1
|
Geissler M, Jia W, Kiraz EN, Kulacz I, Liu X, Rombach A, Prinz V, Jussen D, Kokkaliaris KD, Medyouf H, Sevenich L, Czabanka M, Broggini T. The Brain Pre-Metastatic Niche: Biological and Technical Advancements. Int J Mol Sci 2023; 24:10055. [PMID: 37373202 DOI: 10.3390/ijms241210055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Metastasis, particularly brain metastasis, continues to puzzle researchers to this day, and exploring its molecular basis promises to break ground in developing new strategies for combatting this deadly cancer. In recent years, the research focus has shifted toward the earliest steps in the formation of metastasis. In this regard, significant progress has been achieved in understanding how the primary tumor affects distant organ sites before the arrival of tumor cells. The term pre-metastatic niche was introduced for this concept and encompasses all influences on sites of future metastases, ranging from immunological modulation and ECM remodeling to the softening of the blood-brain barrier. The mechanisms governing the spread of metastasis to the brain remain elusive. However, we begin to understand these processes by looking at the earliest steps in the formation of metastasis. This review aims to present recent findings on the brain pre-metastatic niche and to discuss existing and emerging methods to further explore the field. We begin by giving an overview of the pre-metastatic and metastatic niches in general before focusing on their manifestations in the brain. To conclude, we reflect on the methods usually employed in this field of research and discuss novel approaches in imaging and sequencing.
Collapse
Affiliation(s)
- Maximilian Geissler
- Department of Neurosurgery, University Hospital, Goethe-University, 60528 Frankfurt am Main, Germany
| | - Weiyi Jia
- Department of Neurosurgery, University Hospital, Goethe-University, 60528 Frankfurt am Main, Germany
| | - Emine Nisanur Kiraz
- Department of Neurosurgery, University Hospital, Goethe-University, 60528 Frankfurt am Main, Germany
| | - Ida Kulacz
- Department of Neurosurgery, University Hospital, Goethe-University, 60528 Frankfurt am Main, Germany
| | - Xiao Liu
- Department of Neurosurgery, University Hospital, Goethe-University, 60528 Frankfurt am Main, Germany
| | - Adrian Rombach
- Department of Neurosurgery, University Hospital, Goethe-University, 60528 Frankfurt am Main, Germany
| | - Vincent Prinz
- Department of Neurosurgery, University Hospital, Goethe-University, 60528 Frankfurt am Main, Germany
| | - Daniel Jussen
- Department of Neurosurgery, University Hospital, Goethe-University, 60528 Frankfurt am Main, Germany
| | - Konstantinos D Kokkaliaris
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, 60528 Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60528 Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Goethe University Frankfurt, 60528 Frankfurt am Main, Germany
| | - Hind Medyouf
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60528 Frankfurt am Main, Germany
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60528 Frankfurt am Main, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Lisa Sevenich
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60528 Frankfurt am Main, Germany
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60528 Frankfurt am Main, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Marcus Czabanka
- Department of Neurosurgery, University Hospital, Goethe-University, 60528 Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Goethe University Frankfurt, 60528 Frankfurt am Main, Germany
| | - Thomas Broggini
- Department of Neurosurgery, University Hospital, Goethe-University, 60528 Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Goethe University Frankfurt, 60528 Frankfurt am Main, Germany
| |
Collapse
|
2
|
Latka K, Kolodziej W, Pawlak K, Sobolewski T, Rajski R, Chowaniec J, Olbrycht T, Tanaka M, Latka D. Fully Endoscopic Spine Separation Surgery in Metastatic Disease-Case Series, Technical Notes, and Preliminary Findings. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59050993. [PMID: 37241225 DOI: 10.3390/medicina59050993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023]
Abstract
Objective: This report aims to describe the surgical methodology and potential effectiveness of endoscopic separation surgery (ESS) in patients with metastatic spine disease. This concept may reduce the invasiveness of the procedure, which can potentially speed up the wound healing process and, thus, the possibility of faster application of radiotherapy. Materials and Methods: In this study, separation surgery for preparing patients for stereotactic body radiotherapy (SBRT) was performed with fully endoscopic spine surgery (FESS) followed by percutaneous screw fixation (PSF). Results: Three patients with metastatic spine disease in the thoracic spine were treated with fully endoscopic spine separation surgery. The first case resulted in the progression of paresis symptoms that resulted in disqualification from further oncological treatment. The remaining two patients achieved satisfactory clinical and radiological effects and were referred for additional radiotherapy. Conclusions: With advancements in medical technology, such as endoscopic visualization, and new tools for coagulation, we can treat more and more spine diseases. Until now, spine metastasis was not an indication for the use of endoscopy. This method is very technically challenging and risky, especially at such an early stage of application, due to variations in the patient's condition, morphological diversity, and the nature of metastatic lesions in the spine. Further trials are needed to determine whether this new approach to treating patients with spine metastases is a promising breakthrough or a dead end.
Collapse
Affiliation(s)
- Kajetan Latka
- Department of Neurosurgery, St. Hedwig's Regional Specialist Hospital, ul.Wodociagowa 4, 45-221 Opole, Poland
| | - Waldemar Kolodziej
- Department of Neurosurgery, Institute of Medical Sciences, University of Opole, Al.Witosa 26, 45-401 Opole, Poland
| | - Kornel Pawlak
- Department of Radiotherapy, Opole Center of Oncology, ul.Katowicka 66a, 45-061 Opole, Poland
| | - Tomasz Sobolewski
- Department of Neurosurgery, Institute of Medical Sciences, University of Opole, Al.Witosa 26, 45-401 Opole, Poland
| | - Rafal Rajski
- Department of Neurosurgery, Institute of Medical Sciences, University of Opole, Al.Witosa 26, 45-401 Opole, Poland
| | - Jacek Chowaniec
- Department of Neurosurgery, Institute of Medical Sciences, University of Opole, Al.Witosa 26, 45-401 Opole, Poland
| | - Tomasz Olbrycht
- Department of Neurosurgery, Institute of Medical Sciences, University of Opole, Al.Witosa 26, 45-401 Opole, Poland
| | - Masato Tanaka
- Department of Orthopaedic Surgery, Okayama Rosai Hospital, Okayama 702-8055, Japan
| | - Dariusz Latka
- Department of Neurosurgery, Institute of Medical Sciences, University of Opole, Al.Witosa 26, 45-401 Opole, Poland
| |
Collapse
|
3
|
Ligand-Dependent and Ligand-Independent Effects of Ephrin-B2-EphB4 Signaling in Melanoma Metastatic Spine Disease. Int J Mol Sci 2021; 22:ijms22158028. [PMID: 34360793 PMCID: PMC8347368 DOI: 10.3390/ijms22158028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 11/16/2022] Open
Abstract
Tumor–endothelial cell interactions represent an essential mechanism in spinal metastasis. Ephrin-B2–EphB4 communication induces tumor cell repulsion from the endothelium in metastatic melanoma, reducing spinal bone metastasis formation. To shed further light on the Ephrin-B2–EphB4 signaling mechanism, we researched the effects of pharmacological EphB4 receptor stimulation and inhibition in a ligand-dependent/independent context. We chose a preventative and a post-diagnostic therapeutic window. EphB4 stimulation during tumor cell seeding led to an increase in spinal metastatic loci and number of disseminated melanoma cells, as well as earlier locomotion deficits in the presence of endothelial Ephrin-B2. In the absence of endothelial Ephrin-B2, reduction of metastatic loci with a later manifestation of locomotion deficits occurred. Thus, EphB4 receptor stimulation affects metastatic dissemination depending on the presence/absence of endothelial Ephrin-B2. After the manifestation of solid metastasis, EphB4 kinase inhibition resulted in significantly earlier manifestation of locomotion deficits in the presence of the ligand. No post-diagnostic treatment effect was found in the absence of endothelial Ephrin-B2. For solid metastasis treatment, EphB4 kinase inhibition induced prometastatic effects in the presence of endothelial Ephrin-B2. In the absence of endothelial Ephrin-B2, both therapies showed no effect on the growth of solid metastasis.
Collapse
|
4
|
Jelgersma C, Vajkoczy P. How to Target Spinal Metastasis in Experimental Research: An Overview of Currently Used Experimental Mouse Models and Future Prospects. Int J Mol Sci 2021; 22:ijms22115420. [PMID: 34063821 PMCID: PMC8196562 DOI: 10.3390/ijms22115420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/12/2021] [Accepted: 05/18/2021] [Indexed: 01/20/2023] Open
Abstract
The spine is one of the organs that is most affected by metastasis in cancer patients. Since the control of primary tumor is continuously improving, treatment of metastases is becoming one of the major challenges to prevent cancer-related death. Due to the anatomical proximity to the spinal cord, local spread of metastasis can directly cause neurological deficits, severely limiting the patient’s quality of life. To investigate the underlying mechanisms and to develop new therapies, preclinical models are required which represent the complexity of the multistep cascade of metastasis. Current research of metastasis focuses on the formation of the premetastatic niche, tumor cell dormancy and the influence and regulating function of the immune system. To unveil whether these influence the organotropism to the spine, spinal models are irreplaceable. Mouse models are one of the most suitable models in oncologic research. Therefore, this review provides an overview of currently used mouse models of spinal metastasis. Furthermore, it discusses technical aspects clarifying to what extend these models can picture key steps of the metastatic process. Finally, it addresses proposals to develop better mouse models in the future and could serve as both basis and stimulus for researchers and clinicians working in this field.
Collapse
|
5
|
Inactivation of ICAM1 inhibits metastasis and improves the prognosis of Ewing's sarcoma. J Cancer Res Clin Oncol 2020; 147:393-401. [PMID: 33104883 DOI: 10.1007/s00432-020-03431-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 10/19/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Ewing's sarcoma (ES) is a kind of malignant tumor, which often occurs in the long bone, pelvis, and other bone tissues, as well as some soft tissues. It often occurs in children and adolescents, second only to osteosarcoma and rhabdomyosarcoma. In the past 30 years, little progress has been made on the genomic mechanism of ES metastasis. METHODS The gene expression sequence of ES metastasis samples was compared with that of primary tumor samples to obtain differentially expressed genes (DEGs). Subsequently, we annotated the gene functions and enriched pathways of DEGs. Additionally, the protein and protein interaction network were constructed to screen key genes that can lead to the metastasis in ES. Then, cell and molecular biology experiments were conducted to verify the results obtained from the bioinformatics analysis. Finally, we assessed the correlation of expression between the key genes EWSR and FLI1, and conducted a survival analysis of ICAM1. RESULTS Our study revealed 153 DEGs. Of these, 82 (53.59%) were upregulated and the remaining 71 (46.41%) were downregulated. The bioinformatics analysis showed that ICAM1 was the key gene leading to the invasion and metastasis of ES. Through cell biology and molecular biology experiments, inactivation of ICAM1 inhibited the metastasis of ES cells. The survival and correlation analyses showed that ICAM1 was a risk factor in patients with ES, and that ICAM1 expression was correlated with EWSR and FLI1 expression. CONCLUSION Our study shows that inactivation of ICAM1 inhibits metastasis and improves the prognosis of ES. Additionally, our findings provide a better understanding of the underlying mechanisms of metastatic ES, a basis for an accurate diagnosis, and therapeutic targets for ES patients.
Collapse
|
6
|
Broggini T, Piffko A, Hoffmann CJ, Ghori A, Harms C, Adams RH, Vajkoczy P, Czabanka M. Ephrin-B2-EphB4 communication mediates tumor-endothelial cell interactions during hematogenous spread to spinal bone in a melanoma metastasis model. Oncogene 2020; 39:7063-7075. [PMID: 32989254 DOI: 10.1038/s41388-020-01473-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 08/21/2020] [Accepted: 09/15/2020] [Indexed: 11/09/2022]
Abstract
Metastases account for the majority of cancer deaths. Bone represents one of the most common sites of distant metastases, and spinal bone metastasis is the most common source of neurological morbidity in cancer patients. During metastatic seeding of cancer cells, endothelial-tumor cell interactions govern extravasation to the bone and potentially represent one of the first points of action for antimetastatic treatment. The ephrin-B2-EphB4 pathway controls cellular interactions by inducing repulsive or adhesive properties, depending on forward or reverse signaling. Here, we report that in an in vivo metastatic melanoma model, ephrin-B2-mediated activation of EphB4 induces tumor cell repulsion from bone endothelium, translating in reduced spinal bone metastatic loci and improved neurological function. Selective ephrin-B2 depletion in endothelial cells or EphB4 inhibition increases bone metastasis and shortens the time window to hind-limb locomotion deficit from spinal cord compression. EphB4 overexpression in melanoma cells ameliorates the metastatic phenotype and improves neurological outcome. Timely harvesting of bone tissue after tumor cell injection and intravital bone microscopy revealed less tumor cells attached to ephrin-B2-positive endothelial cells. These results suggest that ephrin-B2-EphB4 communication influences bone metastasis formation by altering melanoma cell repulsion/adhesion to bone endothelial cells, and represents a molecular target for therapeutic intervention.
Collapse
Affiliation(s)
- Thomas Broggini
- Department of Neurosurgery, Universitätsmedizin Charite, D-10117, Berlin, Germany.,Department of Physics, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Andras Piffko
- Department of Neurosurgery, Universitätsmedizin Charite, D-10117, Berlin, Germany.,Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Christian J Hoffmann
- Department of Experimental Neurology, Center for Stroke Research Berlin, Universitätsmedizin Charite, D-10117, Berlin, Germany
| | - Adnan Ghori
- Department of Neurosurgery, Universitätsmedizin Charite, D-10117, Berlin, Germany
| | - Christoph Harms
- Department of Experimental Neurology, Center for Stroke Research Berlin, Universitätsmedizin Charite, D-10117, Berlin, Germany
| | - Ralf H Adams
- Max-Planck-Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, and University of Münster, Faculty of Medicine, D-48149, Münster, Germany
| | - Peter Vajkoczy
- Department of Neurosurgery, Universitätsmedizin Charite, D-10117, Berlin, Germany
| | - Marcus Czabanka
- Department of Neurosurgery, Universitätsmedizin Charite, D-10117, Berlin, Germany.
| |
Collapse
|
7
|
Kratzsch T, Piffko A, Broggini T, Czabanka M, Vajkoczy P. Role of mTOR and VEGFR Inhibition in Prevention of Metastatic Tumor Growth in the Spine. Front Oncol 2020; 10:174. [PMID: 32140451 PMCID: PMC7042460 DOI: 10.3389/fonc.2020.00174] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 01/31/2020] [Indexed: 11/26/2022] Open
Abstract
Objective: Spinal metastatic disease remains a major problem of oncological diseases. Patients affected may suffer pain, spinal instability, and severe neurological deficits. Today, palliative surgery and radiotherapy are the mainstays of therapy. In contrast, preventive treatment strategies or treatment concepts for an early stage are lacking. Here, we have used a syngeneic, experimental spine metastases model in the mouse to test the efficacy of mTOR inhibition and anti-angiogenesis on the formation and progression of spinal melanoma metastases. Methods: We used our previously established syngeneic spinal metastases mouse model by injecting luciferin-transfected B16 melanoma cells into the common carotid artery. Following injection, mice were treated with everolimus, an inhibitor of the mammalian target of rapamycin (mTOR) complex, axitinib, a tyrosine kinase inhibitor, that blocks vascular endothelial growth factor receptors (VEGFR) 1-3, as well as placebo. Animals were followed-up daily by neurological assessment and by repeat in vivo bioluminescence imaging. With occurrence of neurological deficits, a spinal MRI was performed, and mice were sacrificed. The whole spine was dissected free and analyzed by immunohistochemical techniques. Results: Overall survival was 23 days in the control group, significantly prolonged to 30 days (p = 0.04) in the everolimus group, and to 28 days (p = 0.04) in the axitinib group. While 78% of mice in the placebo group developed symptomatic metastatic epidural spinal cord compression, only 50% did so in the treatment groups. The mean time to manifestation of paralysis was 22 days in the control group, 26 days (p = 0.10) in the everolimus group, and 27 days (p = 0.06) in the axitinib group. Screening for spinal metastases by bioluminescence imaging on two different time points showed a decrease in metastatic tumor formation in the treatment groups compared to the controls. Immunohistochemical analysis confirmed the bioactivity of the two compounds: The Ki67 proliferation labeling index was reduced in the everolimus group and numbers of CD31 positive endothelial cells were reduced in the axitinib group. Conclusion: Both, the mTOR inhibitor everolimus as well as antiangiogenetic effects by the VEGFR inhibitor axitinib showed potential to prevent and retard formation of symptomatic spinal metastases. However, the therapeutic efficacy was only mild in this experimental model.
Collapse
Affiliation(s)
- Tobias Kratzsch
- Department of Neurosurgery, Charité University Hospital, Berlin, Germany
| | - Andras Piffko
- Department of Neurosurgery, Charité University Hospital, Berlin, Germany
| | - Thomas Broggini
- Department of Physics, University of California, San Diego, La Jolla, CA, United States
| | - Marcus Czabanka
- Department of Neurosurgery, Charité University Hospital, Berlin, Germany
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité University Hospital, Berlin, Germany
| |
Collapse
|
8
|
Pipola V, Boriani S, Bandiera S, Righi A, Barbanti Bròdano G, Terzi S, Ghermandi R, Tedesco G, Evangelisti G, Girolami M, Gasbarrini A. Paraganglioma of the spine: A twenty-years clinical experience of a high volume tumor center. J Clin Neurosci 2019; 66:7-11. [DOI: 10.1016/j.jocn.2019.05.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 03/13/2019] [Accepted: 05/21/2019] [Indexed: 10/26/2022]
|
9
|
Inhibition of secretory phospholipase A2 IIa attenuates prostaglandin E2-induced invasiveness in lung adenocarcinoma. Mol Cell Biochem 2019; 456:145-156. [PMID: 30684134 DOI: 10.1007/s11010-019-03500-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 01/19/2019] [Indexed: 12/31/2022]
Abstract
Secretory phospholipase A2 IIa (sPLA2 IIa) catalyzes the production of multiple inflammatory mediators that influence the development of lung and other cancers. The most potent of these carcinogenic mediators is prostaglandin E2 (PGE2). We hypothesize that sPLA2 IIa inhibition modulates the production of PGE2, and sPLA2 IIa inhibition exerts its antineoplastic effects via downregulation of PGE2 production. We aim to evaluate these relationships via analysis of PGE2-mediated growth regulation pathways. A549 and H1650 lung adenocarcinoma cells were assayed for PGE2 production in the presence of sPLA2 IIa inhibitor. A549 and H1650 cells were treated with PGE2 and immune blotting was performed to assess ICAM-1 expression and STAT-3 activity. PGE2-induced ICAM-1 expression was measured via immunofluorescence. A549 and H1650 cells were treated with PGE2 in the presence of STAT3 inhibitor and assayed for ICAM-1 expression. A549 cells were treated with PGE2 in the presence ICAM-1 blocking antibody and assayed for invasion. PGE2 stimulation significantly increased the invasiveness and proliferation of lung adenocarcinoma (invasion p < 0.05, proliferation p < 0.05 A549 cells, p < 0.005 H1650 cells). sPLA2 IIa inhibition reduced PGE2 secretion (p < 0.05). PGE2 stimulation significantly upregulated the expression of cell adhesion molecule ICAM-1 and the phosphorylation of anti-apoptotic transcription factor STAT3 (p < 0.05). STAT3 inhibition attenuated ICAM-1 expression demonstrating the dependence of ICAM-1 on the STAT3 pathway (p < 0.05). ICAM-1 blockade attenuated the pro-invasive effects of PGE2 (p < 0.05). sPLA2 IIa inhibition attenuates the potent effects of PGE2-induced invasiveness. This is mediated by decreasing pro-inflammatory and invasion-promoting ICAM-1via the STAT-3 pathway. These data further describe how sPLA2 IIa inhibition mechanistically exerts its anticancer effects and support its use as an antineoplastic agent.
Collapse
|
10
|
Jia Q, Yin H, Yang J, Wu Z, Yan W, Zhou W, Yang X, Xiao J. Treatment and outcome of metastatic paraganglioma of the spine. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2017; 27:859-867. [PMID: 28653097 DOI: 10.1007/s00586-017-5140-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 04/11/2017] [Accepted: 05/15/2017] [Indexed: 12/28/2022]
Abstract
BACKGROUND Spinal metastatic paraganglioma (MPG) is rare and only reported in individual case reports. The low incidence makes it difficult to define appropriate therapy and prognosis. Our study illustrated the largest series to discuss the possible treatment and outcomes of patients with spinal MPG. METHODS A retrospective study of 15 patients with spinal MPG who were surgically treated between 2005 and 2014 was performed. Three surgical modalities were applied, and radiotherapy and chemotherapy were utilized as adjuvant therapy. RESULTS The mean patients age was 40.9 (range 23-58) years. The period between primary surgery and spinal metastasis averaged 8.2 (0.5-15) years. Lesions were mainly located in cervical spine (2), thoracic spine (8), lumbar spine (3), and sacrum (2). The mean follow-up period was 35.0 months. Lesion progression was detected in nine patients, whereas five patients (33.3%) passed away. For solitary spine, multiple bone and both bone and nonosseous metastasis cases, the mean progression-free survival was 41 (range 9-56), 22.5 (range 12-38) and 8.3 (range 3-18) months, respectively. CONCLUSIONS The cases presented in the current study highlight the crucial role of surgery. Total en bloc for solitary spinal MPG could result in a satisfying prognosis and piecemeal total resection with postoperative radiotherapy could be an alternative therapy. Radiotherapy and chemotherapy were advocated, especially for the multiple metastasis.
Collapse
Affiliation(s)
- Qi Jia
- Department of Orthopedic Oncology, Shanghai Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Huangpu District, Shanghai, China
| | - Huabin Yin
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, 100 Haining Road, Shanghai, China
| | - Jian Yang
- Department of Orthopedic Oncology, Shanghai Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Huangpu District, Shanghai, China
| | - Zhipeng Wu
- Department of Orthopedic Oncology, Shanghai Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Huangpu District, Shanghai, China
| | - Wangjun Yan
- Department of Orthopedic Oncology, Shanghai Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Huangpu District, Shanghai, China
| | - Wang Zhou
- Department of Orthopedic Oncology, Shanghai Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Huangpu District, Shanghai, China
| | - Xinghai Yang
- Department of Orthopedic Oncology, Shanghai Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Huangpu District, Shanghai, China.
| | - Jianru Xiao
- Department of Orthopedic Oncology, Shanghai Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Huangpu District, Shanghai, China.
| |
Collapse
|
11
|
Passive Entrapment of Tumor Cells Determines Metastatic Dissemination to Spinal Bone and Other Osseous Tissues. PLoS One 2016; 11:e0162540. [PMID: 27603673 PMCID: PMC5014376 DOI: 10.1371/journal.pone.0162540] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 08/24/2016] [Indexed: 11/29/2022] Open
Abstract
During the metastatic process tumor cells circulate in the blood stream and are carried to various organs. In order to spread to different organs tumor cell—endothelial cell interactions are crucial for extravasation mechanisms. It remains unclear if tumor cell dissemination to the spinal bone occurs by passive entrapment of circulating tumor cells or by active cellular mechanisms mediated by cell surface molecules or secreted factors. We investigated the seeding of three different tumor cell lines (melanoma, lung and prostate carcinoma) to the microvasculature of different organs. Their dissemination was compared to biologically passive microbeads. The spine and other organs were resected three hours after intraarterial injection of tumor cells or microbeads. Ex vivo homogenization and fluorescence analysis allowed quantification of tumor cells or microbeads in different organs. Interestingly, tumor cell distribution to the spinal bone was comparable to dissemination of microbeads independent of the tumor cell type (melanoma: 5.646% ± 7.614%, lung: 6.007% ± 1.785%, prostate: 3.469% ± 0.602%, 7 μm beads: 9.884% ± 7.379%, 16 μm beads: 7.23% ± 1.488%). Tumor cell seeding differed significantly between tumor cells and microbeads in all soft tissue organs. Moreover, there were significant differences between the different tumor cell lines in their dissemination behaviour to soft tissue organs only. These findings demonstrate that metastatic dissemination of tumor cells to spinal bone and other osseous organs is mediated by passive entrapment of tumor cells similar to passive plugging of microvasculature observed after intraarterial microbeads injection.
Collapse
|
12
|
Liu JF, Tsao YT, Hou CH. Fractalkine/CX3CL1 induced intercellular adhesion molecule-1-dependent tumor metastasis through the CX3CR1/PI3K/Akt/NF-κB pathway in human osteosarcoma. Oncotarget 2016; 8:54136-54148. [PMID: 28903329 PMCID: PMC5589568 DOI: 10.18632/oncotarget.11250] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 07/09/2016] [Indexed: 12/22/2022] Open
Abstract
Osteosarcoma is the most common primary bone tumor in children and teens. The exact molecular mechanism underlying osteosarcoma progression still remains unclear. The CX3CL1/fractalkine has been implicated in various tumors but not in osteosarcoma. This study is the first to show that fractalkine promotes osteosarcoma metastasis by promoting cell migration. Fractalkine expression was higher in osteosarcoma cell lines than in normal osteoblasts. Fractalkine induced cell migration by upregulating intercellular adhesion molecule-1 (ICAM-1) expression via CX3CR1/PI3K/Akt/NF-κB pathway in human osteosarcoma cells. Knockdown of fractalkine expression markedly inhibited cell migration and lung metastasis in osteosarcoma. Finally, we showed a clinical correlation between CX3CL1 expression and ICAM-1 expression as well as tumor stage in human osteosarcoma tissues. In conclusion, our results indicate that fractalkine promotes cell migration and metastasis of osteosarcoma by upregulating ICAM-1 expression. Thus, fractalkine could serve a novel therapeutic target for preventing osteosarcoma metastasis.
Collapse
Affiliation(s)
- Ju-Fang Liu
- Central Laboratory, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Ya-Ting Tsao
- Department of Orthopedic Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Chun-Han Hou
- Department of Orthopedic Surgery, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
13
|
Mukai H, Muramatsu A, Mashud R, Kubouchi K, Tsujimoto S, Hongu T, Kanaho Y, Tsubaki M, Nishida S, Shioi G, Danno S, Mehruba M, Satoh R, Sugiura R. PKN3 is the major regulator of angiogenesis and tumor metastasis in mice. Sci Rep 2016; 6:18979. [PMID: 26742562 PMCID: PMC4705536 DOI: 10.1038/srep18979] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 12/02/2015] [Indexed: 01/13/2023] Open
Abstract
PKN, a conserved family member related to PKC, was the first protein kinase identified as a target of the small GTPase Rho. PKN is involved in various functions including cytoskeletal arrangement and cell adhesion. Furthermore, the enrichment of PKN3 mRNA in some cancer cell lines as well as its requirement in malignant prostate cell growth suggested its involvement in oncogenesis. Despite intensive research efforts, physiological as well as pathological roles of PKN3 in vivo remain elusive. Here, we generated mice with a targeted deletion of PKN3. The PKN3 knockout (KO) mice are viable and develop normally. However, the absence of PKN3 had an impact on angiogenesis as evidenced by marked suppressions of micro-vessel sprouting in ex vivo aortic ring assay and in vivo corneal pocket assay. Furthermore, the PKN3 KO mice exhibited an impaired lung metastasis of melanoma cells when administered from the tail vein. Importantly, PKN3 knock-down by small interfering RNA (siRNA) induced a glycosylation defect of cell-surface glycoproteins, including ICAM-1, integrin β1 and integrin α5 in HUVECs. Our data provide the first in vivo genetic demonstration that PKN3 plays critical roles in angiogenesis and tumor metastasis, and that defective maturation of cell surface glycoproteins might underlie these phenotypes.
Collapse
Affiliation(s)
- Hideyuki Mukai
- Biosignal Research Center, Kobe University, Kobe 657-8501, Japan
| | - Aiko Muramatsu
- Graduate School of Science and Technology, Kobe University, Kobe 657-8501, Japan
| | - Rana Mashud
- Graduate School of Medicine, Kobe University, Kobe 657-8501, Japan
| | - Koji Kubouchi
- Laboratory of Molecular Pharmacogenomics, School of Pharmaceutical Sciences, Kinki University, 3-4-1 Kowakae, Higashi-Osaka 577-8502, Japan
| | - Sho Tsujimoto
- Laboratory of Molecular Pharmacogenomics, School of Pharmaceutical Sciences, Kinki University, 3-4-1 Kowakae, Higashi-Osaka 577-8502, Japan
| | - Tsunaki Hongu
- Graduate School of Comprehensive Human Sciences, Institute of Basic Medical Sciences, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Yasunori Kanaho
- Graduate School of Comprehensive Human Sciences, Institute of Basic Medical Sciences, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Masanobu Tsubaki
- Division of Pharmacotherapy, Kinki University School of Pharmacy, Kowakae, Higashi-Osaka 577-8502, Japan
| | - Shozo Nishida
- Division of Pharmacotherapy, Kinki University School of Pharmacy, Kowakae, Higashi-Osaka 577-8502, Japan
| | - Go Shioi
- Genetic Engineering Team, Division of Bio-function Dynamics Imaging, RIKEN Center for Life Science Technologies (CLST), 2-2-3 Minatojima Minami,Chuou-ku, Kobe 650-0047
| | - Sally Danno
- Graduate School of Medicine, Kobe University, Kobe 657-8501, Japan
| | - Mona Mehruba
- Graduate School of Medicine, Kobe University, Kobe 657-8501, Japan
| | - Ryosuke Satoh
- Laboratory of Molecular Pharmacogenomics, School of Pharmaceutical Sciences, Kinki University, 3-4-1 Kowakae, Higashi-Osaka 577-8502, Japan
| | - Reiko Sugiura
- Laboratory of Molecular Pharmacogenomics, School of Pharmaceutical Sciences, Kinki University, 3-4-1 Kowakae, Higashi-Osaka 577-8502, Japan
| |
Collapse
|