-43 messenger RNA expression and synaptophysin protein expression in injured SC tissue. As compared with MSCs derived other tissues, cMSCs highly express many neurotrophic factors, which improved motor function in chronic SCI model rats by promoting endogenous neurotrophic and neural plasticity factors. These results demonstrate the efficacy of cMSCs in cell-based therapy for chronic SCI.
Collapse
Affiliation(s)
- Takashi Otsuka
- Division of Bio-Environmental Adaptation Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yuyo Maeda
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Tomoyuki Kurose
- Division of Bio-Environmental Adaptation Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kei Nakagawa
- Division of Bio-Environmental Adaptation Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takafumi Mitsuhara
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | | | - Louis Yuge
- Division of Bio-Environmental Adaptation Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.,Space Bio-Laboratories Co., Ltd., Hiroshima, Japan
| |
Collapse
|
4
|
Vertebral Bone Marrow-Derived Mesenchymal Stromal Cells from Osteoporotic and Healthy Patients Possess Similar Differentiation Properties In Vitro. Int J Mol Sci 2020; 21:ijms21218309. [PMID: 33167522 PMCID: PMC7663957 DOI: 10.3390/ijms21218309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/27/2020] [Accepted: 11/04/2020] [Indexed: 02/06/2023] Open
Abstract
Osteoporosis is a disease characterized by low bone mass and an increased risk of fractures. Although several cellular players leading to osteoporosis have been identified, the role of mesenchymal stromal cells (MSC) is still not fully elaborated. The aim of this study was, therefore, to isolate and characterize MSCs from vertebral body of healthy non-osteoporotic and osteoporotic patients, with a particular focus on their osteogenic differentiation potential. Isolated MSCs were characterized by their osteogenic, adipogenic, and chondrogenic differentiation, as well as surface marker expression, proliferation behavior, and immunomodulatory capacity. The mineralization process was confirmed using Alizarin Red S and alkaline phosphatase (ALP) stains and further evaluated by determining ALP activity, mineral deposition, and free phosphate ion release. MSCs from both healthy and osteoporotic patients showed common fibroblast-like morphology and similar proliferation behavior. They expressed the typical MSC surface markers and possessed immunomodulatory capacity. Both groups demonstrated solid trilineage differentiation potential; osteogenic differentiation was further confirmed by increased ALP activity, deposition of inorganic crystals, phosphate ion release, and expression of osteoblast marker genes. Overall, MSCs from osteoporotic and non-osteoporotic patients showed neither a difference in general MSC features nor in the detailed analysis regarding osteogenic differentiation. These data suggest that vertebral body MSCs from osteoporotic patients were not impaired; rather, they possessed full osteogenic potential compared to MSCs from non-osteoporotic patients.
Collapse
|
5
|
A Rationale for the Use of Clotted Vertebral Bone Marrow to Aid Tissue Regeneration Following Spinal Surgery. Sci Rep 2020; 10:4115. [PMID: 32139727 PMCID: PMC7058026 DOI: 10.1038/s41598-020-60934-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/19/2020] [Indexed: 12/25/2022] Open
Abstract
Vertebral body bone marrow aspirate (V-BMA), easily accessible simultaneously with the preparation of the site for pedicle screw insertion during spinal procedures, is becoming an increasingly used cell therapy approach in spinal surgery. However, the main drawbacks for V-BMA use are the lack of a standardized procedure and of a structural texture with the possibility of diffusion away from the implant site. The aim of this study was to evaluate, characterize and compare the biological characteristics of MSCs from clotted V-BMA and MSCs from whole and concentrate V-BMAs. MSCs from clotted V-BMA showed the highest cell viability and growth factors expression (TGF-β, VEGF-A, FGF2), the greatest colony forming unit (CFU) potency, cellular homogeneity, ability to differentiate towards the osteogenic (COL1AI, TNFRSF11B, BGLAP) and chondrogenic phenotype (SOX9) and the lowest ability to differentiate toward the adipogenic lineage (ADIPOQ) in comparison to all the other culture conditions. Additionally, results revealed that MSCs, differently isolated, expressed different level of HOX and TALE signatures and that PBX1 and MEIS3 were down-regulated in MSCs from clotted V-BMA in comparison to concentrated one. The study demonstrated for the first time that the cellular source inside the clotted V-BMA showed the best biological properties, representing an alternative and advanced cell therapy approach for patients undergoing spinal surgery.
Collapse
|
6
|
Abdelrazik H, Giordano E, Barbanti Brodano G, Griffoni C, De Falco E, Pelagalli A. Substantial Overview on Mesenchymal Stem Cell Biological and Physical Properties as an Opportunity in Translational Medicine. Int J Mol Sci 2019; 20:ijms20215386. [PMID: 31671788 PMCID: PMC6862078 DOI: 10.3390/ijms20215386] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 10/25/2019] [Indexed: 12/18/2022] Open
Abstract
Mesenchymal stem cells (MSC) have piqued worldwide interest for their extensive potential to treat a large array of clinical indications, their unique and controversial immunogenic and immune modulatory properties allowing ample discussions and debates for their possible applications. Emerging data demonstrating that the interaction of biomaterials and physical cues with MSC can guide their differentiation into specific cell lineages also provide new interesting insights for further MSC manipulation in different clinical applications. Moreover, recent discoveries of some regulatory molecules and signaling pathways in MSC niche that may regulate cell fate to distinct lineage herald breakthroughs in regenerative medicine. Although the advancement and success in the MSC field had led to an enormous increase in the amount of ongoing clinical trials, we still lack defined clinical therapeutic protocols. This review will explore the exciting opportunities offered by human and animal MSC, describing relevant biological properties of these cells in the light of the novel emerging evidence mentioned above while addressing the limitations and challenges MSC are still facing.
Collapse
Affiliation(s)
- Heba Abdelrazik
- Department of Clinical Pathology, Cairo University, Cairo 1137, Egypt.
- Department of Diagnosis, central laboratory department, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Policlinico San Martino, 16131 Genoa, Italy.
| | - Emanuele Giordano
- Department of Electrical, Electronic and Information Engineering "Guglielmo Marconi" (DEI), University of Bologna, 47522 Cesena, Italy.
| | - Giovanni Barbanti Brodano
- Department of Oncological and Degenerative Spine Surgery, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy.
| | - Cristiana Griffoni
- Department of Oncological and Degenerative Spine Surgery, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy.
| | - Elena De Falco
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy.
- Mediterranea Cardiocentro, 80122 Napoli, Italy.
| | - Alessandra Pelagalli
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", 80131 Naples, Italy.
- Institute of Biostructures and Bioimages (IBB), National Research Council (CNR), 80131 Naples, Italy.
| |
Collapse
|
7
|
Porwal K, Pal S, Tewari D, Pal China S, Singh P, Chandra Tewari M, Prajapati G, Singh P, Cheruvu S, Khan YA, Sanyal S, Gayen JR, Ampapathi R, Mridha AR, Chattopadhyay N. Increased Bone Marrow-Specific Adipogenesis by Clofazimine Causes Impaired Fracture Healing, Osteopenia, and Osteonecrosis Without Extraskeletal Effects in Rats. Toxicol Sci 2019; 172:167-180. [PMID: 31393584 DOI: 10.1093/toxsci/kfz172] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 07/12/2019] [Accepted: 07/12/2019] [Indexed: 12/18/2022] Open
Abstract
AbstractMycobacterium leprae infection causes bone lesions and osteoporosis, however, the effect of antileprosy drugs on the bone is unknown. We, therefore, set out to address it by investigating osteogenic differentiation from bone marrow (BM)-derived mesenchymal stem cells (MSCs). Out of 7 antileprosy drugs, only clofazimine (CFZ) reduced MSCs viability (IC50 ∼ 1 μM) and their osteogenic differentiation but increased adipogenic differentiation on a par with rosiglitazone, and this effect was blocked by a peroxisome proliferator-activated receptor gamma antagonist, GW9662. CFZ also decreased osteoblast viability and resulted in impaired bone regeneration in a rat femur osteotomy model at one-third human drug dose owing to increased callus adipogenesis as GW9662 prevented this effect. CFZ treatment decreased BM MSC population and homing of MSC to osteotomy site despite drug levels in BM being much less than its in vitro IC50 value. In adult rats, CFZ caused osteopenia in long bones marked by suppressed osteoblast function due to enhanced adipogenesis and increased osteoclast functions. A robust increase in marrow adipose tissue (MAT) by CFZ did not alter the hematologic parameters but likely reduced BM vascular bed leading to osteonecrosis (ON) characterized by empty osteocyte lacunae. However, CFZ had no effect on visceral fat content and was not associated with any metabolic and hematologic changes. Levels of unsaturated fatty acids in MAT were higher than saturated fatty acids and CFZ further increased the former. From these data, we conclude that CFZ has adverse skeletal effects and could be used for creating a rodent ON model devoid of extraskeletal effects.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Sabyasachi Sanyal
- Division of Biochemistry, CSIR-Central Drug Research Institute, Lucknow 226 031, India
| | | | | | - Asit R Mridha
- Department of Pathology, All India Institute of Medical Sciences, New Delhi 110023, India
| | | |
Collapse
|
8
|
Abstract
STUDY DESIGN Laboratory study. OBJECTIVE Mesenchymal stem cells (MSCs) derived from whole bone marrow aspirate (BMA) and MSCs derived from density-gradient centrifugation were isolated from vertebral bodies and cultured under either hypoxic or normoxic conditions to evaluate their biological characteristics and HOX and TALE signature able to improve spinal surgery procedures. SUMMARY OF BACKGROUND DATA The use of spinal fusion procedures has increased over the last decades; however, failed fusion still remains an important problem. Clinician and researchers focused their attention on the therapeutic potential of bone marrow MSCs and several methods for their isolation and cultivation have been developed. However, the best source and techniques are still debated. METHODS MSCs morphology, surface markers, colony-forming-units, and three lineage differentiation through quantitative real-time PCR (qPCR) were evaluated. Additionally, gene expression analysis of HOX and TALE signatures during osteogenic differentiation were analyzed. RESULTS Our study showed that MSCs derived from whole BMA were successfully isolated and when cultured under hypoxic condition presented greater proliferation, larger colonies, and differentiated onto osteogenic and chondrogenic lineage with greater ability, while adipogenic differentiation was less efficient. Results also revealed that MSCs, differently isolated and cultured, expressed different level of HOX and TALE signatures and that HOXB8 were up-regulated with greater efficiency in MSCs derived from whole BMA under hypoxia. CONCLUSION Our data indicated that hypoxic preconditioning of MSCs derived from whole BMA exhibited more suitable biological characteristics and different level of HOX and TALE gene activation. We, therefore, concluded that vertebral body MSCs derived from whole BMA may provide alternative sources of MSCs for tissue engineering applications for spine surgery. LEVEL OF EVIDENCE N/A.
Collapse
|
9
|
Makino T, Tsukazaki H, Ukon Y, Tateiwa D, Yoshikawa H, Kaito T. The Biological Enhancement of Spinal Fusion for Spinal Degenerative Disease. Int J Mol Sci 2018; 19:ijms19082430. [PMID: 30126106 PMCID: PMC6121547 DOI: 10.3390/ijms19082430] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/04/2018] [Accepted: 08/14/2018] [Indexed: 12/16/2022] Open
Abstract
In this era of aging societies, the number of elderly individuals who undergo spinal arthrodesis for various degenerative diseases is increasing. Poor bone quality and osteogenic ability in older patients, due to osteoporosis, often interfere with achieving bone fusion after spinal arthrodesis. Enhancement of bone fusion requires shifting bone homeostasis toward increased bone formation and reduced resorption. Several biological enhancement strategies of bone formation have been conducted in animal models of spinal arthrodesis and human clinical trials. Pharmacological agents for osteoporosis have also been shown to be effective in enhancing bone fusion. Cytokines, which activate bone formation, such as bone morphogenetic proteins, have already been clinically used to enhance bone fusion for spinal arthrodesis. Recently, stem cells have attracted considerable attention as a cell source of osteoblasts, promising effects in enhancing bone fusion. Drug delivery systems will also need to be further developed to assure the safe delivery of bone-enhancing agents to the site of spinal arthrodesis. Our aim in this review is to appraise the current state of knowledge and evidence regarding bone enhancement strategies for spinal fusion for degenerative spinal disorders, and to identify future directions for biological bone enhancement strategies, including pharmacological, cell and gene therapy approaches.
Collapse
Affiliation(s)
- Takahiro Makino
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Hiroyuki Tsukazaki
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Yuichiro Ukon
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Daisuke Tateiwa
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Hideki Yoshikawa
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Takashi Kaito
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
10
|
Vertebral body versus iliac crest bone marrow as a source of multipotential stromal cells: Comparison of processing techniques, tri-lineage differentiation and application on a scaffold for spine fusion. PLoS One 2018; 13:e0197969. [PMID: 29795650 PMCID: PMC5967748 DOI: 10.1371/journal.pone.0197969] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 05/13/2018] [Indexed: 01/25/2023] Open
Abstract
The potential use of bone progenitors, multipotential stromal cells (MSCs) helping spine fusion is increasing, but convenient MSC sources and effective processing methods are critical factors yet to be optimised. The aim of this study was to test the effect of bone marrow processing on the MSC abundance and to compare the differentiation capabilities of vertebral body-bone marrow (VB-BM) MSCs versus iliac crest-bone marrow (IC-BM) MSCs. We assessed the effect of the red blood cell lysis (ammonium chloride, AC) and density-gradient centrifugation (Lymphoprep™, LMP), on the extracted VB-BM and IC-BM MSC numbers. The MSC abundance (indicated by colony counts and CD45lowCD271high cell numbers), phenotype, proliferation and tri-lineage differentiation of VB-BM MSCs were compared with donor-matched IC-BM MSCs. Importantly, the MSC attachment and osteogenesis were examined when VB-BM and IC-BM samples were loaded on a beta-tricalcium phosphate scaffold. In contrast to LMP, using AC yielded more colonies from IC-BM and VB-BM aspirates (p = 0.0019 & p = 0.0201 respectively). For IC-BM and VB-BM, the colony counts and CD45lowCD271high cell numbers were comparable (p = 0.5186, p = 0.2640 respectively). Furthermore, cultured VB-BM MSCs exhibited the same phenotype, proliferative and adipogenic potential, but a higher osteogenic and chondrogenic capabilities than IC-BM MSCs (p = 0.0010 and p = 0.0005 for calcium and glycosaminoglycan (GAG) levels, respectively). The gene expression data confirmed higher chondrogenesis for VB-BM MSCs than IC-BM MSCs, but osteogenic gene expression levels were comparable. When loaded on Vitoss™, both MSCs showed a similar degree of attachment and survival, but a better osteogenic ability was detected for VB-BM MSCs as measured by alkaline phosphatase activity (p = 0.0386). Collectively, the BM processing using AC had more MSC yield than using LMP. VB-BM MSCs have a comparable phenotype and proliferative capacity, but higher chondrogenesis and osteogenesis with or without using scaffold than donor-matched IC-BM MSCs. Given better accessibility, VB-BM could be an ideal MSC source for spinal bone fusion.
Collapse
|
11
|
Sacchetti B, Fatica A, Sorci M, Sorrentino A, Signore M, Cerio A, Felicetti F, Feo AD, Pelosi E, Caré A, Pescarmona E, Gordeladze JO, Valtieri M. Effect of miR-204&211 and RUNX2 control on the fate of human mesenchymal stromal cells. Regen Med Res 2017; 5:2. [PMID: 29206625 DOI: 10.1051/rmr/170004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 11/09/2017] [Indexed: 12/14/2022] Open
Abstract
MiR-204 and 211 enforced expression in murine mesenchymal stromal cells (MSCs) has been shown to induce adipogenesis and impair osteogenesis, through RUNX2 down-modulation. This mechanism has been suggested to play a role in osteoporosis associated with obesity. However, two further fundamental MSC functions, chondrogenesis and hematopoietic supporting activity, have not yet been explored. To this end, we transduced, by a lenti-viral vector, miR-204 and 211 in a model primary human MSC line, opportunely chosen among our MSC collection for displaying all properties of canonical bone marrow MSCs, except adipogenesis. Enforced expression of miR-204&211 in these cells, rescued adipogenesis, and inhibited osteogenesis, as previously reported in murine MSCs, but, surprisingly, also damaged cartilage formation and hematopoietic supporting activity, which were never explored before. RUNX2 has been previously indicated as the target of miR-204&211, whose down modulation is responsible for the switch from osteogenesis to adipogenesis. However, the additional disruption of chondrogenesis and hematopoietic supporting activity, which we report here, might depend on diverse miR-204&211 targets. To investigate this hypothesis, permanent RUNX2 knock-down was performed. Sh-RUNX2 fully reproduced the phenotypes induced by miR-204&211, confirming that RUNX2 down modulation is the major event leading to the reported functional modification on our MSCs. It seems thus apparent that RUNX2, a recognized master gene for osteogenesis, might rule all four MSC commitment and differentiation processes. Hence, the formerly reported role of miR204&211 and RUNX2 in osteoporosis and obesity, coupled with our novel observation showing inhibition of cartilage differentiation and hematopoietic support, strikingly resemble the clinical traits of metabolic syndrome, where osteoarthritis, osteoporosis, anaemia and obesity occur together. Our observations, corroborating and extending previous observations, suggest that miR-204&211-RUNX2 axis in human MSCs is possibly involved in the pathogenesis of this rapidly growing disease in industrialized countries, for possible therapeutic intervention to regenerate former homeostasis.
Collapse
Affiliation(s)
| | - Alessandro Fatica
- Department of Biology and Biotechnology Charles Darwin, "La Sapienza" University, Rome, Italy
| | - Melissa Sorci
- Department of Biology and Biotechnology Charles Darwin, "La Sapienza" University, Rome, Italy
| | | | - Michele Signore
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Annamaria Cerio
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Federica Felicetti
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Alessandra De Feo
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Elvira Pelosi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Alessandra Caré
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | | | - Jan Oxholm Gordeladze
- Institute of basic Medical Science, Department for Molecular Medicine, Section for Biochemistry, University of Oslo, Oslo, Norway
| | - Mauro Valtieri
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy - Sbarro Institute for Cancer Research and Molecular Medicine & Center of Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
12
|
Davies BM, Snelling SJB, Quek L, Hakimi O, Ye H, Carr A, Price AJ. Identifying the optimum source of mesenchymal stem cells for use in knee surgery. J Orthop Res 2017; 35:1868-1875. [PMID: 27935105 DOI: 10.1002/jor.23501] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 12/06/2016] [Indexed: 02/04/2023]
Abstract
Single sitting procedures where the mononuclear cell fraction is extracted from bone marrow and implanted directly into cartilage and bone defects are becoming more popular as novel treatments for cartilage defects which have, until now had few treatment options. This is on the basis that the mesenchymal stem cells (MSCs) contained within will repair the damaged tissue. This study sought to determine if the femur and tibia could provide equivalent amounts of mesenchymal stem cells, with equivalent viability and proliferative capacity, to that obtained from the gold standard of the pelvis in order to potentially reduce the morbidity associated with these procedures. Bone marrow was extracted from the pelvis, femur, and tibia of human subjects. The mononuclear cell fraction was extracted and cultured in the laboratory. Mesenchymal stem cell populations were assessed using a colony forming unit count. Viability was assessed using a PrestoBlue viability assay. Population doubling number was calculated between the end of passage 0 and passage three to determine the proliferative abilities of the different populations. Finally, the cell surface phenotype of the cells was determined by flow cytometry. The results showed that the pelvis was superior to the femur and tibia in terms of the number of stem cells isolated. There was no statistically significant difference in the phenotype of the cells isolated from different locations. This work shows that when undertaking single sitting procedures, the pelvis remains the optimum source for obtaining MSCs, despite the morbidity associated with bone marrow collection from the pelvis. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1868-1875, 2017.
Collapse
Affiliation(s)
- Benjamin M Davies
- Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, England, United Kingdom
| | - Sarah J B Snelling
- Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, England, United Kingdom
| | - Lynn Quek
- Weatherall Institute of Molecular Medicine, University of Oxford, England, United Kingdom
| | - Osnat Hakimi
- Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, England, United Kingdom
| | - Hua Ye
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, England, United Kingdom
| | - Andrew Carr
- Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, England, United Kingdom
| | - Andrew J Price
- Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, England, United Kingdom
| |
Collapse
|
13
|
Mesenchymal Stem Cells for the Treatment of Spinal Arthrodesis: From Preclinical Research to Clinical Scenario. Stem Cells Int 2017; 2017:3537094. [PMID: 28286524 PMCID: PMC5327761 DOI: 10.1155/2017/3537094] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 01/05/2017] [Indexed: 02/07/2023] Open
Abstract
The use of spinal fusion procedures has rapidly augmented over the last decades and although autogenous bone graft is the “gold standard” for these procedures, alternatives to its use have been investigated over many years. A number of emerging strategies as well as tissue engineering with mesenchymal stem cells (MSCs) have been planned to enhance spinal fusion rate. This descriptive systematic literature review summarizes the in vivo studies, dealing with the use of MSCs in spinal arthrodesis surgery and the state of the art in clinical applications. The review has yielded promising evidence supporting the use of MSCs as a cell-based therapy in spinal fusion procedures, thus representing a suitable biological approach able to reduce the high cost of osteoinductive factors as well as the high dose needed to induce bone formation. Nevertheless, despite the fact that MSCs therapy is an interesting and important opportunity of research, in this review it was detected that there are still doubts about the optimal cell concentration and delivery method as well as the ideal implantation techniques and the type of scaffolds for cell delivery. Thus, further inquiry is necessary to carefully evaluate the clinical safety and efficacy of MSCs use in spine fusion.
Collapse
|
14
|
Barbanti-Brodano G, Girolami M, Ghermandi R, Terzi S, Gasbarrini A, Bandiera S, Boriani S. Aneurysmal bone cyst of the spine treated by concentrated bone marrow: clinical cases and review of the literature. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2017; 26:158-166. [DOI: 10.1007/s00586-017-4978-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 12/11/2016] [Accepted: 01/24/2017] [Indexed: 11/30/2022]
|
15
|
Isolation and Characterization of Human Mesenchymal Stem Cells From Facet Joints and Interspinous Ligaments. Spine (Phila Pa 1976) 2016; 41:E1-7. [PMID: 26555840 DOI: 10.1097/brs.0000000000001178] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
STUDY DESIGN A descriptive in vitro study on isolation and differentiation of human mesenchymal stem cells (MSCs) derived from the facet joints and interspinous ligaments. OBJECTIVE To isolate cells from the facet joints and interspinous ligaments and investigate their surface marker profile and differentiation potentials. SUMMARY OF BACKGROUND DATA Lumbar spinal canal stenosis and ossification of the posterior longitudinal ligament are progressive conditions characterized by the hypertrophy and ossification of ligaments and joints within the spinal canal. MSCs are believed to play a role in the advancement of these diseases and the existence of MSCs has been demonstrated within the ligamentum flavum and posterior longitudinal ligament. The aim of this study was to investigate whether these cells could also be found within facet joints and interspinous ligaments. METHODS Samples were harvested from 10 patients undergoing spinal surgery. The MSCs from facet joints and interspinous ligaments were isolated using direct tissue explant technique. Cell surface antigen profilings were performed via flow cytometry. Their lineage differentiation potentials were analyzed. RESULTS The facet joints and interspinous ligaments-derived MSCs have the tri-lineage potential to be differentiated into osteogenic, adipogenic, and chondrogenic cells under appropriate inductions. Flow cytometry analysis revealed both cell lines expressed MSCs markers. Both facet joints and interspinous ligaments-derived MSCs expressed marker genes for osteoblasts, adipocytes, and chondrocytes. CONCLUSION The facet joints and interspinous ligaments may provide alternative sources of MSCs for tissue engineering applications. The facet joints and interspinous ligaments-derived MSCs are part of the microenvironment of the human ligaments of the spinal column and might play a crucial role in the development and progression of degenerative spine conditions.
Collapse
|