1
|
Chang SY, Kang DH, Cho SK. Innovative Developments in Lumbar Interbody Cage Materials and Design: A Comprehensive Narrative Review. Asian Spine J 2024; 18:444-457. [PMID: 38146053 PMCID: PMC11222887 DOI: 10.31616/asj.2023.0407] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 12/27/2023] Open
Abstract
This review comprehensively examines the evolution and current state of interbody cage technology for lumbar interbody fusion (LIF). This review highlights the biomechanical and clinical implications of the transition from traditional static cage designs to advanced expandable variants for spinal surgery. The review begins by exploring the early developments in cage materials, highlighting the roles of titanium and polyetheretherketone in the advancement of LIF techniques. This review also discusses the strengths and limitations of these materials, leading to innovations in surface modifications and the introduction of novel materials, such as tantalum, as alternative materials. Advancements in three-dimensional printing and surface modification technologies form a significant part of this review, emphasizing the role of these technologies in enhancing the biomechanical compatibility and osseointegration of interbody cages. In addition, this review explores the increase in biodegradable and composite materials such as polylactic acid and polycaprolactone, addressing their potential to mitigate long-term implant-related complications. A critical evaluation of static and expandable cages is presented, including their respective clinical and radiological outcomes. While static cages have been a mainstay of LIF, expandable cages are noted for their adaptability to the patient's anatomy, reducing complications such as cage subsidence. However, this review highlights the ongoing debate and the lack of conclusive evidence regarding the superiority of either cage type in terms of clinical outcomes. Finally, this review proposes future directions for cage technology, focusing on the integration of bioactive substances and multifunctional coatings and the development of patient-specific implants. These advancements aim to further enhance the efficacy, safety, and personalized approach of spinal fusion surgeries. Moreover, this review offers a nuanced understanding of the evolving landscape of cage technology in LIF and provides insights into current practices and future possibilities in spinal surgery.
Collapse
Affiliation(s)
- Sam Yeol Chang
- Department of Orthopaedic Surgery, Seoul National University Hospital, Seoul,
Korea
- Department of Orthopaedic Surgery, Seoul National University College of Medicine, Seoul,
Korea
| | - Dong-Ho Kang
- Department of Orthopaedic Surgery, Seoul National University College of Medicine, Seoul,
Korea
- Department of Orthopaedic Surgery, Spine Center, Samsung Medical Center, Seoul,
Korea
| | - Samuel K. Cho
- Department of Orthopaedic Surgery, Icahn School of Medicine at Mount Sinai, New York, NY,
USA
| |
Collapse
|
2
|
Mirzaei M, Dodi G, Gardikiotis I, Pasca SA, Mirdamadi S, Subra G, Echalier C, Puel C, Morent R, Ghobeira R, Soleymanzadeh N, Moser M, Goriely S, Shavandi A. 3D high-precision melt electro written polycaprolactone modified with yeast derived peptides for wound healing. BIOMATERIALS ADVANCES 2023; 149:213361. [PMID: 36965401 DOI: 10.1016/j.bioadv.2023.213361] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/27/2023] [Accepted: 02/25/2023] [Indexed: 03/12/2023]
Abstract
In this study melt electro written (MEW) scaffolds of poly(ε-caprolactone) PCL are decorated with anti-inflammatory yeast-derived peptide for skin wound healing. Initially, 13 different yeast-derived peptides were screened and analyzed using both in vitro and in vivo assays. The MEW scaffolds are functionalized with the selected peptide VLSTSFPPW (VW-9) with the highest activity in reducing pro-inflammatory cytokines and stimulating fibroblast proliferation, migration, and collagen production. The peptide was conjugated to the MEW scaffolds using carbodiimide (CDI) and thiol chemistry, with and without plasma treatment, as well as by directly mixing the peptide with the polymer before printing. The MEW scaffolds modified using CDI and thiol chemistry with plasma treatment showed improved fibroblast and macrophage penetration and adhesion, as well as increased cell proliferation and superior anti-inflammatory properties, compared to the other groups. When applied to full-thickness excisional wounds in rats, the peptide-modified MEW scaffold significantly enhanced the healing process compared to controls (p < 0.05). This study provides proof of concept for using yeast-derived peptides to functionalize biomaterials for skin wound healing.
Collapse
Affiliation(s)
- Mahta Mirzaei
- Université libre de Bruxelles (ULB), École polytechnique de Bruxelles - BioMatter unit, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium; Centre for Food Chemistry and Technology, Ghent University Global Campus, 119-5 Songdomunhwa-Ro, Yeonsu-Gu, Incheon, South Korea; Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Gianina Dodi
- Faculty of Medical Bioengineering, Grigore T. Popa University of Medicine and Pharmacy of Iasi, Romania; Advanced Research and Development Center for Experimental Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, Romania
| | - Ioannis Gardikiotis
- Advanced Research and Development Center for Experimental Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, Romania
| | - Sorin-Aurelian Pasca
- Pathology Department, Faculty of Veterinary Medicine, Ion Ionescu de la Brad Iasi University of Life Sciences, Romania
| | - Saeed Mirdamadi
- Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran
| | - Gilles Subra
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | | | - Chloé Puel
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - Rino Morent
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - Rouba Ghobeira
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Architecture and Engineering, Ghent University, St-Pietersnieuwstraat 41 B4, 9000 Ghent, Belgium
| | - Nazila Soleymanzadeh
- Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran
| | - Muriel Moser
- ULB Center for Research in Immunology (U-CRI), Laboratory of Immunobiology, Université Libre de Bruxelles, Gosselies, Belgium.
| | - Stanislas Goriely
- ULB Center for Research in Immunology (U-CRI), Laboratory of Immunobiology, Université Libre de Bruxelles, Gosselies, Belgium.
| | - Amin Shavandi
- Université libre de Bruxelles (ULB), École polytechnique de Bruxelles - BioMatter unit, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium.
| |
Collapse
|
3
|
Laubach M, Kobbe P, Hutmacher DW. Biodegradable interbody cages for lumbar spine fusion: Current concepts and future directions. Biomaterials 2022; 288:121699. [PMID: 35995620 DOI: 10.1016/j.biomaterials.2022.121699] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/14/2022] [Accepted: 07/22/2022] [Indexed: 11/16/2022]
Abstract
Lumbar fusion often remains the last treatment option for various acute and chronic spinal conditions, including infectious and degenerative diseases. Placement of a cage in the intervertebral space has become a routine clinical treatment for spinal fusion surgery to provide sufficient biomechanical stability, which is required to achieve bony ingrowth of the implant. Routinely used cages for clinical application are made of titanium (Ti) or polyetheretherketone (PEEK). Ti has been used since the 1980s; however, its shortcomings, such as impaired radiographical opacity and higher elastic modulus compared to bone, have led to the development of PEEK cages, which are associated with reduced stress shielding as well as no radiographical artefacts. Since PEEK is bioinert, its osteointegration capacity is limited, which in turn enhances fibrotic tissue formation and peri-implant infections. To address shortcomings of both of these biomaterials, interdisciplinary teams have developed biodegradable cages. Rooted in promising preclinical large animal studies, a hollow cylindrical cage (Hydrosorb™) made of 70:30 poly-l-lactide-co-d, l-lactide acid (PLDLLA) was clinically studied. However, reduced bony integration and unfavourable long-term clinical outcomes prohibited its routine clinical application. More recently, scaffold-guided bone regeneration (SGBR) with application of highly porous biodegradable constructs is emerging. Advancements in additive manufacturing technology now allow the cage designs that match requirements, such as stiffness of surrounding tissues, while providing long-term biomechanical stability. A favourable clinical outcome has been observed in the treatment of various bone defects, particularly for 3D-printed composite scaffolds made of medical-grade polycaprolactone (mPCL) in combination with a ceramic filler material. Therefore, advanced cage design made of mPCL and ceramic may also carry initial high spinal forces up to the time of bony fusion and subsequently resorb without clinical side effects. Furthermore, surface modification of implants is an effective approach to simultaneously reduce microbial infection and improve tissue integration. We present a design concept for a scaffold surface which result in osteoconductive and antimicrobial properties that have the potential to achieve higher rates of fusion and less clinical complications. In this review, we explore the preclinical and clinical studies which used bioresorbable cages. Furthermore, we critically discuss the need for a cutting-edge research program that includes comprehensive preclinical in vitro and in vivo studies to enable successful translation from bench to bedside. We develop such a conceptual framework by examining the state-of-the-art literature and posing the questions that will guide this field in the coming years.
Collapse
Affiliation(s)
- Markus Laubach
- Australian Research Council (ARC) Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology (QUT), Brisbane, QLD, 4000 Australia; Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling, and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD 4000, Australia; Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4059, Australia; Department of Orthopaedics, Trauma and Reconstructive Surgery, RWTH Aachen University Hospital, Pauwelsstraße 30, 52074 Aachen, Germany.
| | - Philipp Kobbe
- Department of Orthopaedics, Trauma and Reconstructive Surgery, RWTH Aachen University Hospital, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Dietmar W Hutmacher
- Australian Research Council (ARC) Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology (QUT), Brisbane, QLD, 4000 Australia; Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling, and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD 4000, Australia; Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4059, Australia; Max Planck Queensland Center for the Materials Science of Extracellular Matrices, Queensland University of Technology, Brisbane, QLD 4000, Australia.
| |
Collapse
|
4
|
Krticka M, Planka L, Vojtova L, Nekuda V, Stastny P, Sedlacek R, Brinek A, Kavkova M, Gopfert E, Hedvicakova V, Rampichova M, Kren L, Liskova K, Ira D, Dorazilová J, Suchy T, Zikmund T, Kaiser J, Stary D, Faldyna M, Trunec M. Lumbar Interbody Fusion Conducted on a Porcine Model with a Bioresorbable Ceramic/Biopolymer Hybrid Implant Enriched with Hyperstable Fibroblast Growth Factor 2. Biomedicines 2021; 9:733. [PMID: 34202232 PMCID: PMC8301420 DOI: 10.3390/biomedicines9070733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 11/17/2022] Open
Abstract
Many growth factors have been studied as additives accelerating lumbar fusion rates in different animal models. However, their low hydrolytic and thermal stability both in vitro and in vivo limits their workability and use. In the proposed work, a stabilized vasculogenic and prohealing fibroblast growth factor-2 (FGF2-STAB®) exhibiting a functional half-life in vitro at 37 °C more than 20 days was applied for lumbar fusion in combination with a bioresorbable scaffold on porcine models. An experimental animal study was designed to investigate the intervertebral fusion efficiency and safety of a bioresorbable ceramic/biopolymer hybrid implant enriched with FGF2-STAB® in comparison with a tricortical bone autograft used as a gold standard. Twenty-four experimental pigs underwent L2/3 discectomy with implantation of either the tricortical iliac crest bone autograft or the bioresorbable hybrid implant (BHI) followed by lateral intervertebral fixation. The quality of spinal fusion was assessed by micro-computed tomography (micro-CT), biomechanical testing, and histological examination at both 8 and 16 weeks after the surgery. While 8 weeks after implantation, micro-CT analysis demonstrated similar fusion quality in both groups, in contrast, spines with BHI involving inorganic hydroxyapatite and tricalcium phosphate along with organic collagen, oxidized cellulose, and FGF2- STAB® showed a significant increase in a fusion quality in comparison to the autograft group 16 weeks post-surgery (p = 0.023). Biomechanical testing revealed significantly higher stiffness of spines treated with the bioresorbable hybrid implant group compared to the autograft group (p < 0.05). Whilst histomorphological evaluation showed significant progression of new bone formation in the BHI group besides non-union and fibrocartilage tissue formed in the autograft group. Significant osteoinductive effects of BHI based on bioceramics, collagen, oxidized cellulose, and FGF2-STAB® could improve outcomes in spinal fusion surgery and bone tissue regeneration.
Collapse
Affiliation(s)
- Milan Krticka
- Trauma Surgery Department, Faculty of Medicine, Masaryk University and The University Hospital Brno, 625 00 Brno, Czech Republic; (M.K.); (V.N.); (D.I.)
| | - Ladislav Planka
- Department of Paediatric Surgery, Orthopedics and Traumatology, Faculty of Medicine, Masaryk University and The University Hospital Brno, 662 63 Brno, Czech Republic; (L.P.); (D.S.)
| | - Lucy Vojtova
- CEITEC-Central European Institute of Technology, Brno University of Technology, 612 00 Brno, Czech Republic; (P.S.); (A.B.); (M.K.); (J.D.); (T.Z.); (J.K.); (M.T.)
| | - Vladimir Nekuda
- Trauma Surgery Department, Faculty of Medicine, Masaryk University and The University Hospital Brno, 625 00 Brno, Czech Republic; (M.K.); (V.N.); (D.I.)
| | - Premysl Stastny
- CEITEC-Central European Institute of Technology, Brno University of Technology, 612 00 Brno, Czech Republic; (P.S.); (A.B.); (M.K.); (J.D.); (T.Z.); (J.K.); (M.T.)
| | - Radek Sedlacek
- Department of Mechanics, Biomechanics and Mechatronics, Faculty of Mechanical Engineering, Czech Technical University in Prague, 160 00 Prague, Czech Republic;
| | - Adam Brinek
- CEITEC-Central European Institute of Technology, Brno University of Technology, 612 00 Brno, Czech Republic; (P.S.); (A.B.); (M.K.); (J.D.); (T.Z.); (J.K.); (M.T.)
| | - Michaela Kavkova
- CEITEC-Central European Institute of Technology, Brno University of Technology, 612 00 Brno, Czech Republic; (P.S.); (A.B.); (M.K.); (J.D.); (T.Z.); (J.K.); (M.T.)
| | - Eduard Gopfert
- Veterinary Research Institute, 621 00 Brno, Czech Republic; (E.G.); (M.F.)
| | - Vera Hedvicakova
- University Center for Energy Efficient Buildings, Czech Technical University in Prague, 273 43 Bustehrad, Czech Republic; (V.H.); (M.R.)
- Department of Tissue Engineering, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Michala Rampichova
- University Center for Energy Efficient Buildings, Czech Technical University in Prague, 273 43 Bustehrad, Czech Republic; (V.H.); (M.R.)
- Department of Tissue Engineering, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Leos Kren
- Department of Pathology, Faculty of Medicine of Masaryk University and The University Hospital Brno, 625 00 Brno, Czech Republic; (L.K.); (K.L.)
| | - Kvetoslava Liskova
- Department of Pathology, Faculty of Medicine of Masaryk University and The University Hospital Brno, 625 00 Brno, Czech Republic; (L.K.); (K.L.)
| | - Daniel Ira
- Trauma Surgery Department, Faculty of Medicine, Masaryk University and The University Hospital Brno, 625 00 Brno, Czech Republic; (M.K.); (V.N.); (D.I.)
| | - Jana Dorazilová
- CEITEC-Central European Institute of Technology, Brno University of Technology, 612 00 Brno, Czech Republic; (P.S.); (A.B.); (M.K.); (J.D.); (T.Z.); (J.K.); (M.T.)
| | - Tomas Suchy
- Department of Composites and Carbon Materials, Institute of Rock Structure and Mechanics, The Czech Academy of Sciences, 182 09 Prague, Czech Republic;
| | - Tomas Zikmund
- CEITEC-Central European Institute of Technology, Brno University of Technology, 612 00 Brno, Czech Republic; (P.S.); (A.B.); (M.K.); (J.D.); (T.Z.); (J.K.); (M.T.)
| | - Jozef Kaiser
- CEITEC-Central European Institute of Technology, Brno University of Technology, 612 00 Brno, Czech Republic; (P.S.); (A.B.); (M.K.); (J.D.); (T.Z.); (J.K.); (M.T.)
| | - David Stary
- Department of Paediatric Surgery, Orthopedics and Traumatology, Faculty of Medicine, Masaryk University and The University Hospital Brno, 662 63 Brno, Czech Republic; (L.P.); (D.S.)
| | - Martin Faldyna
- Veterinary Research Institute, 621 00 Brno, Czech Republic; (E.G.); (M.F.)
| | - Martin Trunec
- CEITEC-Central European Institute of Technology, Brno University of Technology, 612 00 Brno, Czech Republic; (P.S.); (A.B.); (M.K.); (J.D.); (T.Z.); (J.K.); (M.T.)
| |
Collapse
|
5
|
Duarte RM, Correia-Pinto J, Reis RL, Duarte ARC. Advancing spinal fusion: Interbody stabilization by in situ foaming of a chemically modified polycaprolactone. J Tissue Eng Regen Med 2020; 14:1465-1475. [PMID: 32750216 DOI: 10.1002/term.3111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 12/15/2022]
Abstract
Spinal fusion (SF) surgery relies on medical hardware such as screws, cages and rods, complemented by bone graft or substitute, to stabilize the interventioned spine and achieve adequate bone ingrowth. SF is technically demanding, lengthy and expensive. Advances in material science and processing technologies, proposed herein, allowed the development of an adhesive polymeric foam with the potential to dismiss the need for invasive hardware in SF. Herein, 3D foams of polycaprolactone doped with polydopamine and polymethacrylic acid (PCL pDA pMAA) were created. For immediate bone stabilization, in situ hardening of the foam is required; therefore, a portable high-pressure device was developed to allow CO2 foaming within bone defects. Foams were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. Adhesive properties of PCL pDA pMAA outperformed PCL when tested using glass surfaces (p < 0.001) or spinal plugs (p < 0.05). No cytotoxicity was observed, and bioactivity was confirmed by the CaP layer formed upon 7 days immersion in simulated body fluid. As proof of concept, PCL pDA pMAA was extruded in-between ex vivo porcine vertebrae, and micro-computed tomography revealed similar properties to those of trabecular bone. This novel system presents great promise for instrumentation-free interbody fusion.
Collapse
Affiliation(s)
- Rui M Duarte
- School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Orthopedic Surgery Department, Hospital de Braga, Sete Fontes-São Victor, Braga, Portugal
| | - Jorge Correia-Pinto
- School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Pediatric Surgery Department, Hospital de Braga, Braga, Portugal
| | - Rui L Reis
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.,3B's Research Group, I3B's-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence in Tissue Engineering and Regenerative Medicine, Guimarães, Portugal.,The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Guimarães, Portugal
| | - Ana Rita C Duarte
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.,3B's Research Group, I3B's-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence in Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
| |
Collapse
|
6
|
Koutserimpas C, Alpantaki K, Chatzinikolaidou M, Chlouverakis G, Dohm M, Hadjipavlou AG. The effectiveness of biodegradable instrumentation in the treatment of spinal fractures. Injury 2018; 49:2111-2120. [PMID: 30526920 DOI: 10.1016/j.injury.2018.11.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
INTRODUCTION A variety of biodegradable implants (screws, rods, plates and cages) are available which are composed of many different biodegradable polymers with varying characteristics. The present review of animal and clinical studies examines the efficacy and safety of biodegradable implants in spinal fracture intervention. METHODS A review of the literature through March 2018 was performed using PubMed and Cochrane databases. Success rates were calculated according to sufficient tissue biocompatibility, solid clinical fusion and propensity for osseointegration. RESULTS 49 articles (24 animal and 25 human studies) were included. In animal experiments, the overall success rate for spinal fusion was 60.3%, while the mean success rate regarding the cervical spine was 51.8% compared to 68.1% for the lumbar spine (p = 0.002). In studies involving control group(s): the mean bioabsorbable implant success rate for spinal fusion was 42% compared to 57% for conventional implants (p = 0.0016). In the lumbar spine pL-lactide acid (PLLA) had 75.2% success rate compared to poly (L-lactide-co-DL-lactide) (PLDLLA) at 53.4% (p = 0.003). In clinical studies, the overall mean success rate was 89%, while the mean success rate regarding the cervical spine was 92%, as compared to 83.6% for the lumbar spine (p = 0.001). In studies involving control group(s): the mean bioabsorbable implant success rate was 75% compared to a conventional implant mean success rate of 97% (p<0.0001). In the cervical spine PLLA had a 98.7% success rate compared to 90% with PLDLLA (p = 0.015). In the lumbar spine PLDLLA had 84.7% success rate compared to 63.6% for poly-glycolic acid (PGA) (p = 0.085). DISCUSSION Studies combined biodegradable and conventional implants. Polymers were used in various combinations and surface modification of the implants also varied. Comparison studies were of small sample size. Animal and clinical studies diverged. The current data are not encouraging. The end-point of assessing osseointegration varies in the studies and is indeterminate. In early stages the structure comparison of osseous restoration using biodegradable implants appears inferior to utilization of conventional cages and instrumentation. There is no statistically significant evidence supporting the efficacy of biodegradable implants replacing traditional instrumentation. There is a lack of prospective clinical trials with long-term follow-up regarding utilization of biodegradable implants and the available data does not support their routine use in spinal fracture intervention.
Collapse
Affiliation(s)
- Christos Koutserimpas
- Department of Orthopaedics and Traumatology, "251" Hellenic Air Force General Hospital of Athens, Greece
| | - Kalliopi Alpantaki
- Department of Materials Science and Technology, University of Crete, Heraklion, Greece
| | - Maria Chatzinikolaidou
- Department of Materials Science and Technology, University of Crete, Heraklion, Greece; Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology Hellas (FORTH), Heraklion, Greece
| | - Gregory Chlouverakis
- Division of Biostatisctics, School of Medicine, University of Crete, Crete, Greece
| | - Michael Dohm
- Department of Orthopaedic Surgery, University of Arizona, Tucson, AZ, USA
| | - Alexander G Hadjipavlou
- Department of Orthopaedic Surgery and Rehabilitation, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
7
|
Duarte RM, Correia-Pinto J, Reis RL, Duarte ARC. Subcritical carbon dioxide foaming of polycaprolactone for bone tissue regeneration. J Supercrit Fluids 2018. [DOI: 10.1016/j.supflu.2018.05.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Klein A, Baranowski A, Ritz U, Götz H, Heinemann S, Mattyasovszky S, Rommens PM, Hofmann A. Effect of bone sialoprotein coated three-dimensional printed calcium phosphate scaffolds on primary human osteoblasts. J Biomed Mater Res B Appl Biomater 2018; 106:2565-2575. [PMID: 29316208 DOI: 10.1002/jbm.b.34073] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 11/29/2017] [Accepted: 12/22/2017] [Indexed: 01/14/2023]
Abstract
The combination of the two techniques of rapid prototyping 3D-plotting and bioactive surface functionalization is presented, with emphasis on the in vitro effect of Bone Sialoprotein (BSP) on primary human osteoblasts (hOBs). Our primary objective was to demonstrate the BSP influence on the expression of distinctive osteoblast markers in hOBs. Secondary objectives included examinations of the scaffolds' surface and the stability of BSP-coating as well as investigations of cell viability and proliferation. 3D-plotted calcium phosphate cement (CPC) scaffolds were coated with BSP via physisorption. hOBs were seeded on the coated scaffolds, followed by cell viability measurements, gene expression analysis and visualization. Physisorption is an effective method for BSP-coating. Coating with higher BSP concentrations leads to enhanced BSP release. Two BSP concentrations (50 and 200 μg/mL) were examined in this study. The lower BSP concentration (50 µg/mL) decreased ALP and SPARC expression, whereas the higher BSP concentration (200 μg/mL) did not change gene marker expression. Enhanced cell viability was observed on BSP-coated scaffolds on day 3. hOBs developed a polygonal shape and connected in an intercellular network under BSP influence. Quantitative cell morphology analyses demonstrated for BSP-coated CPCs an enhanced cell area and reduced circularity. The strength of the above-mentioned effects of BSP-coated scaffolds in vivo is unknown, and future work is focusing on bone ingrowth and vascularization in vivo. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 2565-2575, 2018.
Collapse
Affiliation(s)
- Anja Klein
- Department of Orthopaedics and Traumatology, Biomatics Group, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Andreas Baranowski
- Department of Orthopaedics and Traumatology, Biomatics Group, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Ulrike Ritz
- Department of Orthopaedics and Traumatology, Biomatics Group, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Hermann Götz
- Platform for Biomaterial Research, Biomatics Group, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | | | - Stefan Mattyasovszky
- Department of Orthopaedics and Traumatology, Biomatics Group, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Pol M Rommens
- Department of Orthopaedics and Traumatology, Biomatics Group, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Alexander Hofmann
- Department of Orthopaedics and Traumatology, Biomatics Group, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
9
|
Duarte RM, Varanda P, Reis RL, Duarte ARC, Correia-Pinto J. Biomaterials and Bioactive Agents in Spinal Fusion. TISSUE ENGINEERING PART B-REVIEWS 2017; 23:540-551. [DOI: 10.1089/ten.teb.2017.0072] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Rui M. Duarte
- School of Medicine, University of Minho, Braga, Portugal
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's—PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Orthopedic Surgery Department, Hospital de Braga, Braga, Portugal
| | - Pedro Varanda
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's—PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Orthopedic Surgery Department, Hospital de Braga, Braga, Portugal
| | - Rui L. Reis
- ICVS/3B's—PT Government Associate Laboratory, Braga/Guimarães, Portugal
- 3B's Research Group—Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, Portugal
| | - Ana Rita C. Duarte
- ICVS/3B's—PT Government Associate Laboratory, Braga/Guimarães, Portugal
- 3B's Research Group—Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, Portugal
| | - Jorge Correia-Pinto
- School of Medicine, University of Minho, Braga, Portugal
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's—PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Pediatric Surgery Department, Hospital de Braga, Braga, Portugal
| |
Collapse
|
10
|
Lindley EM, Barton C, Blount T, Burger EL, Cain CMJ, Seim HB, Turner AS, Patel VV. An analysis of spine fusion outcomes in sheep pre-clinical models. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2016; 26:228-239. [DOI: 10.1007/s00586-016-4544-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 03/21/2016] [Accepted: 03/21/2016] [Indexed: 01/20/2023]
|
11
|
Cost-Utility Analysis of 1- and 2-Level Dorsal Lumbar Fusions With and Without Recombinant Human Bone Morphogenic Protein-2 at 1-Year Follow-Up. Clin Spine Surg 2016; 29:E28-33. [PMID: 24870120 DOI: 10.1097/bsd.0000000000000079] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
STUDY DESIGN A retrospective 1-year cost-utility analysis. OBJECTIVE To determine the cost-effectiveness of using recombinant human bone morphogenic protein (rhBMP-2) in addition to autograft for 1- and 2-level lumbar fusions. SUMMARY OF BACKGROUND DATA rhBMP-2 has been studied extensively to identify its benefits, risks, patient outcomes, and costs relative to autograft [local bone or iliac crest bone graft (ICBG)]. This study seeks to analyze the cost-effectiveness of adding rhBMP-2 to autograft versus without rhBMP-2 in lumbar fusions. METHODS Thirty-three patients receiving rhBMP-2 in addition to either local bone autograft or ICBG (rhBMP-2 cohort) and 42 patients receiving only local bone autograft or ICBG (control cohort) for 1- or 2-level dorsal lumbar fusion were analyzed. This included posterolateral fusion, posterior lumbar interbody fusion, and transforaminal lumbar interbody fusion. One-year postoperative health outcomes were assessed based on Visual Analogue Scale, Pain Disability Questionnaire, Patient Health Questionnaire, and EuroQol-5 Dimensions questionnaires. Direct medical costs were estimated using Medicare national payment amounts and indirect costs were based on patient missed work days and patient income. Postoperative 1-year cost-utility ratios and the incremental cost-effectiveness ratio (ICER) were calculated to assess for cost-effectiveness using a threshold of $100,000/QALY gained. RESULTS The 1-year cost-utility ratio (total cost/ΔQALY) for the control cohort was significantly lower ($143,251/QALY gained) than that of the rhBMP-2 cohort ($272,414/QALY gained) (P<0.01). At 1-year follow-up, the control group dominated the ICER compared with the rhBMP-2 group. CONCLUSIONS Statistically significant and clinically relevant improvements (through minimum clinically important differences) were seen for both cohorts. In the ICER analysis, the control cohort dominated the rhBMP-2 group. Assuming durable per year gains in QALY, by 2 years fusion with autograft but without rhBMP-2 would be considered cost-effective ($71,625/QALY gained), whereas fusion with both autograft and rhBMP-2 would not be cost-effective ($136,207/QALY gained).
Collapse
|
12
|
Gibbs DMR, Vaezi M, Yang S, Oreffo ROC. Hope versus hype: what can additive manufacturing realistically offer trauma and orthopedic surgery? Regen Med 2015; 9:535-49. [PMID: 25159068 DOI: 10.2217/rme.14.20] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Additive manufacturing (AM) is a broad term encompassing 3D printing and several other varieties of material processing, which involve computer-directed layer-by-layer synthesis of materials. As the popularity of AM increases, so to do expectations of the medical therapies this process may offer. Clinical requirements and limitations of current treatment strategies in bone grafting, spinal arthrodesis, osteochondral injury and treatment of periprosthetic joint infection are discussed. The various approaches to AM are described, and the current state of clinical translation of AM across these orthopedic clinical scenarios is assessed. Finally, we attempt to distinguish between what AM may offer orthopedic surgery from the hype of what has been promised by AM.
Collapse
Affiliation(s)
- David M R Gibbs
- Bone & Joint Research Group, Centre for Human Development, Stem Cells & Regeneration, Institute of Developmental Sciences (MP887), Southampton General Hospital, University of Southampton, Southampton, Hampshire S016 6YD, UK
| | | | | | | |
Collapse
|
13
|
Pobloth AM, Duda GN, Giesecke MT, Dienelt A, Schwabe P. High-dose recombinant human bone morphogenetic protein-2 impacts histological and biomechanical properties of a cervical spine fusion segment: results from a sheep model. J Tissue Eng Regen Med 2015; 11:1514-1523. [PMID: 26053675 DOI: 10.1002/term.2049] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 03/20/2015] [Accepted: 04/29/2015] [Indexed: 11/11/2022]
Abstract
The 'off-label' use of high-dose recombinant human bone morphogenetic protein-2 (rhBMP-2) in lumbar and cervical fusion leads to heterotopic bone formation and vertebral osteolysis. These radiographically assessed side-effects in patients were frequently associated with an over-dosage of BMP-2. However, little is so far known about the histological, functional or biomechanical tissue consequences of over-dosage of rhBMP-2 in these specific clinical situations. We hypothesized that a high dose of rhBMP-2 in cervical spinal fusion could induce substantial alterations in bone, leading to mechanical impairment. An anterior cervical spinal fusion (C3-C4 ACDF) model in 16 sheep (aged > 2.5 years; n = 8/group) was used to quantify the consequences of a high rhBMP-2 dose (6 mg rhBMP-2) on fusion tissue compared to the 'gold standard' of autologous, cancellous bone graft. The fusion site was assessed by radiography after 0, 8 and 12 weeks. Biomechanical non-destructive testing and (immuno)histological and histomorphometrical analyses were performed 12 weeks postoperatively. Although high-dose rhBMP-2 treatment led to an advanced radiological fusion result compared to autograft treatment, heterotopic bone formation and vertebral bone resorption were induced simultaneously. Histological evaluation unveiled highly active bone-forming processes ventral to the fusion segment after 12 weeks, while radiolucent areas showed still a partial loss of regular trabecular structure, with rare signs of remodelling and restoration. Despite qualitative alteration of the trabecular bone structure within the fusion site, the massive anterior heterotopic bone formation led to a substantial increase in mechanical stiffness compared to the autograft group. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Anne-Marie Pobloth
- Julius Wolff Institute and Centre for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, Germany.,Berlin-Brandenburg Centre for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Germany
| | - Georg N Duda
- Julius Wolff Institute and Centre for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, Germany.,Berlin-Brandenburg Centre for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Germany
| | - Moritz T Giesecke
- Centre for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, Germany
| | - Anke Dienelt
- Julius Wolff Institute and Centre for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, Germany.,Berlin-Brandenburg Centre for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Germany
| | - Philipp Schwabe
- Centre for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, Germany
| |
Collapse
|