1
|
Becker L, Schönnagel L, Mihalache TV, Haffer H, Schömig F, Schmidt H, Pumberger M. Lumbosacral transitional vertebrae alter the distribution of lumbar mobility–Preliminary results of a radiographic evaluation. PLoS One 2022; 17:e0274581. [PMID: 36174065 PMCID: PMC9521836 DOI: 10.1371/journal.pone.0274581] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/30/2022] [Indexed: 11/19/2022] Open
Abstract
Background Lumbo-sacral transitional vertebrae (LSTV) are one of the most common congenital variances of the spine. They are associated with an increased frequency of degeneration in the cranial adjacent segment. Hypermobility and concomitant increased loads are discussed as a possible reason for segmental degeneration. We therefore examined the lumbar and segmental motion distribution in patients with LSTV with flexion-extension radiographs. Methods A retrospective study of 51 patients with osteochondrosis L5/S1 with flexion and extension radiographs was performed. Of these, 17 patients had LSTV and were matched 1:1 for age and sex with patients without LSTV out of the collective of the remaining 34 patients. The lumbar and segmental range of motion (RoM) by segmental lordosis angle and the segmental wedge angle were determined. Normal distribution of parameters was observed by Kolmogorov-Smirnov-test. Parametric data were compared by paired T-test. Non-parametric data were compared by Wilcoxon-rank-sum-test. Correlations were observed using Spearman’s Rank correlation coefficient. A p-value <0.05 was stated as statistically significant. Results Patients with LSTV had mean age of 52.2±10.9, control group of 48.9±10.3. Both groups included 7 females and 10 males. Patients with LSTV presented with reduced RoM of the lumbar spine (LSTV 37.3°±19.2°, control 52.1°±20.5°, p = 0.065), however effects were statistically insignificant. LSTV significantly decreased segmental RoM in the transitional segment (LSTV 1.8°±2.7°, control 6.7°±6.0°, p = 0.003). Lumbar motion distribution differed significantly; while RoM was decreased in the transitional segment, (LSTV 5.7%, control 16.2%, p = 0.002), the distribution of lumbar motion to the cranial adjacent segment was increased (LSTV 30.7%, control 21.6%, p = 0.007). Conclusion Patients with LSTV show a reduced RoM in the transitional segment and a significantly increased motion distribution to the cranial adjacent segment in flexion-extension radiographs. The increased proportion of mobility in the cranial adjacent segment possibly explain the higher rates of degeneration within the segment.
Collapse
Affiliation(s)
- Luis Becker
- Center for Musculoskeletal Surgery, Charité –University Medicine, Berlin, Germany
- Berlin Institute of Health, Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Charité –University Medicine, Berlin, Germany
- * E-mail:
| | - Lukas Schönnagel
- Center for Musculoskeletal Surgery, Charité –University Medicine, Berlin, Germany
| | - Tim Victor Mihalache
- Center for Musculoskeletal Surgery, Charité –University Medicine, Berlin, Germany
- Berlin Institute of Health, Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Charité –University Medicine, Berlin, Germany
| | - Henryk Haffer
- Center for Musculoskeletal Surgery, Charité –University Medicine, Berlin, Germany
| | - Friederike Schömig
- Center for Musculoskeletal Surgery, Charité –University Medicine, Berlin, Germany
- Berlin Institute of Health, Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Charité –University Medicine, Berlin, Germany
| | - Hendrik Schmidt
- Berlin Institute of Health, Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Charité –University Medicine, Berlin, Germany
| | - Matthias Pumberger
- Center for Musculoskeletal Surgery, Charité –University Medicine, Berlin, Germany
| |
Collapse
|
2
|
Abbasi-Ghiri A, Ebrahimkhani M, Arjmand N. Novel force-displacement control passive finite element models of the spine to simulate intact and pathological conditions; comparisons with traditional passive and detailed musculoskeletal models. J Biomech 2022; 141:111173. [PMID: 35705381 DOI: 10.1016/j.jbiomech.2022.111173] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/08/2022] [Accepted: 06/01/2022] [Indexed: 10/18/2022]
Abstract
Passive finite element (FE) models of the spine are commonly used to simulate intact and various pre- and postoperative pathological conditions. Being devoid of muscles, these traditional models are driven by simplistic loading scenarios, e.g., a constant moment and compressive follower load (FL) that do not properly mimic the complex in vivo loading condition under muscle exertions. We aim to develop novel passive FE models that are driven by more realistic yet simple loading scenarios, i.e., in vivo vertebral rotations and pathological-condition dependent FLs (estimated based on detailed musculoskeletal finite element (MS-FE) models). In these novel force-displacement control FE models, unlike the traditional passive FE models, FLs vary not only at different spine segments (T12-S1) but between intact, pre- and postoperative conditions. Intact, preoperative degenerated, and postoperative fused conditions at the L4-L5 segment for five static in vivo activities in upright and flexed postures were simulated by the traditional passive FE, novel force-displacement control FE, and gold-standard detailed MS-FE spine models. Our findings indicate that, when compared to the MS-FE models, the force-displacement control passive FE models could accurately predict the magnitude of disc compression force, intradiscal pressure, annulus maximal von Mises stress, and vector sum of all ligament forces at adjacent segments (L3-L4 and L5-S1) but failed to predict disc shear and facet joint forces. In this regard, the force-displacement control passive FE models were much more accurate than the traditional passive FE models. Clinical recommendations made based on traditional passive FE models should, therefore, be interpreted with caution.
Collapse
Affiliation(s)
- A Abbasi-Ghiri
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - M Ebrahimkhani
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - N Arjmand
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran.
| |
Collapse
|
3
|
Adjacent segments biomechanics following lumbar fusion surgery: a musculoskeletal finite element model study. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2022; 31:1630-1639. [PMID: 35633382 DOI: 10.1007/s00586-022-07262-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 04/18/2022] [Accepted: 05/07/2022] [Indexed: 10/18/2022]
Abstract
PURPOSE This study exploits a novel musculoskeletal finite element (MS-FE) spine model to evaluate the post-fusion (L4-L5) alterations in adjacent segment kinetics. METHODS Unlike the existing MS models with idealized representation of spinal joints, this model predicts stress/strain distributions in all passive tissues while organically coupled to a MS model. This generic (in terms of musculature and material properties) model uses population-based in vivo vertebral sagittal rotations, gravity loads, and an optimization algorithm to calculate muscle forces. Simulations represent individuals with an intact L4-L5, a preoperative severely degenerated L4-L5 (by reducing the disc height by ~ 60% and removing the nucleus incompressibility), and a postoperative fused L4-L5 segment with either a fixed or an altered lumbopelvic rhythm with respect to the intact condition (based on clinical observations). Changes in spine kinematics and back muscle cross-sectional areas (due to intraoperative injuries) are considered based on in vivo data while simulating three activities in upright/flexed postures. RESULTS Postoperative changes in some adjacent segment kinetics were found considerable (i.e., larger than 25%) that depended on the postoperative lumbopelvic kinematics and preoperative L4-L5 disc condition. Postoperative alterations in adjacent disc shear, facet/ligament forces, and annulus stresses/strains were greater (> 25%) than those found in intradiscal pressure and compression (< 25%). Kinetics of the lower (L5-S1) and upper (L3-L4) adjacent segments were altered to different degrees. CONCLUSION Alterations in segmental rotations mainly affected adjacent disc shear forces, facet/ligament forces, and annulus/collagen fibers stresses/strains. An altered lumbopelvic rhythm (increased pelvis rotation) tends to mitigate some of these surgically induced changes.
Collapse
|
4
|
Biomechanical effects of lumbar fusion surgery on adjacent segments using musculoskeletal models of the intact, degenerated and fused spine. Sci Rep 2021; 11:17892. [PMID: 34504207 PMCID: PMC8429534 DOI: 10.1038/s41598-021-97288-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/23/2021] [Indexed: 12/25/2022] Open
Abstract
Adjacent segment disorders are prevalent in patients following a spinal fusion surgery. Postoperative alterations in the adjacent segment biomechanics play a role in the etiology of these conditions. While experimental approaches fail to directly quantify spinal loads, previous modeling studies have numerous shortcomings when simulating the complex structures of the spine and the pre/postoperative mechanobiology of the patient. The biomechanical effects of the L4–L5 fusion surgery on muscle forces and adjacent segment kinetics (compression, shear, and moment) were investigated using a validated musculoskeletal model. The model was driven by in vivo kinematics for both preoperative (intact or severely degenerated L4–L5) and postoperative conditions while accounting for muscle atrophies. Results indicated marked changes in the kinetics of adjacent L3–L4 and L5–S1 segments (e.g., by up to 115% and 73% in shear loads and passive moments, respectively) that depended on the preoperative L4–L5 disc condition, postoperative lumbopelvic kinematics and, to a lesser extent, postoperative changes in the L4–L5 segmental lordosis and muscle injuries. Upper adjacent segment was more affected post-fusion than the lower one. While these findings identify risk factors for adjacent segment disorders, they indicate that surgical and postoperative rehabilitation interventions should focus on the preservation/restoration of patient’s normal segmental kinematics.
Collapse
|
5
|
Farshad M, Aichmair A, Götschi T, Senteler M, Urbanschitz L. How is spinal range of motion affected by disc- and facet degeneration and spinopelvic anatomy? NORTH AMERICAN SPINE SOCIETY JOURNAL (NASSJ) 2021; 7:100076. [PMID: 35141641 PMCID: PMC8820096 DOI: 10.1016/j.xnsj.2021.100076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/21/2021] [Accepted: 08/25/2021] [Indexed: 11/30/2022]
Affiliation(s)
- Mazda Farshad
- Department of Orthopedics, Balgrist University Hospital, University of Zurich, Switzerland
| | - Alexander Aichmair
- Department of Orthopedics, Balgrist University Hospital, University of Zurich, Switzerland
| | - Tobias Götschi
- Department of Orthopedics, Balgrist University Hospital, University of Zurich, Switzerland
| | - Marco Senteler
- Department of Orthopedics, Balgrist University Hospital, University of Zurich, Switzerland
- Institute for Biomechanics, ETH Zurich, Switzerland
| | - Lukas Urbanschitz
- Department of Orthopedics, Balgrist University Hospital, University of Zurich, Switzerland
- Corresponding author at: Balgrist University Hospital, Forchstrasse 340, 8008 Zurich, Switzerland
| |
Collapse
|
6
|
Kirnaz S, Capadona C, Lintz M, Kim B, Yerden R, Goldberg JL, Medary B, Sommer F, McGrath LB, Bonassar LJ, Härtl R. Pathomechanism and Biomechanics of Degenerative Disc Disease: Features of Healthy and Degenerated Discs. Int J Spine Surg 2021; 15:10-25. [PMID: 34376493 DOI: 10.14444/8052] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The human intervertebral disc (IVD) is a complex organ composed of fibrous and cartilaginous connective tissues, and it serves as a boundary between 2 adjacent vertebrae. It provides a limited range of motion in the torso as well as stability during axial compression, rotation, and bending. Adult IVDs have poor innate healing potential due to low vascularity and cellularity. Degenerative disc disease (DDD) generally arises from the disruption of the homeostasis maintained by the structures of the IVD, and genetic and environmental factors can accelerate the progression of the disease. Impaired cell metabolism due to pH alteration and poor nutrition may lead to autophagy and disruption of the homeostasis within the IVD and thus plays a key role in DDD etiology. To develop regenerative therapies for degenerated discs, future studies must aim to restore both anatomical and biomechanical properties of the IVDs. The objective of this review is to give a detailed overview about anatomical, radiological, and biomechanical features of the IVDs as well as discuss the structural and functional changes that occur during the degeneration process.
Collapse
Affiliation(s)
- Sertac Kirnaz
- Department of Neurological Surgery, Weill Cornell Brain and Spine Center, Weill Cornell Medicine, New York Presbyterian Hospital, New York, New York
| | - Charisse Capadona
- Department of Neurological Surgery, Weill Cornell Brain and Spine Center, Weill Cornell Medicine, New York Presbyterian Hospital, New York, New York
| | - Marianne Lintz
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York
| | - Byumsu Kim
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York
| | - Rachel Yerden
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York
| | - Jacob L Goldberg
- Department of Neurological Surgery, Weill Cornell Brain and Spine Center, Weill Cornell Medicine, New York Presbyterian Hospital, New York, New York
| | - Branden Medary
- Department of Neurological Surgery, Weill Cornell Brain and Spine Center, Weill Cornell Medicine, New York Presbyterian Hospital, New York, New York
| | - Fabian Sommer
- Department of Neurological Surgery, Weill Cornell Brain and Spine Center, Weill Cornell Medicine, New York Presbyterian Hospital, New York, New York
| | - Lynn B McGrath
- Department of Neurological Surgery, Weill Cornell Brain and Spine Center, Weill Cornell Medicine, New York Presbyterian Hospital, New York, New York
| | - Lawrence J Bonassar
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York.,Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York
| | - Roger Härtl
- Department of Neurological Surgery, Weill Cornell Brain and Spine Center, Weill Cornell Medicine, New York Presbyterian Hospital, New York, New York
| |
Collapse
|
7
|
Kinematics of the Spine Under Healthy and Degenerative Conditions: A Systematic Review. Ann Biomed Eng 2019; 47:1491-1522. [DOI: 10.1007/s10439-019-02252-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/21/2019] [Indexed: 01/05/2023]
|
8
|
Xu H, Liu J, Li H, Wei D, Miao J, Xia Q. [Vertebral three-dimensional motion characteristics of adjacent segments in patients with isthmic spondylolisthesis in vivo]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2018; 32:1560-1566. [PMID: 30569684 PMCID: PMC8414243 DOI: 10.7507/1002-1892.201807026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 11/18/2018] [Indexed: 11/03/2022]
Abstract
Objective To observe vertebral three-dimensional motion characteristics of adjacent segments in patients with symptomatic L 4 isthmic spondylolisthesis (IS). Methods Fourteen symptomatic L 4 IS patients who underwent surgery treatment (trial group) and 15 asymptomatic volunteers without back pain and other lesions of spine (control group) were recruited. There was no significant difference in gender, age, body mass index, and bone mineral density between the two groups ( P>0.05). The three-dimensional reconstruction model of lumbar spine was acquired from the thin slice CT of the lumbar spine of the subjects by combining dual-X-ray fluoroscopy imaging system with spiral CT examination. The model was matched to the double oblique X-ray fluoroscopy images captured by dual-X-ray fluoroscopy imaging system at different active positions of the lumbar spine to reproduce the three-dimensional instantaneous of lumbar spondylolisthesis at different state of motion. The motion and relative displacement of adjacent segments (L 3, 4 and L 5, S 1) of spondylolisthesis were measured quantitatively by establishing a three-dimensional coordinate system at the geometric center of the vertebral body. The results were compared with those of the control group. Results When L 3, 4 in the control group were flexed flexion-extension, left-right twisting, and left-right bending, and when L 5, S 1 in the control group were flexed left-right twisting and left-right bending, the activity along the main axis of motion (main axis of motion) tended to increase compared with that along the corresponding coupled axis of motion (secondary axis of motion); however, this trend disappeared in the trial group, and the main and secondary movements were disordered. Because of the coronal orientation of the facet joints of L 5, S 1, the degree of motion along the main axis of motion decreased during flexion and extension, but this trend disappeared in the trial group. Compared with the control group, L 3, 4 in the trial group exhibited displacement instability in flexion-extension, left-right twisting, and left-right bending ( P<0.05); there was no significant difference in the relative displacement of L 5, S 1 intervertebral bodies along x, y, and z axes between the trial group and the control group in flexion-extension, left-right twisting, and left-right bending curvature ( P>0.05). Conclusion Patients with symptomatic L 4 IS have disorders of primary and secondary movement patterns in adjacent segments, while IS showed significantly displacement instability in L 3, 4 and significantly decreased motion in L 5, S 1.
Collapse
Affiliation(s)
- Hongda Xu
- Department of Spinal Surgery, Tianjin Hospital, Tianjin, 300211, P.R.China
| | - Jianan Liu
- Department of Spinal Surgery, Tianjin Hospital, Tianjin, 300211, P.R.China
| | - Hongda Li
- Department of Orthopedics, Affiliated Hospital of Logistics University of Chinese People's Armed Police Forces, Tianjin, 300162, P.R.China
| | - Dong Wei
- Department of Orthopedics, Affiliated Hospital of Logistics University of Chinese People's Armed Police Forces, Tianjin, 300162, P.R.China
| | - Jun Miao
- Department of Spinal Surgery, Tianjin Hospital, Tianjin, 300211,
| | - Qun Xia
- Department of Orthopedics, Affiliated Hospital of Logistics University of Chinese People's Armed Police Forces, Tianjin, 300162, P.R.China
| |
Collapse
|
9
|
Arshad R, Pan F, Reitmaier S, Schmidt H. Effect of age and sex on lumbar lordosis and the range of motion. A systematic review and meta-analysis. J Biomech 2018; 82:1-19. [PMID: 30503255 DOI: 10.1016/j.jbiomech.2018.11.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 11/12/2018] [Accepted: 11/12/2018] [Indexed: 12/19/2022]
Abstract
Lumbar lordosis (LL) and the range of motion (RoM) are important physiological measurements when initiating any diagnosis and treatment plan for patients with low back pain. Numerous studies reported differences in LL and the RoM due to age and sex. However, these findings remain contradictory. A systematic review and meta-analysis were performed to synthesize mean values and the differences in LL and the RoM because of age and sex. The quality assessment tool for quantitative studies was applied to assess the methodological quality of the studies included. We identified 2372 papers through electronic (2309) and physical (63) searches. We assessed 218 full-text studies reporting measurements of LL or the RoM. In total, 65 studies were included, and a normative database for LL and the RoM is provided as supplementary material. Among these, 11 were included in the meta-analysis. LL and the RoM displayed non-monotonic variations with significant age and sex differences. Young females showed a significantly greater LL and the range of extension (RoE), whereas young males exhibited a greater range of flexion (RoF). Sex differences in the range of lateral bending (RoLB) were small but were significant for the axial rotation (RoAR). For the RoF, RoE and RoLB, differences because of age were significant among most of the age groups in both sexes, whereas for the RoAR, differences were significant only between the 20s vs the 30s-40s (males) and 40s vs 50s (females). Significant differences because of age/sex were identified. However, the age-dependent reduction in LL and the RoM was non-monotonic and differed in both sexes. These findings will help to better distinguish between functional deficits caused by spinal disorders and natural factors/conditions related to age and sex.
Collapse
Affiliation(s)
- Rizwan Arshad
- Julius Wolff Institut, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany
| | - Fumin Pan
- Julius Wolff Institut, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany
| | - Sandra Reitmaier
- Julius Wolff Institut, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany
| | - Hendrik Schmidt
- Julius Wolff Institut, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany.
| |
Collapse
|
10
|
Digital tracking algorithm reveals the influence of structural irregularities on joint movements in the human cervical spine. Clin Biomech (Bristol, Avon) 2018; 56:11-17. [PMID: 29738991 DOI: 10.1016/j.clinbiomech.2018.04.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 04/19/2018] [Accepted: 04/25/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Disc height loss and osteophytes change the local mechanical environment in the spine; while previous research has examined kinematic dysfunction under degenerative change, none has looked at the influence of disc height loss and osteophytes throughout movement. METHODS Twenty patients with pain related to the head, neck or shoulders were imaged via videofluoroscopy as they underwent sagittal-plane flexion and extension. A clinician graded disc height loss and osteophytes as "severe/moderate", "mild", or "none". A novel tracking algorithm quantified motions of each vertebra. This information was used to calculate intervertebral angular and shear displacements. The digital algorithm made it practical to track individual vertebrae in multiple patients through hundreds of images without bias. FINDINGS Cases without height loss/osteophytes had a consistent increase in intervertebral angular displacement from C2/C3 to C5/C6, like that of healthy individuals, and mild height losses did not produce aberrations that were systematic or necessarily discernable. However, joints with moderate to severe disc height loss and osteophytes exhibited reduced range of motion compared to adjacent unaffected joints in that patient and corresponding joints in patients without structural irregularities. INTERPRETATION Digitally-obtained motion histories of individual joints allowed anatomical joint changes to be linked with changes in joint movement patterns. Specifically, disc height loss and osteophytes were found to influence cervical spine movement in the sagittal plane, reducing angular motions at affected joints by approximately 10% between those with and without height loss and osteophytes. Further, these joint changes were associated with perturbed intervertebral angular and shear movements.
Collapse
|
11
|
Clinical Relationship of Degenerative Changes between the Cervical and Lumbar Spine. Asian Spine J 2018; 12:343-348. [PMID: 29713417 PMCID: PMC5913027 DOI: 10.4184/asj.2018.12.2.343] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/28/2017] [Accepted: 08/07/2017] [Indexed: 11/08/2022] Open
Abstract
Study Design Retrospective, observational, case series. Purpose To elucidate the prevalence of degenerative changes in the cervical and lumbar spine and estimate the degenerative changes in the cervical spine based on the degeneration of lumbar disc through a retrospective review of magnetic resonance (MR) images. Overview of Literature Over 50% of middle-aged adults show evidence of spinal degeneration. However, the relationship between degenerative changes in the cervical and lumbar spine has yet to be elucidated. Methods A retrospective review of positional MR images of 152 patients with symptoms related to cervical and lumbar spondylosis with or without a neurogenic component was conducted. The degree of intervertebral disc degeneration (IDD) was assessed on a grade of 1–5 for each segment of the cervical and lumbar spine using MR T2-weighted sagittal images. The grades across all segments were summed to produce the degenerative disc score (DDS) for the cervical and lumbar spine. The patients were divided into two groups based on the IDD grade for each lumbar segment: normal (grades 1 and 2) and degenerative (grades 3–5). Results DDSs for the cervical and lumbar spine were positively correlated. Significant differences in cervical DDSs between the groups were observed in all lumbar segments. Although there were no significant differences in cervical DDSs among the degenerative lumbar segment, cervical DDSs at the L1–2 and L2–3 segments tended to be higher than those at the L3–4, L4–5, and L5–S degenerative segments. Conclusions Our study shows that participants with degenerative changes in the upper lumbar segments are more likely to have a certain amount of cervical spondylosis. This information could be used to lower the incidence of a missed diagnosis of cervical spine disorders in patients presenting with lumbar spine symptomology.
Collapse
|
12
|
Lee CH, Kim YE, Lee HJ, Kim DG, Kim CH. Biomechanical effects of hybrid stabilization on the risk of proximal adjacent-segment degeneration following lumbar spinal fusion using an interspinous device or a pedicle screw–based dynamic fixator. J Neurosurg Spine 2017; 27:643-649. [DOI: 10.3171/2017.3.spine161169] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVEPedicle screw-rod–based hybrid stabilization (PH) and interspinous device–based hybrid stabilization (IH) have been proposed to prevent adjacent-segment degeneration (ASD) and their effectiveness has been reported. However, a comparative study based on sound biomechanical proof has not yet been reported. The aim of this study was to compare the biomechanical effects of IH and PH on the transition and adjacent segments.METHODSA validated finite element model of the normal lumbosacral spine was used. Based on the normal model, a rigid fusion model was immobilized at the L4–5 level by a rigid fixator. The DIAM or NFlex model was added on the L3–4 segment of the fusion model to construct the IH and PH models, respectively. The developed models simulated 4 different loading directions using the hybrid loading protocol.RESULTSCompared with the intact case, fusion on L4–5 produced 18.8%, 9.3%, 11.7%, and 13.7% increments in motion at L3–4 under flexion, extension, lateral bending, and axial rotation, respectively. Additional instrumentation at L3–4 (transition segment) in hybrid models reduced motion changes at this level. The IH model showed 8.4%, −33.9%, 6.9%, and 2.0% change in motion at the segment, whereas the PH model showed −30.4%, −26.7%, −23.0%, and 12.9%. At L2–3 (adjacent segment), the PH model showed 14.3%, 3.4%, 15.0%, and 0.8% of motion increment compared with the motion in the IH model. Both hybrid models showed decreased intradiscal pressure (IDP) at the transition segment compared with the fusion model, but the pressure at L2–3 (adjacent segment) increased in all loading directions except under extension.CONCLUSIONSBoth IH and PH models limited excessive motion and IDP at the transition segment compared with the fusion model. At the segment adjacent to the transition level, PH induced higher stress than IH model. Such differences may eventually influence the likelihood of ASD.
Collapse
Affiliation(s)
- Chang-Hyun Lee
- 1Department of Neurosurgery, Ilsan Paik Hospital, Inje University College of Medicine, Goyang-si, Gyeonggi-do
| | - Young Eun Kim
- 2Department of Mechanical Engineering, Dankook University, Yongin-si, Gyeonggi-do; and
| | - Hak Joong Lee
- 2Department of Mechanical Engineering, Dankook University, Yongin-si, Gyeonggi-do; and
| | - Dong Gyu Kim
- 3Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Chi Heon Kim
- 3Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
13
|
Luo J, Annesley-Williams DJ, Adams MA, Dolan P. How are adjacent spinal levels affected by vertebral fracture and by vertebroplasty? A biomechanical study on cadaveric spines. Spine J 2017; 17:863-874. [PMID: 28167249 DOI: 10.1016/j.spinee.2017.01.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 12/21/2016] [Accepted: 01/30/2017] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Spinal injuries and surgery may have important effects on neighboring spinal levels, but previous investigations of adjacent-level biomechanics have produced conflicting results. We use "stress profilometry" and noncontact strain measurements to investigate thoroughly this long-standing problem. PURPOSE This study aimed to determine how vertebral fracture and vertebroplasty affect compressive load-sharing and vertebral deformations at adjacent spinal levels. STUDY DESIGN We conducted mechanical experiments on cadaver spines. METHODS Twenty-eight cadaveric spine specimens, comprising three thoracolumbar vertebrae and the intervening discs and ligaments, were dissected from fourteen cadavers aged 67-92 years. A needle-mounted pressure transducer was used to measure the distribution of compressive stress across the anteroposterior diameter of both intervertebral discs. "Stress profiles" were analyzed to quantify intradiscal pressure (IDP) and concentrations of compressive stress in the anterior and posterior annulus. Summation of stresses over discrete areas yielded the compressive force acting on the anterior and posterior halves of each vertebral body, and the compressive force resisted by the neural arch. Creep deformations of vertebral bodies under load were measured using an optical MacReflex system. All measurements were repeated following compressive injury to one of the three vertebrae, and again after the injury had been treated by vertebroplasty. The study was funded by a grant from Action Medical Research, UK ($143,230). Authors of this study have no conflicts of interest to disclose. RESULTS Injury usually involved endplate fracture, often combined with deformation of the anterior cortex, so that the affected vertebral body developed slight anterior wedging. Injury reduced IDP at the affected level, to an average 47% of pre-fracture values (p<.001), and transferred compressive load-bearing from nucleus to annulus, and also from disc to neural arch. Similar but reduced effects were seen at adjacent (non-fractured) levels, where mean IDP was reduced to 73% of baseline values (p<.001). Vertebroplasty partially reversed these changes, increasing mean IDP to 76% and 81% of baseline values at fractured and adjacent levels, respectively. Injury also increased creep deformation of the vertebral body under load, especially in the anterior region where a 14-fold increase was observed at the fractured level and a threefold increase was observed at the adjacent level. Vertebroplasty also reversed these changes, reducing deformation of the anterior vertebral body (compared with post-fracture values) by 62% at the fractured level, and by 52% at the adjacent level. CONCLUSIONS Vertebral fracture adversely affects compressive load-sharing and increases vertebral deformations at both fractured and adjacent levels. All effects can be partially reversed by vertebroplasty.
Collapse
Affiliation(s)
- Jin Luo
- School of Applied Sciences, London South Bank University, 103 Borough Rd, London SE1 0AA, UK
| | - Deborah J Annesley-Williams
- Department of Neuroradiology, Nottingham University Hospitals NHS Trust, Queen's Medical Centre, Derby Rd, Nottingham NG7 2UH, UK
| | - Michael A Adams
- Centre of Applied Anatomy, University of Bristol, Southwell St, Bristol, BS2 8EJ, UK
| | - Patricia Dolan
- Centre of Applied Anatomy, University of Bristol, Southwell St, Bristol, BS2 8EJ, UK.
| |
Collapse
|
14
|
Balkovec C, Veldhuis JH, Baird JW, Brodland GW, McGill SM. A videofluoroscopy-based tracking algorithm for quantifying the time course of human intervertebral displacements. Comput Methods Biomech Biomed Engin 2017; 20:794-802. [PMID: 28294643 DOI: 10.1080/10255842.2017.1302435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The motions of individual intervertebral joints can affect spine motion, injury risk, deterioration, pain, treatment strategies, and clinical outcomes. Since standard kinematic methods do not provide precise time-course details about individual vertebrae and intervertebral motions, information that could be useful for scientific advancement and clinical assessment, we developed an iterative template matching algorithm to obtain this data from videofluoroscopy images. To assess the bias of our approach, vertebrae in an intact porcine spine were tracked and compared to the motions of high-contrast markers. To estimate precision under clinical conditions, motions of three human cervical spines were tracked independently ten times and vertebral and intervertebral motions associated with individual trials were compared to corresponding averages. Both tests produced errors in intervertebral angular and shear displacements no greater than 0.4° and 0.055 mm, respectively. When applied to two patient cases, aberrant intervertebral motions in the cervical spine were typically found to correlate with patient-specific anatomical features such as disc height loss and osteophytes. The case studies suggest that intervertebral kinematic time-course data could have value in clinical assessments, lead to broader understanding of how specific anatomical features influence joint motions, and in due course inform clinical treatments.
Collapse
Affiliation(s)
- Christian Balkovec
- a Department of Kinesiology , University of Waterloo , Waterloo , Canada
| | - Jim H Veldhuis
- b Department of Civil and Environmental Engineering , University of Waterloo , Waterloo , Canada
| | - John W Baird
- c Markham Chiropractic Centre , Markham , Canada
| | - G Wayne Brodland
- b Department of Civil and Environmental Engineering , University of Waterloo , Waterloo , Canada.,d Centre for Bioengineering and Biotechnology , University of Waterloo , Waterloo , Canada
| | - Stuart M McGill
- a Department of Kinesiology , University of Waterloo , Waterloo , Canada
| |
Collapse
|
15
|
Balkovec C, Vernengo AJ, McGill SM. Disc height loss and restoration via injectable hydrogel influences adjacent segment mechanics in-vitro. Clin Biomech (Bristol, Avon) 2016; 36:1-7. [PMID: 27186646 DOI: 10.1016/j.clinbiomech.2016.05.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 04/25/2016] [Accepted: 05/03/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND Height loss can have a profound influence on the local mechanical environment of the disc. While disc height loss is incorporated into scales of degeneration, its direct influence on spine kinematics is unclear. Further, there is a need for minimally invasive techniques to restore disc height; injectable hydrogels are a potential solution. Tandem investigation of disc height loss and subsequent restoration will enhance understanding of spine dysfunction and aberrant movement. METHODS Twenty porcine spine specimens with two functional segments were tested in repeated flexion and extension. Relative angular displacement of each segment was measured with full specimen disc height, disc height loss in one of the segments (superior or inferior), and disc height restoration via hydrogel injection. FINDINGS Disc height loss decreased the range of motion at the affected segment and increased the range of motion at the adjacent segment. Relative angular displacement decreased at the affected segment by 13.8% (SD=5.3%) and 4.5% (SD=2.1%) for specimens with height loss in the superior and inferior discs respectively. Hydrogel injection was able to restore segmental kinematics to the pre-injury state, with 12.7% (SD=5.5%) and 6.4% (SD=4.2%) of motion regained at the affected segment for superior and inferior disc height loss specimens respectively. INTERPRETATION Acute disc height loss reduces motion at an affected segment, while increasing motion at an adjacent segment in-vitro; relative motion appears to be governed by local stiffness. Injectable hydrogels show promise in their ability to restore kinematics to segments with disc height loss.
Collapse
|
16
|
Mahato NK, Montuelle S, Cotton J, Williams S, Thomas J, Clark B. Development of a morphology-based modeling technique for tracking solid-body displacements: examining the reliability of a potential MRI-only approach for joint kinematics assessment. BMC Med Imaging 2016; 16:38. [PMID: 27189195 PMCID: PMC4870733 DOI: 10.1186/s12880-016-0140-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 05/03/2016] [Indexed: 11/25/2022] Open
Abstract
Background Single or biplanar video radiography and Roentgen stereophotogrammetry (RSA) techniques used for the assessment of in-vivo joint kinematics involves application of ionizing radiation, which is a limitation for clinical research involving human subjects. To overcome this limitation, our long-term goal is to develop a magnetic resonance imaging (MRI)-only, three dimensional (3-D) modeling technique that permits dynamic imaging of joint motion in humans. Here, we present our initial findings, as well as reliability data, for an MRI-only protocol and modeling technique. Methods We developed a morphology-based motion-analysis technique that uses MRI of custom-built solid-body objects to animate and quantify experimental displacements between them. The technique involved four major steps. First, the imaging volume was calibrated using a custom-built grid. Second, 3-D models were segmented from axial scans of two custom-built solid-body cubes. Third, these cubes were positioned at pre-determined relative displacements (translation and rotation) in the magnetic resonance coil and scanned with a T1 and a fast contrast-enhanced pulse sequences. The digital imaging and communications in medicine (DICOM) images were then processed for animation. The fourth step involved importing these processed images into an animation software, where they were displayed as background scenes. In the same step, 3-D models of the cubes were imported into the animation software, where the user manipulated the models to match their outlines in the scene (rotoscoping) and registered the models into an anatomical joint system. Measurements of displacements obtained from two different rotoscoping sessions were tested for reliability using coefficient of variations (CV), intraclass correlation coefficients (ICC), Bland-Altman plots, and Limits of Agreement analyses. Results Between-session reliability was high for both the T1 and the contrast-enhanced sequences. Specifically, the average CVs for translation were 4.31 % and 5.26 % for the two pulse sequences, respectively, while the ICCs were 0.99 for both. For rotation measures, the CVs were 3.19 % and 2.44 % for the two pulse sequences with the ICCs being 0.98 and 0.97, respectively. A novel biplanar imaging approach also yielded high reliability with mean CVs of 2.66 % and 3.39 % for translation in the x- and z-planes, respectively, and ICCs of 0.97 in both planes. Conclusions This work provides basic proof-of-concept for a reliable marker-less non-ionizing-radiation-based quasi-dynamic motion quantification technique that can potentially be developed into a tool for real-time joint kinematics analysis.
Collapse
Affiliation(s)
- Niladri K Mahato
- Ohio Musculoskeletal and Neurological Institute, Ohio University, Athens, OH, 45701, USA. .,Department of Biomedical Sciences, Ohio University, Athens, OH, 45701, USA.
| | - Stephane Montuelle
- Department of Biomedical Sciences, Ohio University, Athens, OH, 45701, USA
| | - John Cotton
- Ohio Musculoskeletal and Neurological Institute, Ohio University, Athens, OH, 45701, USA.,Department of Mechanical Engineering, Ohio University, Athens, OH, 45701, USA
| | - Susan Williams
- Ohio Musculoskeletal and Neurological Institute, Ohio University, Athens, OH, 45701, USA.,Department of Biomedical Sciences, Ohio University, Athens, OH, 45701, USA
| | - James Thomas
- Ohio Musculoskeletal and Neurological Institute, Ohio University, Athens, OH, 45701, USA.,School of Rehabilitation and Communication Sciences, Ohio University, Athens, OH, 45701, USA
| | - Brian Clark
- Ohio Musculoskeletal and Neurological Institute, Ohio University, Athens, OH, 45701, USA.,Department of Biomedical Sciences, Ohio University, Athens, OH, 45701, USA.,Department of Geriatric Medicine, Ohio University, Athens, OH, 45701, USA
| |
Collapse
|