1
|
Chow N, Sinopoli SI, Whittal MC, Bednar DA, Gregory DE. An investigation of the mechanism of adjacent segment disease in a porcine spine model. Clin Biomech (Bristol, Avon) 2025; 122:106441. [PMID: 39879699 DOI: 10.1016/j.clinbiomech.2025.106441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 01/17/2025] [Accepted: 01/21/2025] [Indexed: 01/31/2025]
Abstract
BACKGROUND Fusion changes the biomechanics of the spine leading to the potential development of adjacent segment disease. Despite many studies on adjacent segment disease, it is largely unknown how spinal fixation affects the mechanical properties of the adjacent disc. The purpose of this study was to assess whether axial compression causes mechanical disruption to the annulus when the caudal spinal level is immobilized or injured. METHODS Fifty-two porcine spines were assigned to one of four conditions: 1) control; 2) injured (18.5-gauge needle inserted into the nucleus of cervical 4/5); 3) immobilized (18-gauge steel wire wrapped around the transverse and spinous processes of cervical 4/5); and 4) injured+immobilized. Each specimen was then subjected to 0.5 Hz cyclic compression (300-1200N) for two hours. Post-compression, three annular samples were dissected from the cervical 3/4 disc (adjacent to immobilized and/or injured level) and mechanically tested. The same loading protocol and annular testing was also conducted in eight human cadaveric lumbar spines. FINDINGS Immobilization and injury resulted in a reduction in adjacent disc lamellar strength including toe region stress (p < 0.001), initial failure stress (p = 0.03), and ultimate stress (p = 0.004), with immobilization having the greatest impact. Similar findings were observed in the human cadaver samples with reduced toe region strength in the injured+ immobilized samples compared to the control (p = 0.049). INTERPRETATION The current study provides empirical evidence of decreased lamellar strength in the disc adjacent to an immobilized and/or injured level following prolonged cyclic axial loading, lending mechanistic insight into the development of adjacent segment disease.
Collapse
Affiliation(s)
- Noah Chow
- Department of Kinesiology and Physical Education, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - Sabrina I Sinopoli
- Department of Kinesiology and Physical Education, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - Mitchel C Whittal
- Department of Kinesiology and Physical Education, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - Drew A Bednar
- Department of Surgery, McMaster University, Hamilton, Ontario, Canada
| | - Diane E Gregory
- Department of Kinesiology and Physical Education, Wilfrid Laurier University, Waterloo, Ontario, Canada; Department of Health Sciences, Wilfrid Laurier University, Waterloo, Ontario, Canada.
| |
Collapse
|
2
|
Liebsch C, Obid P, Vogt M, Schlager B, Wilke HJ. Spinal instrumentation length affects adjacent segment range of motion and intradiscal pressure. Sci Rep 2024; 14:30496. [PMID: 39681601 DOI: 10.1038/s41598-024-82132-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
Scoliosis instrumentation length depends on the type and degree of deformity and the individual preference of the surgeon. This in vitro study aimed to explore effects of increasing instrumentation length on adjacent segment mobility and intervertebral disc loading. Six fresh frozen human spine specimens (C7-sacrum) with entire rib cage from young adult donors (26-45 years) were loaded with pure moments of 5 Nm. Range of motion (ROM) of all segments was determined using optical motion tracking. Lumbar intradiscal pressure (IDP) was measured using flexible pressure sensors from L1 to L5. The specimens were tested in two groups with increasing posterior instrumentation length in proximal (group 1) and distal direction (group 2). Significant (p < 0.05) adjacent segment ROM increases compared to the condition without any instrumentation and compared to other instrumentations were primarily found proximally to the instrumentation in lateral bending. IDP significantly (p < 0.05) increased in flexion in the distal adjacent segment for T4-L1 instrumentation and by up to 550% at instrumented levels compared to the condition without instrumentation. These findings may explain clinical complications such as adjacent segment disease and associated proximal and distal junctional kyphosis. To reduce loads on adjacent segments, instrumentation should therefore be applied as short as reasonable.
Collapse
Affiliation(s)
- Christian Liebsch
- Institute of Orthopaedic Research and Biomechanics, Trauma Research Centre Ulm, Ulm University Medical Centre, Helmholtzstraße 14, 89081, Ulm, Germany
| | - Peter Obid
- Department of Orthopaedics and Trauma Surgery, Freiburg University Medical Centre, Freiburg, Germany
| | - Morten Vogt
- Institute of Orthopaedic Research and Biomechanics, Trauma Research Centre Ulm, Ulm University Medical Centre, Helmholtzstraße 14, 89081, Ulm, Germany
| | - Benedikt Schlager
- Institute of Orthopaedic Research and Biomechanics, Trauma Research Centre Ulm, Ulm University Medical Centre, Helmholtzstraße 14, 89081, Ulm, Germany
| | - Hans-Joachim Wilke
- Institute of Orthopaedic Research and Biomechanics, Trauma Research Centre Ulm, Ulm University Medical Centre, Helmholtzstraße 14, 89081, Ulm, Germany.
| |
Collapse
|
3
|
Li K, Cao S, Chen J, Qin J, Yuan B, Li J. Determining a relative total lumbar range of motion to alleviate adjacent segment degeneration after transforaminal lumbar interbody fusion: a finite element analysis. BMC Musculoskelet Disord 2024; 25:197. [PMID: 38443904 PMCID: PMC10913564 DOI: 10.1186/s12891-024-07322-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 02/28/2024] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND A reduction in total lumbar range of motion (ROM) after lumbar fusion may offset the increase in intradiscal pressure (IDP) and facet joint force (FJF) caused by the abnormally increased ROM at adjacent segments. This study aimed to determine a relative total lumbar ROM rather than an ideal adjacent segment ROM to guide postoperative waist activities and further delay adjacent segment degeneration (ASD). METHODS An intact L1-S1 finite element model was constructed and validated. Based on this, a surgical model was created to allow the simulation of L4/5 transforaminal lumbar interbody fusion (TLIF). Under the maximum total L1-S1 ROM, the ROM, IDP, and FJF of each adjacent segment between the intact and TLIF models were compared to explore the biomechanical influence of lumbar fusion on adjacent segments. Subsequently, the functional relationship between total L1-S1 ROM and IDP or total L1-S1 ROM and FJF was fitted in the TLIF model to calculate the relative total L1-S1 ROMs without an increase in IDP and FJF. RESULTS Compared with those of the intact model, the ROM, IDP, and FJF of the adjacent segments in the TLIF model increased by 12.6-28.9%, 0.1-6.8%, and 0-134.2%, respectively. As the total L1-S1 ROM increased, the IDP and FJF of each adjacent segment increased by varying degrees. The relative total L1-S1 ROMs in the TLIF model were 11.03°, 12.50°, 12.14°, and 9.82° in flexion, extension, lateral bending, and axial rotation, respectively. CONCLUSIONS The relative total L1-S1 ROMs after TLIF were determined, which decreased by 19.6-29.3% compared to the preoperative ones. Guiding the patients to perform postoperative waist activities within these specific ROMs, an increase in the IDP and FJF of adjacent segments may be effectively offset, thereby alleviating ASD.
Collapse
Affiliation(s)
- Ke Li
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, 157th West Fifth Road, Xi'an, Shaanxi Province, 710004, China
| | - Shuai Cao
- Department of Orthopedics, Civil Aviation General Hospital, No. 1, Gaojing Stress, Chaoyang District, Beijing, 100123, China
| | - Jing Chen
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, 157th West Fifth Road, Xi'an, Shaanxi Province, 710004, China
| | - Jie Qin
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, 157th West Fifth Road, Xi'an, Shaanxi Province, 710004, China
| | - Bo Yuan
- Department of Orthopedics, Civil Aviation General Hospital, No. 1, Gaojing Stress, Chaoyang District, Beijing, 100123, China
| | - Jie Li
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, 157th West Fifth Road, Xi'an, Shaanxi Province, 710004, China.
| |
Collapse
|
4
|
Nguyen AQ, Rodriguez C, Kumar R, Gupta S, Anderson DE, Saifi C. Biomechanical analysis of complications following T10-Pelvis spinal fusion: A population based computational study. J Biomech 2024; 165:111969. [PMID: 38394952 DOI: 10.1016/j.jbiomech.2024.111969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 01/22/2024] [Accepted: 01/28/2024] [Indexed: 02/25/2024]
Abstract
Proximal junctional kyphosis (PJK) and proximal junctional failure (PJF) are challenging complications of long fusion constructs for the treatment of adult spinal deformity. The objective of this study is to understand the biomechanical stresses proximal to the upper instrumentation of a T10-pelvis fusion in a large patient cohort. The pre-fusion models were subject-specific thoracolumbar spine models that incorporate the height, weight, spine curvature, and muscle morphology of 250 individuals from the Framingham Heart Study Multidetector CT Study. To create post-fusion models, the subject-specific models were further modified to eliminate motion between the intervertebral joints from T10 to the pelvis. OpenSim analysis tools were used to calculate the medial lateral shear force, anterior posterior shear force, and compressive force on the T9 vertebra during the static postures. Differences between pre-fusion and post-fusion T9 biomechanics were consistent between increased segmental mobility and unchanged segmental mobility conditions. For all static postures, compression decreased (p < 0. 0005). Anterior-posterior shear force significantly increased (p < 0. 0005) during axial twist and significantly increased (p < 0. 0005) during trunk flexion. Medial lateral shear force significantly increased (p < 0. 0005) during axial twist. This computational study provided the first use of subject-specific models to investigate the biomechanics of long spinal fusions. Patients undergoing T10-Pelvis fusion were predicted to have increased shear forces and decreased compressive force at the T9 vertebra, independent of change in segmental mobility. The computational model shows potential for the investigation of spinal fusion biomechanics to reduce the risk of PJK or PJF.
Collapse
Affiliation(s)
- Austin Q Nguyen
- Department of Orthopedic Surgery, Houston Methodist Hospital, Houston, TX, United States
| | - Christian Rodriguez
- Perelman School of Medicine at University of Pennsylvania, Philadelphia, PA, United States
| | - Rachit Kumar
- Perelman School of Medicine at University of Pennsylvania, Philadelphia, PA, United States
| | - Sachin Gupta
- Department of Orthopedic Surgery, University of Pennsylvania, Philadelphia, PA, United States
| | - Dennis E Anderson
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Comron Saifi
- Department of Orthopedic Surgery, Houston Methodist Hospital, Houston, TX, United States.
| |
Collapse
|
5
|
Park WM, Li G, Cha T. Development of a novel FE model for investigation of interactions of multi-motion segments of the lumbar spine. Med Eng Phys 2023; 120:104047. [PMID: 37838401 DOI: 10.1016/j.medengphy.2023.104047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 08/21/2023] [Accepted: 09/04/2023] [Indexed: 10/16/2023]
Abstract
The spinal anatomy is composed of a series of motion segments (MSs). Although finite element (FE) analysis has been extensively used to investigate the spinal biomechanics with various simplifications of the spinal structures, it is still a challenge to investigate the interactions of different MSs. Anatomical studies have shown that there are major spine ligaments connecting not only single-MS (i.e., two consecutive vertebrae) but also spanning multi-vertebral bones or multi-MSs. However, the effects of the multi-MS spanning ligaments on the spine biomechanics have not been investigated previously. This study developed an FE model of the lumbar spine by simulating the anterior longitudinal ligaments (ALLs) in two portions, one connecting a single-MS and the other spanning two MSs, with varying physiological cross-sectional area (PCSA) ratios of the two portions. The spine biomechanics during extension motion were investigated. The results showed that on average, the constraining forces by the two-MS spanning elements were ∼18% of those of the single-MS ALL elements when the PCSA ratio was 50%, but the two-MS ALL elements also applied compressive forces on the anterior surfaces of the vertebrae. Decreases in intradiscal pressure were also calculated when the two-MS spanning ALL elements were included in the spine model. The multi-MS spanning ligaments were shown to synergistically function with the single-MS elements in spine biomechanics, especially in the interactions of different MSs. The novel lumbar FE model could therefore provide a useful analysis tool for investigation of physiological functions of the spine.
Collapse
Affiliation(s)
- Won Man Park
- Orthopaedic Bioengineering Research Center, Newton-Wellesley Hospital and Harvard Medical School, Newton, MA, USA; Elsoltec, Yongin, Korea
| | - Guoan Li
- Orthopaedic Bioengineering Research Center, Newton-Wellesley Hospital and Harvard Medical School, Newton, MA, USA.
| | - Thomas Cha
- Orthopaedic Bioengineering Research Center, Newton-Wellesley Hospital and Harvard Medical School, Newton, MA, USA
| |
Collapse
|
6
|
Remus R, Selkmann S, Lipphaus A, Neumann M, Bender B. Muscle-driven forward dynamic active hybrid model of the lumbosacral spine: combined FEM and multibody simulation. Front Bioeng Biotechnol 2023; 11:1223007. [PMID: 37829567 PMCID: PMC10565495 DOI: 10.3389/fbioe.2023.1223007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/05/2023] [Indexed: 10/14/2023] Open
Abstract
Most spine models belong to either the musculoskeletal multibody (MB) or finite element (FE) method. Recently, coupling of MB and FE models has increasingly been used to combine advantages of both methods. Active hybrid FE-MB models, still rarely used in spine research, avoid the interface and convergence problems associated with model coupling. They provide the inherent ability to account for the full interplay of passive and active mechanisms for spinal stability. In this paper, we developed and validated a novel muscle-driven forward dynamic active hybrid FE-MB model of the lumbosacral spine (LSS) in ArtiSynth to simultaneously calculate muscle activation patterns, vertebral movements, and internal mechanical loads. The model consisted of the rigid vertebrae L1-S1 interconnected with hyperelastic fiber-reinforced FE intervertebral discs, ligaments, facet joints, and force actuators representing the muscles. Morphological muscle data were implemented via a semi-automated registration procedure. Four auxiliary bodies were utilized to describe non-linear muscle paths by wrapping and attaching the anterior abdominal muscles. This included an abdominal plate whose kinematics was optimized using motion capture data from upper body movements. Intra-abdominal pressure was calculated from the forces of the abdominal muscles compressing the abdominal cavity. For the muscle-driven approach, forward dynamics assisted data tracking was used to predict muscle activation patterns that generate spinal postures and balance the spine without prescribing accurate spinal kinematics. During calibration, the maximum specific muscle tension and spinal rhythms resulting from the model dynamics were evaluated. To validate the model, load cases were simulated from -10° extension to +30° flexion with weights up to 20 kg in both hands. The biomechanical model responses were compared with in vivo literature data of intradiscal pressures, intra-abdominal pressures, and muscle activities. The results demonstrated high agreement with this data and highlight the advantages of active hybrid modeling for the LSS. Overall, this new self-contained tool provides a robust and efficient estimation of LSS biomechanical responses under in vivo similar loads, for example, to improve pain treatment by spinal stabilization therapies.
Collapse
Affiliation(s)
- Robin Remus
- Chair of Product Development, Department of Mechanical Engineering, Ruhr-University Bochum, Bochum, Germany
| | - Sascha Selkmann
- Chair of Product Development, Department of Mechanical Engineering, Ruhr-University Bochum, Bochum, Germany
| | - Andreas Lipphaus
- Biomechanics Research Group, Chair of Product Development, Department of Mechanical Engineering, Ruhr-University Bochum, Bochum, Germany
| | - Marc Neumann
- Chair of Product Development, Department of Mechanical Engineering, Ruhr-University Bochum, Bochum, Germany
| | - Beate Bender
- Chair of Product Development, Department of Mechanical Engineering, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
7
|
Hsiao CK, Hsiao HY, Tsai YJ, Hsu CM, Tu YK. Influence of Simulated State of Disc Degeneration and Axial Stiffness of Coupler in a Hybrid Performance Stabilisation System on the Biomechanics of a Spine Segment Model. Bioengineering (Basel) 2023; 10:1042. [PMID: 37760144 PMCID: PMC10525081 DOI: 10.3390/bioengineering10091042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 08/21/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Spinal fusion surgery leads to the restriction of mobility in the vertebral segments postoperatively, thereby causing stress to rise at the adjacent levels, resulting in early degeneration and a high risk of adjacent vertebral fractures. Thus, to address this issue, non-fusion surgery applies some pedicle screw-based dynamic stabilisation systems to provide stability and micromotion, thereby reducing stress in the fusion segments. Among these systems, the hybrid performance stabilisation system (HPSS) combines a rigid rod, transfer screw, and coupler design to offer a semi-rigid fixation method that preserves some mobility near the fusion site and reduces the adjacent segment compensatory effects. However, further research and confirmation are needed regarding the biomechanical effects of the dynamic coupler stiffness of the HPSS on the intrinsic degenerated adjacent segment. Therefore, this study utilised the finite element method to investigate the impact of the coupler stiffness of the HPSS on the mobility of the lumbar vertebral segments and the stress distribution in the intervertebral discs under flexion, extension, and lateral bending, as well as the clinical applicability of the HPSS on the discs with intrinsic moderate and severe degeneration at the adjacent level. The analytical results indicated that, regardless of the degree of disc degeneration, the use of a dynamic coupler stiffness of 57 N/mm in the HPSS may reduce the stress concentrations at the adjacent levels. However, for severely degenerated discs, the postoperative stress on the adjacent segments with the HPSS was still higher compared with that of the discs with moderate degeneration. We conclude that, when the discs had moderate degeneration, increasing the coupler stiffness led to a decrease in disc mobility. In the case of severe disc degeneration, the effect on disc mobility by coupler stiffness was less pronounced. Increasing the coupler stiffness ked to higher stress on intervertebral discs with moderate degeneration, while its effect on stress was less pronounced for discs with severe degeneration. It is recommended that patients with severe degeneration who undergo spinal dynamic stabilisation should remain mindful of the risk of accelerated adjacent segment degeneration.
Collapse
Affiliation(s)
- Chih-Kun Hsiao
- Department of Medical Research, E-Da Hospital, I-Shou University, Kaohsiung 824, Taiwan; (C.-K.H.); (Y.-J.T.)
- Department of Orthopedics, E-Da Hospital, I-Shou University, Kaohsiung 824, Taiwan;
| | - Hao-Yuan Hsiao
- Department of Orthopedics, E-Da Hospital, I-Shou University, Kaohsiung 824, Taiwan;
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Yi-Jung Tsai
- Department of Medical Research, E-Da Hospital, I-Shou University, Kaohsiung 824, Taiwan; (C.-K.H.); (Y.-J.T.)
| | - Chao-Ming Hsu
- Department of Mechanical Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 824, Taiwan
| | - Yuan-Kun Tu
- Department of Orthopedics, E-Da Hospital, I-Shou University, Kaohsiung 824, Taiwan;
| |
Collapse
|
8
|
Burkhard MD, Calek AK, Fasser MR, Cornaz F, Widmer J, Spirig JM, Wanivenhaus F, Farshad M. Biomechanics after spinal decompression and posterior instrumentation. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2023; 32:1876-1886. [PMID: 37093262 DOI: 10.1007/s00586-023-07694-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/25/2023]
Abstract
PURPOSE The aim of this study was to elucidate segmental range of motion (ROM) before and after common decompression and fusion procedures on the lumbar spine. METHODS ROM of fourteen fresh-frozen human cadaver lumbar segments (L1/2: 4, L3/4: 5, L5/S1: 5) was evaluated in six loading directions: flexion/extension (FE), lateral bending (LB), lateral shear (LS), anterior shear (AS), axial rotation (AR), and axial compression/distraction (AC). ROM was tested with and without posterior instrumentation under the following conditions: 1) native 2) after unilateral laminotomy, 3) after midline decompression, and 4) after nucleotomy. RESULTS Median native ROM was FE 6.8°, LB 5.6°, and AR 1.7°, AS 1.8 mm, LS 1.4 mm, AC 0.3 mm. Unilateral laminotomy significantly increased ROM by 6% (FE), 3% (LB), 12% (AR), 11% (AS), and 8% (LS). Midline decompression significantly increased these numbers to 15%, 5%, 21%, 20%, and 19%, respectively. Nucleotomy further increased ROM in all directions, most substantially in AC of 153%. Pedicle screw fixation led to ROM decreases of 82% in FE, 72% in LB, 42% in AR, 31% in AS, and 17% in LS. In instrumented segments, decompression only irrelevantly affected ROM. CONCLUSIONS The amount of posterior decompression significantly impacts ROM of the lumbar spine. The here performed biomechanical study allows creation of a simplified rule of thumb: Increases in segmental ROM of approximately 10%, 20%, and 50% can be expected after unilateral laminotomy, midline decompression, and nucleotomy, respectively. Instrumentation decreases ROM by approximately 80% in bending moments and accompanied decompression procedures only minorly destabilize the instrumentation construct.
Collapse
Affiliation(s)
- Marco D Burkhard
- Department of Orthopaedic Surgery, University Spine Center Zürich, Balgrist University Hospital, University of Zurich, Forchstrasse 340, 8008, Zurich, Switzerland.
| | - Anna-Katharina Calek
- Department of Orthopaedic Surgery, University Spine Center Zürich, Balgrist University Hospital, University of Zurich, Forchstrasse 340, 8008, Zurich, Switzerland
| | - Marie-Rosa Fasser
- Institute for Biomechanics, Balgrist Campus, ETH Zurich, Lengghalde 5, CH-8008, Zurich, Switzerland
- Spine Biomechanics, Department of Orthopedic Surgery, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Frédéric Cornaz
- Department of Orthopaedic Surgery, University Spine Center Zürich, Balgrist University Hospital, University of Zurich, Forchstrasse 340, 8008, Zurich, Switzerland
| | - Jonas Widmer
- Institute for Biomechanics, Balgrist Campus, ETH Zurich, Lengghalde 5, CH-8008, Zurich, Switzerland
- Spine Biomechanics, Department of Orthopedic Surgery, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - José Miguel Spirig
- Department of Orthopaedic Surgery, University Spine Center Zürich, Balgrist University Hospital, University of Zurich, Forchstrasse 340, 8008, Zurich, Switzerland
| | - Florian Wanivenhaus
- Department of Orthopaedic Surgery, University Spine Center Zürich, Balgrist University Hospital, University of Zurich, Forchstrasse 340, 8008, Zurich, Switzerland
| | - Mazda Farshad
- Department of Orthopaedic Surgery, University Spine Center Zürich, Balgrist University Hospital, University of Zurich, Forchstrasse 340, 8008, Zurich, Switzerland
| |
Collapse
|
9
|
Borrelli S, Putame G, Audenino AL, Bignardi C, Ferro A, Marone S, Terzini M. Cross-link augmentation enhances CFR-PEEK short fixation in lumbar metastasis stabilization. Front Bioeng Biotechnol 2023; 11:1114711. [PMID: 36937770 PMCID: PMC10020173 DOI: 10.3389/fbioe.2023.1114711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
Introduction: Spinal stability plays a crucial role in the success of the surgical treatment of lumbar vertebral metastasis and, in current practice, less invasive approaches such as short constructs have been considered. Concurrently, carbon fiber-reinforced (CFR) poly-ether-ether-ketone (PEEK) fixation devices are expanding in oncologic spinal surgery thanks to their radiotransparency and valid mechanical properties. This study attempts to provide an exhaustive biomechanical comparison of different CFR-PEEK surgical stabilizations through a highly reproducible experimental setup. Methods: A Sawbones biomimetic phantom (T12-S1) was tested in flexion, extension, lateral bending, and axial rotation. An hemisome lesion on L3 vertebral body was mimicked and different pedicle screw posterior fixations were realized with implants from CarboFix Orthopedics Ltd: a long construct involving two spinal levels above and below the lesion, and a short construct involving only the levels adjacent to L3, with and without the addition of a transverse rod-rod cross-link; to provide additional insights on its long-term applicability, the event of a pedicle screw loosening was also accounted. Results: Short construct reduced the overloading onset caused by long stabilization. Particularly, the segmental motion contribution less deviated from the physiologic pattern and also the long-chain stiffness was reduced with respect to the prevalent long construct. The use of the cross-link enhanced the short stabilization by making it significantly stiffer in lateral bending and axial rotation, and by limiting mobiliza-tion in case of pedicle screw loosening. Discussion: The present study proved in vitro the biomechanical benefits of cross-link augmentation in short CFR-PEEK fixation, demonstrating it to be a potential alternative to standard long fixation in the surgical management of lumbar metastasis.
Collapse
Affiliation(s)
- Simone Borrelli
- PolitoMed Lab, Politecnico di Torino, Turin, Italy
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
- *Correspondence: Simone Borrelli,
| | - Giovanni Putame
- PolitoMed Lab, Politecnico di Torino, Turin, Italy
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Alberto L. Audenino
- PolitoMed Lab, Politecnico di Torino, Turin, Italy
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Cristina Bignardi
- PolitoMed Lab, Politecnico di Torino, Turin, Italy
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Andrea Ferro
- Oncologic Orthopaedic Surgery Division, CTO Hospital—Città Della Salute e Della Scienza di Torino, Turin, Italy
| | - Stefano Marone
- Oncologic Orthopaedic Surgery Division, CTO Hospital—Città Della Salute e Della Scienza di Torino, Turin, Italy
| | - Mara Terzini
- PolitoMed Lab, Politecnico di Torino, Turin, Italy
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| |
Collapse
|
10
|
Becker L, Schönnagel L, Mihalache TV, Haffer H, Schömig F, Schmidt H, Pumberger M. Lumbosacral transitional vertebrae alter the distribution of lumbar mobility–Preliminary results of a radiographic evaluation. PLoS One 2022; 17:e0274581. [PMID: 36174065 PMCID: PMC9521836 DOI: 10.1371/journal.pone.0274581] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/30/2022] [Indexed: 11/19/2022] Open
Abstract
Background Lumbo-sacral transitional vertebrae (LSTV) are one of the most common congenital variances of the spine. They are associated with an increased frequency of degeneration in the cranial adjacent segment. Hypermobility and concomitant increased loads are discussed as a possible reason for segmental degeneration. We therefore examined the lumbar and segmental motion distribution in patients with LSTV with flexion-extension radiographs. Methods A retrospective study of 51 patients with osteochondrosis L5/S1 with flexion and extension radiographs was performed. Of these, 17 patients had LSTV and were matched 1:1 for age and sex with patients without LSTV out of the collective of the remaining 34 patients. The lumbar and segmental range of motion (RoM) by segmental lordosis angle and the segmental wedge angle were determined. Normal distribution of parameters was observed by Kolmogorov-Smirnov-test. Parametric data were compared by paired T-test. Non-parametric data were compared by Wilcoxon-rank-sum-test. Correlations were observed using Spearman’s Rank correlation coefficient. A p-value <0.05 was stated as statistically significant. Results Patients with LSTV had mean age of 52.2±10.9, control group of 48.9±10.3. Both groups included 7 females and 10 males. Patients with LSTV presented with reduced RoM of the lumbar spine (LSTV 37.3°±19.2°, control 52.1°±20.5°, p = 0.065), however effects were statistically insignificant. LSTV significantly decreased segmental RoM in the transitional segment (LSTV 1.8°±2.7°, control 6.7°±6.0°, p = 0.003). Lumbar motion distribution differed significantly; while RoM was decreased in the transitional segment, (LSTV 5.7%, control 16.2%, p = 0.002), the distribution of lumbar motion to the cranial adjacent segment was increased (LSTV 30.7%, control 21.6%, p = 0.007). Conclusion Patients with LSTV show a reduced RoM in the transitional segment and a significantly increased motion distribution to the cranial adjacent segment in flexion-extension radiographs. The increased proportion of mobility in the cranial adjacent segment possibly explain the higher rates of degeneration within the segment.
Collapse
Affiliation(s)
- Luis Becker
- Center for Musculoskeletal Surgery, Charité –University Medicine, Berlin, Germany
- Berlin Institute of Health, Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Charité –University Medicine, Berlin, Germany
- * E-mail:
| | - Lukas Schönnagel
- Center for Musculoskeletal Surgery, Charité –University Medicine, Berlin, Germany
| | - Tim Victor Mihalache
- Center for Musculoskeletal Surgery, Charité –University Medicine, Berlin, Germany
- Berlin Institute of Health, Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Charité –University Medicine, Berlin, Germany
| | - Henryk Haffer
- Center for Musculoskeletal Surgery, Charité –University Medicine, Berlin, Germany
| | - Friederike Schömig
- Center for Musculoskeletal Surgery, Charité –University Medicine, Berlin, Germany
- Berlin Institute of Health, Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Charité –University Medicine, Berlin, Germany
| | - Hendrik Schmidt
- Berlin Institute of Health, Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Charité –University Medicine, Berlin, Germany
| | - Matthias Pumberger
- Center for Musculoskeletal Surgery, Charité –University Medicine, Berlin, Germany
| |
Collapse
|
11
|
Jin LY, Wei K, Feng DM, Li JD, Song XX, Yin HL, Li XF. Changes of adjacent segment biomechanics after anterior cervical interbody fusion with different profile design plate: single- versus double-level. Comput Methods Biomech Biomed Engin 2022; 26:744-753. [PMID: 35695468 DOI: 10.1080/10255842.2022.2086800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Low-profile angle-stable spacer Zero-P is claimed to reduce the morbidity associated with traditional plate and cage construct (PCC). Both Zero-P and PCC could achieve comparable mid- and long-term clinical and radiological outcomes in anterior cervical discectomy and fusion (ACDF). It is not clear whether Zero-P can reduce the incidence of adjacent segment degeneration (ASD), especially in multi-segmental fusion. This study aimed to test the effect of fusion level with Zero-P versus with PCC on adjacent-segment biomechanics in ACDF. A three-dimensional finite element (FE) model of an intact C2-T1 segment was built and validated. Six single- or double-level instrumented conditions were modeled from this intact FE model using Zero-P or the standard PCC. The biomechanical responses of adjacent segments at the cephalad and caudal levels of the operation level were assessed in terms of range of motion (ROM), stresses in the endplate and disc, loads in the facets. When comparing the increase of adjacent-segment motion in single-level PCC fusion versus Zero-P fusion, a significantly larger increase was found in double-level fusion condition. The fold changes of PCC versus Zero-P of intradiscal and endplate stress, and facet load at adjacent levels in the double-level fusion spine were significantly larger than that in the single-level fusion spine during the sagittal, the transverse, and the frontal plane motion. The increased value of biomechanical features was greater at above segment than that at below. The fold changes of PCC versus Zero-P at adjacent segment were most notable in flexion and extension movement. Low-profile device could decrease adjacent segment biomechanical burden compared to traditional PCC in ACDF, especially in double-level surgery. Zero-P could be a good alternative for traditional PCC in ACDF. Further clinical/in vivo studies will be necessary to explore the approaches selected for this study is warranted.
Collapse
Affiliation(s)
- Lin-Yu Jin
- Department of Orthopaedic Surgery, Baoshan Branch of Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, P.R. China.,Department of spine Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, P.R. China
| | - Ke Wei
- Department of Orthopaedic Surgery, Baoshan Branch of Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, P.R. China
| | - Da-Ming Feng
- Department of Orthopaedic Surgery, Baoshan Branch of Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, P.R. China
| | - Jian-Dong Li
- Department of Orthopaedic Surgery, Baoshan Branch of Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, P.R. China
| | - Xiao-Xing Song
- Department of Anesthesiology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Hong-Ling Yin
- School of Materials Science and Engineering, Shanghai Jiaotong University, Shanghai, P.R. China
| | - Xin-Feng Li
- Department of Orthopaedic Surgery, Baoshan Branch of Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, P.R. China.,Department of spine Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, P.R. China
| |
Collapse
|
12
|
Malakoutian M, Sanchez CA, Brown SHM, Street J, Fels S, Oxland TR. Biomechanical Properties of Paraspinal Muscles Influence Spinal Loading—A Musculoskeletal Simulation Study. Front Bioeng Biotechnol 2022; 10:852201. [PMID: 35721854 PMCID: PMC9201424 DOI: 10.3389/fbioe.2022.852201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/15/2022] [Indexed: 11/13/2022] Open
Abstract
Paraspinal muscles are vital to the functioning of the spine. Changes in muscle physiological cross-sectional area significantly affect spinal loading, but the importance of other muscle biomechanical properties remains unclear. This study explored the changes in spinal loading due to variation in five muscle biomechanical properties: passive stiffness, slack sarcomere length (SSL), in situ sarcomere length, specific tension, and pennation angle. An enhanced version of a musculoskeletal simulation model of the thoracolumbar spine with 210 muscle fascicles was used for this study and its predictions were validated for several tasks and multiple postures. Ranges of physiologically realistic values were selected for all five muscle parameters and their influence on L4-L5 intradiscal pressure (IDP) was investigated in standing and 36° flexion. We observed large changes in IDP due to changes in passive stiffness, SSL, in situ sarcomere length, and specific tension, often with interesting interplays between the parameters. For example, for upright standing, a change in stiffness value from one tenth to 10 times the baseline value increased the IDP only by 91% for the baseline model but by 945% when SSL was 0.4 μm shorter. Shorter SSL values and higher stiffnesses led to the largest increases in IDP. More changes were evident in flexion, as sarcomere lengths were longer in that posture and thus the passive curve is more influential. Our results highlight the importance of the muscle force-length curve and the parameters associated with it and motivate further experimental studies on in vivo measurement of those properties.
Collapse
Affiliation(s)
- Masoud Malakoutian
- Department of Mechanical Engineering, University of British Columbia, Vancouver, BC, Canada
- ICORD, University of British Columbia, Vancouver, BC, Canada
| | - C. Antonio Sanchez
- Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Stephen H. M. Brown
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - John Street
- ICORD, University of British Columbia, Vancouver, BC, Canada
- Department of Orthopaedics, University of British Columbia, Vancouver, BC, Canada
| | - Sidney Fels
- Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Thomas R. Oxland
- Department of Mechanical Engineering, University of British Columbia, Vancouver, BC, Canada
- ICORD, University of British Columbia, Vancouver, BC, Canada
- Department of Orthopaedics, University of British Columbia, Vancouver, BC, Canada
- *Correspondence: Thomas R. Oxland,
| |
Collapse
|
13
|
Adjacent segments biomechanics following lumbar fusion surgery: a musculoskeletal finite element model study. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2022; 31:1630-1639. [PMID: 35633382 DOI: 10.1007/s00586-022-07262-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 04/18/2022] [Accepted: 05/07/2022] [Indexed: 10/18/2022]
Abstract
PURPOSE This study exploits a novel musculoskeletal finite element (MS-FE) spine model to evaluate the post-fusion (L4-L5) alterations in adjacent segment kinetics. METHODS Unlike the existing MS models with idealized representation of spinal joints, this model predicts stress/strain distributions in all passive tissues while organically coupled to a MS model. This generic (in terms of musculature and material properties) model uses population-based in vivo vertebral sagittal rotations, gravity loads, and an optimization algorithm to calculate muscle forces. Simulations represent individuals with an intact L4-L5, a preoperative severely degenerated L4-L5 (by reducing the disc height by ~ 60% and removing the nucleus incompressibility), and a postoperative fused L4-L5 segment with either a fixed or an altered lumbopelvic rhythm with respect to the intact condition (based on clinical observations). Changes in spine kinematics and back muscle cross-sectional areas (due to intraoperative injuries) are considered based on in vivo data while simulating three activities in upright/flexed postures. RESULTS Postoperative changes in some adjacent segment kinetics were found considerable (i.e., larger than 25%) that depended on the postoperative lumbopelvic kinematics and preoperative L4-L5 disc condition. Postoperative alterations in adjacent disc shear, facet/ligament forces, and annulus stresses/strains were greater (> 25%) than those found in intradiscal pressure and compression (< 25%). Kinetics of the lower (L5-S1) and upper (L3-L4) adjacent segments were altered to different degrees. CONCLUSION Alterations in segmental rotations mainly affected adjacent disc shear forces, facet/ligament forces, and annulus/collagen fibers stresses/strains. An altered lumbopelvic rhythm (increased pelvis rotation) tends to mitigate some of these surgically induced changes.
Collapse
|
14
|
In Vivo Changes in Dynamic Adjacent Segment Motion 1 Year After One and Two-Level Cervical Arthrodesis. Ann Biomed Eng 2022; 50:871-881. [DOI: 10.1007/s10439-022-02964-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/04/2022] [Indexed: 11/01/2022]
|
15
|
Zhang NZ, Xiong QS, Yao J, Liu BL, Zhang M, Cheng CK. Biomechanical changes at the adjacent segments induced by a lordotic porous interbody fusion cage. Comput Biol Med 2022; 143:105320. [PMID: 35183971 DOI: 10.1016/j.compbiomed.2022.105320] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 02/11/2022] [Accepted: 02/11/2022] [Indexed: 12/12/2022]
Abstract
Biomechanical changes at the adjacent segments after interbody fusion are common instigators of adjacent segment degeneration (ASD). This study aims to investigate how the presence of a lordotic porous cage affects the biomechanical performance of the adjacent segments. A finite element model (FEM) of a lumbar spine implanted with a lordotic cage at L3-L4 was validated by in-vitro testing. The stress distribution on the cage and range of motion (ROM) of L3-L4 were used to assess the stability of the implant. Three angles of cage (0° = non-restoration, 7° = normal restoration and 11° = over-restoration) were modelled with different porosities (0%, 30% and 60%) and evaluated in the motions of flexion, extension, lateral bending and rotation. The ROM, intervertebral disc pressure (IDP) and facet joint force (FJF) were used to evaluate biomechanical changes at the adjacent segments in each model. The results indicated that porous cages produced more uniform stress distribution, but cage porosity did not influence the ROM, IDP and FJF at L2-L3 and L4-L5. Increasing the cage lordotic angle acted to decrease the ROM and IDP, and increase the FJF of L4-L5, but did not alter the ROM of L2-L3. In conclusion, changes in ROM, IDP and FJF at the adjacent segments were mainly influenced by the lordotic angle of the cage and not by the porosity. A larger angle of lordotic cage was shown to reduce the ROM and IDP, and increase the FJF of the lower segment (L4-L5), but had little effect on the ROM of the upper segment (L2-L3).
Collapse
Affiliation(s)
- Ning-Ze Zhang
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Qi-Sheng Xiong
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Jie Yao
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Bo-Lun Liu
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Min Zhang
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.
| | - Cheng-Kung Cheng
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China; School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China.
| |
Collapse
|
16
|
Hekimoğlu M, Başak A, Yılmaz A, Yıldırım H, Aydın AL, Karadag K, Özer AF. Adjacent Segment Disease (ASD) in Incidental Segmental Fused Vertebra and Comparison With the Effect of Stabilization Systems on ASD. Cureus 2021; 13:e18647. [PMID: 34786242 PMCID: PMC8578681 DOI: 10.7759/cureus.18647] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2021] [Indexed: 11/05/2022] Open
Abstract
Objective Adjacent segment disease is a controversial process after spine stabilization. The two important factors discussed are natural aging and hypermobility in incidental segmental fusion anomalies; patients have two or more fused vertebrae from birth, which are the results of spinal movement restriction due to the fusion of some spinal units. This article's main purpose is to determine the degree of relationship of hypermobility and the aging process in the deterioration of the disks adjacent to fusion. Methods In this study, the degenerative process developed by hypermobility in the adjacent segment due to incidental segmental fusion was evaluated. The MRI images of 52 adjacent and nonadjacent disks of 45 patients in total were analyzed according to the Pfirrmann grading systems. The average Pfirrmann rating of the disks just above and below the fused segment and the distant first, second, and third non-neighboring levels were evaluated and calculated, respectively. Results The highest rate of incidental fusion is determined on the cervical area with 51.9%, followed by the thoracal area with 32.7%, and the lumbar area with 15.4%. Damage to the adjacent segment disks in cases with incidental fusion can still be seen at any age, with fusion, indicating that the hypermobility effect plays a more prominent role. The evidence of hypermobility without aging is that the segments adjacent to fusion undergo more degeneration than the distant disks. Conclusion Adjacent segment disease is under the influence of many factors. Our findings suggest that its incidence is increasing with the pathological processes initiated by hypermobility. It seems that, at least, it carries equal importance as compared to age. Fusion surgeries damage the adjacent segments under the influence of the passage of time beyond the physiological aging of the patient.
Collapse
Affiliation(s)
| | - Ahmet Başak
- Neurosurgery, American Hospital, Istanbul, TUR
| | | | | | | | | | - Ali Fahir Özer
- Neurosurgery, Koc University School of Medicine, Istanbul, TUR
| |
Collapse
|
17
|
Sawa AGU, de Andrada Pereira B, Rodriguez-Martinez NG, Reyes PM, Kelly BP, Crawford NR. In Vitro Biomechanics of Human Cadaveric Cervical Spines With Mature Fusion. Int J Spine Surg 2021; 15:890-898. [PMID: 34551927 DOI: 10.14444/8114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND This study sought to compare index and adjacent-level biomechanics of cadaveric specimens with mature fusion versus normal spines in intact and acutely fused conditions. METHODS Eight human cadaveric cervical spines with mature fusion across 1 to 3 levels were studied. Intervertebral angular range of motion (ROM) was determined at fused and adjacent levels during pure moments inducing flexion-extension (FE), lateral bending (LB), and axial rotation (AR). Mature fusion data were compared to data from normal spine specimens tested intact and then with a 1-level anterior plate/graft (fresh fixation). Bone qualities were compared using dual-energy x-ray absorptiometry. RESULTS Mean bone mineral density was significantly greater in mature fusion spines (0.632 ± 0.239 g/cm2) than in normal spines (0.489 ± 0.195 g/cm2) (P < .001). Mean ROM for levels with mature fusion was 42% (FE), 42% (LB), and 29% (AR) of the mean same-level ROM in freshly fixated specimens (P ≤ .045). The mean adjacent-level ROM in spines with mature fusion was less than in normal spines (matched levels) in all directions, with the greatest difference 1 level below fusion (FE: -38%, P < .001; LB: -42%, P < .001; AR: -49%, P = .001), followed by 1 level above fusion (FE: -23%, P = .04; LB: -22%, P = .07; AR: -28%, P = .02) and 2 levels above fusion (FE: -20%, P = .08; LB: -18%, P = .11; AR: -31%, P = .009). Mature fusion reduced the magnitude of coupled LB during AR at C6-7 and C7-T1 (P ≤ .03). CONCLUSION Cervical spine segments with mature fusion have higher bone mass, are less flexible than freshly fixed spines, and have reduced mobility at adjacent levels.
Collapse
Affiliation(s)
- Anna G U Sawa
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona
| | - Bernardo de Andrada Pereira
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona
| | - Nestor G Rodriguez-Martinez
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona
| | - Phillip M Reyes
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona
| | - Brian P Kelly
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona
| | - Neil R Crawford
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona
| |
Collapse
|
18
|
Biomechanical effects of lumbar fusion surgery on adjacent segments using musculoskeletal models of the intact, degenerated and fused spine. Sci Rep 2021; 11:17892. [PMID: 34504207 PMCID: PMC8429534 DOI: 10.1038/s41598-021-97288-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/23/2021] [Indexed: 12/25/2022] Open
Abstract
Adjacent segment disorders are prevalent in patients following a spinal fusion surgery. Postoperative alterations in the adjacent segment biomechanics play a role in the etiology of these conditions. While experimental approaches fail to directly quantify spinal loads, previous modeling studies have numerous shortcomings when simulating the complex structures of the spine and the pre/postoperative mechanobiology of the patient. The biomechanical effects of the L4–L5 fusion surgery on muscle forces and adjacent segment kinetics (compression, shear, and moment) were investigated using a validated musculoskeletal model. The model was driven by in vivo kinematics for both preoperative (intact or severely degenerated L4–L5) and postoperative conditions while accounting for muscle atrophies. Results indicated marked changes in the kinetics of adjacent L3–L4 and L5–S1 segments (e.g., by up to 115% and 73% in shear loads and passive moments, respectively) that depended on the preoperative L4–L5 disc condition, postoperative lumbopelvic kinematics and, to a lesser extent, postoperative changes in the L4–L5 segmental lordosis and muscle injuries. Upper adjacent segment was more affected post-fusion than the lower one. While these findings identify risk factors for adjacent segment disorders, they indicate that surgical and postoperative rehabilitation interventions should focus on the preservation/restoration of patient’s normal segmental kinematics.
Collapse
|
19
|
Farshad M, Aichmair A, Götschi T, Senteler M, Urbanschitz L. How is spinal range of motion affected by disc- and facet degeneration and spinopelvic anatomy? NORTH AMERICAN SPINE SOCIETY JOURNAL (NASSJ) 2021; 7:100076. [PMID: 35141641 PMCID: PMC8820096 DOI: 10.1016/j.xnsj.2021.100076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/21/2021] [Accepted: 08/25/2021] [Indexed: 11/30/2022]
Affiliation(s)
- Mazda Farshad
- Department of Orthopedics, Balgrist University Hospital, University of Zurich, Switzerland
| | - Alexander Aichmair
- Department of Orthopedics, Balgrist University Hospital, University of Zurich, Switzerland
| | - Tobias Götschi
- Department of Orthopedics, Balgrist University Hospital, University of Zurich, Switzerland
| | - Marco Senteler
- Department of Orthopedics, Balgrist University Hospital, University of Zurich, Switzerland
- Institute for Biomechanics, ETH Zurich, Switzerland
| | - Lukas Urbanschitz
- Department of Orthopedics, Balgrist University Hospital, University of Zurich, Switzerland
- Corresponding author at: Balgrist University Hospital, Forchstrasse 340, 8008 Zurich, Switzerland
| |
Collapse
|
20
|
Shen H, Fogel GR, Zhu J, Liao Z, Liu W. Biomechanical analysis of lumbar fusion with proximal interspinous process device implantation. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2021; 37:e3498. [PMID: 33998776 DOI: 10.1002/cnm.3498] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 03/27/2021] [Accepted: 05/14/2021] [Indexed: 06/12/2023]
Abstract
Lumbar spinal fusion may cause adjacent segment degeneration (ASD) in the long term. Recently, inserting an interspinous process device (IPD) proximal to the fusion has been proposed to prevent ASD. The aim of this study was to investigate the biomechanics of lumbar fusion with proximal IPD implantation (LFPI) under both static loads and whole body vibration (WBV). A previously validated finite element (FE) model of the L1-5 lumbar spine was modified to simulate L4-5 fusion. Three different IPDs (Coflex-F, Wallis and DIAM) were inserted at the L3-4 segment of the fusion model to construct the LFPI models. The intact and surgical FE models were analyzed under static loads and WBV, respectively. Under static loading conditions, LFPI decreased range of motion (ROM) and intradiscal pressure (IDP) at the transition segment L3-4 compared with the fusion case. At the segment (L2-3) adjacent to the transition level, LFPI induced higher motion and IDP than rigid fusion. Under WBV, vibration amplitudes of the L3-4 IDP and L4-5 facet joint force (FJF) decreased by more than 54.3% after surgery. The LFPI model with the DIAM system offered the most comparable biomechanics to the intact model under static loads, and decreased the dynamic responses of the L4-5 FJF under WBV. The LFPI model with the Wallis and Coflex-F systems could stabilize the transition segment, and decrease dynamic responses of the L3-4 IDP. The DIAM system may be more suitable in LFPI.
Collapse
Affiliation(s)
- Hangkai Shen
- Department of Mechanical Engineering, Tsinghua University, Beijing, China
- Biomechanics and Biotechnology Lab, Research Institute of Tsinghua University in Shenzhen, Shenzhen, China
| | - Guy R Fogel
- Orthopedics Department, Spine Pain Begone Clinic, San Antonio, Texas, USA
| | - Jia Zhu
- Biomechanics and Biotechnology Lab, Research Institute of Tsinghua University in Shenzhen, Shenzhen, China
| | - Zhenhua Liao
- Biomechanics and Biotechnology Lab, Research Institute of Tsinghua University in Shenzhen, Shenzhen, China
| | - Weiqiang Liu
- Department of Mechanical Engineering, Tsinghua University, Beijing, China
- Biomechanics and Biotechnology Lab, Research Institute of Tsinghua University in Shenzhen, Shenzhen, China
| |
Collapse
|
21
|
Wang W, Zhou C, Guo R, Cha T, Li G. Influence of structural and material property uncertainties on biomechanics of intervertebral discs - Implications for disc tissue engineering. J Mech Behav Biomed Mater 2021; 122:104661. [PMID: 34252706 DOI: 10.1016/j.jmbbm.2021.104661] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/26/2021] [Accepted: 06/24/2021] [Indexed: 10/21/2022]
Abstract
This study investigated how variations of structural and material properties of human intervertebral discs (IVDs) affect the biomechanical responses of the IVDs under simulated physiological loading conditions using a stochastic finite element (SFE) model. An SFE method, which combined an anatomic FE model of human lumbar L3-4 segment and probabilistic analysis of its structural and material properties, was used to generate a dataset of 500 random disc samples with varying structural and material properties. The sensitivity of the biomechanical responses, including intervertebral displacements/rotations, intradiscal pressures (IDP), fiber stresses and matrix strains of annulus fibrosus (AF), were systematically quantified under various physiological loading conditions, including a 500N compression and 7.5Nm moments in the 3 primary rotations. Significant variations of the IDPs, IVD displacements/rotations, and stress/strain distributions were found using the dataset of 500 ramdom disc samples. Under all the loading conditions, the IDPs were positively correlated with the Poisson's ratio of the NP (r = 0.46 to 0.75, p = 0.004-0.001) and negatively with the Young's modulus of the annulus matrix (r = -0.48 to -0.65, p = 0.003-0.001). The primary intervertebral rotations were significantly affected by the Young's modulus of the annulus matrix (r = -0.44 to -0.71, p = 0.001-0.032) and the orientations of the annular fibers (r = -0.45 to -0.69, p = 0.001-0.029). The heterogeneity of structures and material properties of the IVD had distinct effects on the biomechanical performances of the IVD. These data could help improve our understanding of the intrinsic biomechanics of the IVD and provide references for optimal design of tissue engineered discs by controlling structural and material properties of the disc components.
Collapse
Affiliation(s)
- Wei Wang
- Orthopaedic Bioengineering Research Center, Department of Orthopaedic Surgery, Newton-Wellesley Hospital, 159 Wells Avenue, Newton, MA 02459, USA; Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Chaochao Zhou
- Orthopaedic Bioengineering Research Center, Department of Orthopaedic Surgery, Newton-Wellesley Hospital, 159 Wells Avenue, Newton, MA 02459, USA; Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Runsheng Guo
- Orthopaedic Bioengineering Research Center, Department of Orthopaedic Surgery, Newton-Wellesley Hospital, 159 Wells Avenue, Newton, MA 02459, USA; Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Orthopaedics, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Thomas Cha
- Orthopaedic Bioengineering Research Center, Department of Orthopaedic Surgery, Newton-Wellesley Hospital, 159 Wells Avenue, Newton, MA 02459, USA; Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Guoan Li
- Orthopaedic Bioengineering Research Center, Department of Orthopaedic Surgery, Newton-Wellesley Hospital, 159 Wells Avenue, Newton, MA 02459, USA.
| |
Collapse
|
22
|
Wang W, Zhou C, Guo R, Cha T, Li G. Prediction of biomechanical responses of human lumbar discs - a stochastic finite element model analysis. Comput Methods Biomech Biomed Engin 2021; 24:1730-1741. [PMID: 34121532 DOI: 10.1080/10255842.2021.1914023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Accurate biomechanical investigation of human intervertebral discs (IVDs) is difficult because of their complicated structural and material features. AIM To investigate probabilistic distributions of the biomechanical responses of the IVD by considering varying nonlinear structural and material properties using a stochastic finite element (FE) model. METHODS A FE model of a L3-4 disc was reconstructed, including the nucleus pulposus (NP), annular matrix and fibers. A Monte Carlo method was used to randomly generate 500 sets of the nonlinear material properties and fiber orientations of the disc that were implemented into the FE model. The FE model was analyzed under seven loading conditions: a 500 N compressive force, a 7.5Nm moment simulating flexion, extension, left-right lateral bending, and left-right axial rotation, respectively. The distributions of the ranges of motion (ROMs), intradiscal pressures (IDP), fiber stresses and matrix strains of the disc were analyzed. RESULTS Under the compressive load, the displacement varied between 0.29 mm and 0.76 mm. Under the 7.5Nm moment, the ROMs varied between 3.0° and 6.0° in primary rotations. The IDPs varied within 0.3 MPa under all the loading conditions. The maximal fiber stress (3.22 ± 0.64 MPa) and matrix strain (0.27 ± 0.12%) were observed under the flexion and extension moments, respectively. CONCLUSION The IVD biomechanics could be dramatically affected by the structural and material parameters used to construct the FE model. The stochastic FE model that includes the probabilistic distributions of the structural and material parameters provides a useful approach to analyze the statistical ranges of the biomechanical responses of the IVDs.
Collapse
Affiliation(s)
- Wei Wang
- Orthopaedic Bioengineering Research Center, Department of Orthopaedic Surgery, Newton-Wellesley Hospital, Newton, MA, USA.,Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Chaochao Zhou
- Orthopaedic Bioengineering Research Center, Department of Orthopaedic Surgery, Newton-Wellesley Hospital, Newton, MA, USA.,Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Runsheng Guo
- Orthopaedic Bioengineering Research Center, Department of Orthopaedic Surgery, Newton-Wellesley Hospital, Newton, MA, USA.,Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Department of Orthopaedics, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Thomas Cha
- Orthopaedic Bioengineering Research Center, Department of Orthopaedic Surgery, Newton-Wellesley Hospital, Newton, MA, USA.,Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Guoan Li
- Orthopaedic Bioengineering Research Center, Department of Orthopaedic Surgery, Newton-Wellesley Hospital, Newton, MA, USA
| |
Collapse
|
23
|
Azadi A, Arjmand N. A comprehensive approach for the validation of lumbar spine finite element models investigating post-fusion adjacent segment effects. J Biomech 2021; 121:110430. [PMID: 33873115 DOI: 10.1016/j.jbiomech.2021.110430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 02/17/2021] [Accepted: 03/29/2021] [Indexed: 11/15/2022]
Abstract
Spinal fusion surgery is usually followed by accelerated degenerative changes in the unfused segments above and below the treated segment(s), i.e., adjacent segment disease (ASD). While a number of risk factors for ASD have been suggested, its exact pathogenesis remains to be identified. Finite element (FE) models are indispensable tools to investigate mechanical effects of fusion surgeries on post-fusion changes in the adjacent segment kinematics and kinetics. Existing modeling studies validate only their intact FE model against in vitro data and subsequently simulate post-fusion in vivo conditions. The present study provides a novel approach for the comprehensive validation of a lumbar (T12-S1) FE model in post-fusion conditions. Sixteen simulated fusion surgeries, performed on cadaveric specimens using various testing and loading conditions, were modeled by this FE model. Predictions for adjacent segment range of motion (RoM) and intradiscal pressure (IDP) were compared with those obtained from the corresponding in vitro tests. Overall, 70% of the predicted adjacent segment RoMs were within the range of in vitro data for both intact and post-fusion conditions. Correlation (r) values between model and in vitro findings for the adjacent segment RoMs were positive and greater than 0.84. Most of the predicted IDPs were, however, out of the narrow range of in vitro IDPs at the adjacent segments but with great positive correlations (r ≥ 0.89). FE modeling studies investigating the effect of fusion surgery on in vivo adjacent segment biomechanics are encouraged to use post-surgery in vitro data to validate their FE model.
Collapse
Affiliation(s)
- A Azadi
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - N Arjmand
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran.
| |
Collapse
|
24
|
Patwardhan AG, Sielatycki JA, Havey RM, Humphreys SC, Hodges SD, Blank KR, Muriuki MG. Loading of the lumbar spine during transition from standing to sitting: effect of fusion versus motion preservation at L4-L5 and L5-S1. Spine J 2021; 21:708-719. [PMID: 33160033 DOI: 10.1016/j.spinee.2020.10.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/30/2020] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Transition from standing to sitting significantly decreases lumbar lordosis with the greatest lordosis-loss occurring at L4-S1. Fusing L4-S1 eliminates motion and thus the proximal mobile segments maybe recruited during transition from standing to sitting to compensate for the loss of L4-S1 mobility. This may subject proximal segments to supra-physiologic flexion loading. PURPOSE Assess effects of instrumented fusion versus motion preservation at L4-L5 and L5-S1 on lumbar spine loads and proximal segment motions during transition from standing to sitting. STUDY DESIGN Biomechanical study using human thoracolumbar spine specimens. METHODS A novel laboratory model was used to simulate lumbosacral alignment changes caused by a person's transition from standing to sitting in eight T10-sacrum spine specimens. The sacrum was tilted in the sagittal plane while constraining anterior-posterior translation of T10. Continuous loading-data and segmental motion-data were collected over a range of sacral slope values, which represented transition from standing to different sitting postures. We compared different constructs involving fusions and motion preserving prostheses across L4-S1. RESULTS After L4-S1 fusion, the sacrum could not be tilted as far posteriorly compared to the intact spine for the same applied moment (p<.001). For the same reduction in sacral slope, L4-S1 fusion induced 2.9 times the flexion moment in the lumbar spine and required 2.4 times the flexion motion of the proximal segments as the intact condition (p<.001). Conversely, motion preservation at L4-S1 restored lumbar spine loads and proximal segment motions to intact specimen levels during transition from standing to sitting. CONCLUSIONS In general, sitting requires lower lumbar segments to undergo flexion, thereby increasing load on the lumbar disks. L4-S1 fusion induced greater moments and increased flexion of proximal segments to attain a comparable seated posture. Motion preservation using a total joint replacement prosthesis at L4-S1 restored the lumbar spine loads and proximal segment motion to intact specimen levels during transition from standing to sitting. CLINICAL SIGNIFICANCE After L4-S1 fusion, increased proximal segment loading during sitting may cause discomfort in some patients and may lead to junctional breakdown over time. Preserving motion at L4-S1 may improve patient comfort and function during activities of daily living, and potentially decrease the need for adjacent level surgery.
Collapse
Affiliation(s)
- Avinash G Patwardhan
- Musculoskeletal Biomechanics Laboratory, Edward Hines, Jr, VA Hospital, Hines, IL, USA; Department of Orthopaedic Surgery and Rehabilitation, Loyola University Stritch School of Medicine, Maywood, IL, USA.
| | - J Alex Sielatycki
- Center for Sports Medicine and Orthopaedic Surgery, Chattanooga, TN, USA
| | - Robert M Havey
- Musculoskeletal Biomechanics Laboratory, Edward Hines, Jr, VA Hospital, Hines, IL, USA
| | | | - Scott D Hodges
- Center for Sports Medicine and Orthopaedic Surgery, Chattanooga, TN, USA
| | - Kenneth R Blank
- Musculoskeletal Biomechanics Laboratory, Edward Hines, Jr, VA Hospital, Hines, IL, USA
| | - Muturi G Muriuki
- Musculoskeletal Biomechanics Laboratory, Edward Hines, Jr, VA Hospital, Hines, IL, USA
| |
Collapse
|
25
|
Yu T, Zheng L, Chen G, Wang N, Wang X, Song C, Yan J, Xi C. A Study to Compare the Efficacy of a Biodegradable Dynamic Fixation System With Titanium Devices in Posterior Spinal Fusion Between Articular Processes in a Canine Model. J Biomech Eng 2021; 143:031010. [PMID: 33210131 DOI: 10.1115/1.4049154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Indexed: 11/08/2022]
Abstract
The objective of this study was to apply a biodegradable dynamic fixation system (BDFS) for lumbar fusion between articular processes and compare the fusion results and biomechanical changes with those of conventional rigid fixation. Twenty-four mongrel dogs were randomly assigned to 2 groups and subjected to either posterior lumbar fusion surgery with a BDFS or titanium rods (TRs) at the L5-L6 segments. Six animals in each group were sacrificed at 8 or 16 weeks. Fusion conditions were evaluated by computed tomography (CT), manual palpation, biomechanical tests, and histological analysis. Biomechanical tests were performed at the L4-7 (for range of motion (ROM)) and L5-6 (for fusion stiffness) segments. Histological examination was performed on organs, surrounding tissues, and the fused area. The magnesium alloy components maintained their initial shape 8 weeks after the operation, but the meshing teeth were almost completely degraded at 16 weeks. The biomechanical analysis revealed an increased lateral bending ROM at 8 weeks and axial torsion ROM at 16 weeks. The L4-5 extension-flexion ROMs in the BDFS group were 2.29 ± 0.86 deg and 3.17 ± 1.08 deg at 16 weeks, respectively, compared with 3.22 ± 0.56 deg and 5.55 ± 1.84 deg in TR group. However, both groups showed similar fusion results. The BDFS design is suitable, and its degradation in vivo is safe. The BDFS can be applied for posterior lumbar fusion between articular processes to complete the fusion well. Additionally, the BDFS can reduce the decline in lateral motion and hypermotion of the cranial adjacent segment in flexion-extension motion.
Collapse
Affiliation(s)
- Tailong Yu
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, No. 246, Xuefu Road, Harbin, Heilongjiang 150001, China
| | - Leyu Zheng
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, No. 246, Xuefu Road, Harbin, Heilongjiang 150001, China
| | - Guanghua Chen
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, No. 246, Xuefu Road, Harbin, Heilongjiang 150001, China
| | - Nanxiang Wang
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600, Tianhe Road, Tianhe District, Guangzhou, Guangdong 510000, China
| | - Xiaoyan Wang
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, No. 246, Xuefu Road, Harbin, Heilongjiang 150001, China
| | - Chengchao Song
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, No. 246, Xuefu Road, Harbin, Heilongjiang 150001, China
| | - Jinglong Yan
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Xuefu Road 246#, Harbin, Heilongjiang 150001, China
| | - Chunyang Xi
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Xuefu Road 246#, Harbin, Heilongjiang 150001, China
| |
Collapse
|
26
|
Sears WR, Solterbeck AC, Kos JA. Risk of adjacent segment disease after 'topping-off' multi-level lumbar fusions with posterior dynamic stabilisers: an observational cohort study. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2020; 30:181-190. [PMID: 33089427 DOI: 10.1007/s00586-020-06628-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/05/2020] [Accepted: 10/05/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE To determine whether 'topping-off' lumbar fusions, using posterior dynamic stabilising devices (PDSs) with specific biomechanical parameters, reduces the risk of adjacent segment disease (ASD). METHODS Survival analysis of two non-randomised cohorts, with or without 'topping-off' (T/O or NoT/O), compared the risk of further surgery for ASD following multi-level posterior lumbar interbody fusion (PLIF). The study sample comprised consecutive patients, aged 55 + years, with degenerative pathology at 2, 3 or 4 levels. The NoT/O cohort underwent surgery between August 1993 and September 2019 (n = 425) and the T/O cohort between September 2011 and September 2019 (n = 146). Comparison of ASD risk between cohorts used Cox proportional hazards (CPH) modelling and Kaplan-Meier survivorship analysis. RESULTS Analysis was completed on 571 operations across 507 patients. Median follow-up was 63 months (range 0.3-196) and 37 months (range 1.7-98) for the NoT/O and T/O cohorts, respectively. Of 423 patients, 125 (29.6%) patients in the NoT/O cohort underwent further surgery for ASD and 16/145 (11.03%) in the T/O cohort. The hazard ratio (T/O: NoT/O) from the CPH model was 0.42 (95% CL: 0.24-0.74, P = 0.003). Mean annual incidence across the first 5 years was 5.0% in the NoT/O cohort compared with 2.8% in the T/O cohort (P = 0.029). No patient required surgery or developed ASD at a 'topped-off' level. Two patients developed asymptomatic pedicle screw loosening at the level of the PDS device. PROMs were similar between cohorts. CONCLUSION This large, non-randomised, observational study found an approximately 60% reduction in further surgery for ASD with the use of the PDS to 'top-off' PLIF fusions. PDS device-related complications were very low.
Collapse
Affiliation(s)
- William R Sears
- Wentworth Spine Clinic, Sydney, NSW, Australia. .,Department of Neurosurgery, Sydney Adventist Hospital, Sydney, NSW, Australia.
| | | | | |
Collapse
|
27
|
Investigation of Alterations in the Lumbar Disc Biomechanics at the Adjacent Segments After Spinal Fusion Using a Combined In Vivo and In Silico Approach. Ann Biomed Eng 2020; 49:601-616. [PMID: 32785861 DOI: 10.1007/s10439-020-02588-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 07/31/2020] [Indexed: 12/15/2022]
Abstract
The development of adjacent segment degeneration (ASD) is a major concern after lumbar spinal fusion surgery, but the causative mechanisms remain unclear. This study used a combined in vivo and in silico method to investigate the changes of anatomical dimensions and biomechanical responses of the adjacent segment (L3-4) after spinal fusion (L4-S1) in five patients under weight-bearing upright standing conditions. The in vivo adjacent disc height changes before and after fusion were measured using a dual fluoroscopic imaging system (DFIS), and the measured in vivo intervertebral positions and orientations were used as displacement boundary conditions of the patient-specific three-dimensional (3D) finite element (FE) disc models to simulate the biomechanical responses of adjacent discs to fusion of the diseased segments. Our data (represented by medians and 95% confidence intervals) showed that a significant decrease by - 0.8 (- 1.2, - 0.4) mm (p < 0.05) in the adjacent disc heights occurred at the posterior region after fusion. The significant increases in disc tissue strains and stresses, 0.32 (0.21, 0.43) mm/mm (p < 0.05) and 1.70 (1.07, 3.60) MPa (p < 0.05), respectively, after fusion were found in the posterolateral portions of the outermost annular lamella. The intradiscal pressure of the adjacent disc was significantly increased by 0.29 (0.13, 0.47) MPa after fusion (p < 0.05). This study demonstrated that fusion could cause alterations in adjacent disc biomechanics, and the combined in vivo and in silico method could be a valuable tool for the quantitative assessment of ASD after fusion.
Collapse
|
28
|
Breen A, Mellor F, Morris A, Breen A. An in vivo study exploring correlations between early-to-moderate disc degeneration and flexion mobility in the lumbar spine. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2020; 29:2619-2627. [PMID: 32651632 DOI: 10.1007/s00586-020-06526-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 06/14/2020] [Accepted: 07/01/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE Early disc degeneration (DD) has been thought to be associated with loss of spine stability. However, before this can be understood in relation to back pain, it is necessary to know the relationship between DD and intervertebral motion in people without pain. This study aimed to find out if early-to-moderate DD is associated with intervertebral motion in people without back pain. METHODS Ten pain-free adults, aged 51-71, received recumbent and weight bearing MRI scans and quantitative fluoroscopy (QF) screenings during recumbent and upright lumbar flexion. Forty individual level and 10 composite (L2-S1) radiographic and MRI DD gradings were recorded and correlated with intervertebral flexion ROM, translation, laxity and motion sharing inequality and variability for both positions. RESULTS Kinematic values were similar to previous control studies. DD was evidenced up to moderate levels by both radiographic and MRI grading. Disc height loss correlated slightly, but negatively with flexion during weight bearing flexion (R = - 0.356, p = 0.0.025). Composite MRI DD and T2 signal loss evidenced similar relationships (R = - 0.305, R = - 0.267) but did not reach statistical significance (p = 0.056, p = 0.096). No significant relationships between any other kinematic variables and DD were found. CONCLUSION This study found only small, indefinite associations between early-to-moderate DD and intervertebral motion in healthy controls. Motion sharing in the absence of pain was also not related to early DD, consistent with previous control studies. Further research is needed to investigate these relationships in patients.
Collapse
Affiliation(s)
- Alan Breen
- Faculty of Science and Technology, Bournemouth University, Poole, BH12 5BB, UK.
| | - Fiona Mellor
- Centre for Biomechanics Research, AECC University College, Parkwood Campus, Bournemouth, BH5 2DF, UK
| | - Andrew Morris
- Centre for Biomechanics Research, AECC University College, Parkwood Campus, Bournemouth, BH5 2DF, UK
| | - Alexander Breen
- Centre for Biomechanics Research, AECC University College, Parkwood Campus, Bournemouth, BH5 2DF, UK
| |
Collapse
|
29
|
Yu T, Zheng L, Chen G, Wang X, Chi H, Song C, Xi C, Yan J. A novel dynamic fixation system with biodegradable components on lumbar fusion between articular processes in a canine model. Proc Inst Mech Eng H 2020; 234:738-748. [PMID: 32419625 DOI: 10.1177/0954411920921679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The objective of this study was to design a novel dynamic fixation system with biodegradable components, apply it for lumbar fusion between articular processes and compare the fusion results and biomechanical changes to those of conventional rigid fixation. The novel dynamic fixation system was designed using a finite element model, stress distributions were compared and 24 mongrel dogs were randomly assigned to two groups and subjected to either posterior lumbar fusion surgery with a novel dynamic fixation system or titanium rods at the L5-L6 segments. Lumbar spines were assessed in both groups to detect radiographic, manual palpation and biomechanical changes. Histological examination was performed on organs and surrounding tissues. In the novel dynamic fixation system, stress was mainly distributed on the meshing teeth of the magnesium alloy spacer. The magnesium alloy components maintained their initial shape 8 weeks after the operation, but the meshing teeth were almost completely degraded at 16 weeks. The novel dynamic fixation system revealed an increased lateral bending range of motion at 8 weeks; however, both groups showed similar radiographic grades, fusion stiffness, manual palpation and histological results. The novel dynamic fixation system design is suitable, and its degradation in vivo is safe. The novel dynamic fixation system can be applied for posterior lumbar fusion between articular processes and complete the fusion like titanium rods.
Collapse
Affiliation(s)
- Tailong Yu
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Leyu Zheng
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Guanghua Chen
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaoyan Wang
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hui Chi
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chengchao Song
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chunyang Xi
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jinglong Yan
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
30
|
Zhou C, Willing R. Sensitivities of lumbar segmental kinematics and functional tissue loads in sagittal bending to design parameters of a ball-in-socket total disc arthroplasty prosthesis. Comput Methods Biomech Biomed Engin 2020; 23:536-547. [DOI: 10.1080/10255842.2020.1745783] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Chaochao Zhou
- Department of Mechanical Engineering, State University of New York at Binghamton, Binghamton, NY, USA
| | - Ryan Willing
- Department of Mechanical Engineering, State University of New York at Binghamton, Binghamton, NY, USA
- Department of Mechanical and Materials Engineering, Western University, London, Ontario, Canada
| |
Collapse
|
31
|
Zhou C, Willing R. Multiobjective Design Optimization of a Biconcave Mobile-Bearing Lumbar Total Artificial Disk Considering Spinal Kinematics, Facet Joint Loading, and Metal-on-Polyethylene Contact Mechanics. J Biomech Eng 2020; 142:041006. [PMID: 31574140 DOI: 10.1115/1.4045048] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Indexed: 07/25/2024]
Abstract
Total disk arthroplasty (TDA) using an artificial disk (AD) is an attractive surgical technique for the treatment of spinal disorders, since it can maintain or restore spinal motion (unlike interbody fusion). However, adverse surgical outcomes of contemporary lumbar TDAs have been reported. We previously proposed a new mobile-bearing AD design concept featuring a biconcave ultrahigh-molecular-weight polyethylene (UHMWPE) mobile core. The objective of this study was to develop an artificial neural network (NN) based multiobjective optimization framework to refine the biconcave-core AD design considering multiple TDA performance metrics, simultaneously. We hypothesized that there is a tradeoff relationship between the performance metrics in terms of range of motion (ROM), facet joint force (FJF), and polyethylene contact pressure (PCP). By searching the resulting three-dimensional (3D) Pareto frontier after multiobjective optimization, it was found that there was a "best-tradeoff" AD design, which could balance all the three metrics, without excessively sacrificing each metric. However, for each single-objective optimum AD design, only one metric was optimal, and distinct sacrifices were observed in the other two metrics. For a commercially available biconvex-core AD design, the metrics were even worse than the poorest outcomes of the single-objective optimum AD designs. Therefore, multiobjective design optimization could be useful for achieving native lumbar segment biomechanics and minimal PCPs, as well as for improving the existing lumbar motion-preserving surgical treatments.
Collapse
Affiliation(s)
- Chaochao Zhou
- Department of Mechanical Engineering, State University of New York at Binghamton, Binghamton, NY 13902-6000
| | - Ryan Willing
- Department of Mechanical Engineering, State University of New York at Binghamton, Binghamton, NY 13902-6000; Department of Mechanical and Materials Engineering, Western University, Thompson Engineering Building, Room TEB 363, London, ON N6A 5B9, Canada
| |
Collapse
|
32
|
Beckmann A, Nicolini LF, Grevenstein D, Backes H, Oikonomidis S, Sobottke R, Kobbe P, Hildebrand F, Stoffel M, Markert B, Siewe J, Herren C. Biomechanical In Vitro Test of a Novel Dynamic Spinal Stabilization System Incorporating Polycarbonate Urethane Material Under Physiological Conditions. J Biomech Eng 2020; 142:011005. [PMID: 31314885 DOI: 10.1115/1.4044242] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Indexed: 11/08/2022]
Abstract
Posterior dynamic stabilization systems (PDSS) were developed to provide stabilization to pathologic or hypermobile spinal segments while maintaining the healthy biomechanics of the spine. Numerous novel dynamic devices incorporate the temperature and moisture dependent material polycarbonate urethane (PCU) due to its mechanical properties and biocompatibility. In this study, standardized pure moment in vitro tests were carried out on human lumbar spines to evaluate the performance of a device containing PCU. An environmental chamber with controlled moisture and temperature was included in the setup to meet the requirements of testing under physiological conditions. Three test conditions were compared: (1) native spine, (2) dynamic instrumentation, and (3) dynamic instrumentation with decompression. The ranges of motion, centers of rotation, and relative pedicle screw motions were evaluated. The device displayed significant stiffening in flexion-extension, lateral bending, and axial rotation load directions. A reduction of the native range of motion diminished the stiffening effect along the spinal column and has the potential to reduce the risk of the onset of degeneration of an adjacent segment. In combination with decompression, the implant decreased the native range of motion for flexion-extension and skew bending, but not for lateral bending and axial rotation. Curve fittings using the sigmoid function were performed to parameterize all load-deflection curves in order to enhance accurate numerical model calibrations and comparisons. The device caused a shift of the center of rotation (COR) in the posterior and caudal direction during flexion-extension loading.
Collapse
Affiliation(s)
- Agnes Beckmann
- Institute of General Mechanics, RWTH Aachen University, Templergraben 64, Aachen 52062, Germany
| | - Luis Fernando Nicolini
- Institute of General Mechanics, RWTH Aachen University, Templergraben 64, Aachen 52062, Germany
| | - David Grevenstein
- Centre for Orthopedic and Trauma Surgery, University of Cologne, Kerpener Street 62, Köln 50937, Germany
| | - Hermann Backes
- NGMedical GmbH, Morschborn 28, Nonnweiler-Primstal 66620, Germany
| | - Stavros Oikonomidis
- Centre for Orthopedic and Trauma Surgery, University of Cologne, Kerpener Street 62, Köln 50937, Germany
| | - Rolf Sobottke
- Rhein-Maas Klinik, Department of Orthopaedics and Trauma Surgery, Mauerfeldchen 25, Würselen 52146, Germany
| | - Philipp Kobbe
- Department for Trauma and Reconstructive Surgery, University Hospital RWTH Aachen, Pauwelsstraße 30, Aachen 52074, Germany
| | - Frank Hildebrand
- Department for Trauma and Reconstructive Surgery, University Hospital RWTH Aachen, Pauwelsstraße 30, Aachen 52074, Germany
| | - Marcus Stoffel
- Institute of General Mechanics, RWTH Aachen University, Templergraben 64, Aachen 52062, Germany
| | - Bernd Markert
- Institute of General Mechanics, RWTH Aachen University, Templergraben 64, Aachen 52062, Germany
| | - Jan Siewe
- Klinikum Leverkusen gGmbH, Clinic for Orthopedic and Trauma Surgery, Am Gesundheitspark 11, Leverkusen 51375, Germany
| | - Christian Herren
- Department for Trauma and Reconstructive Surgery, University Hospital RWTH Aachen, Pauwelsstraße 30, Aachen 52074, Germany
| |
Collapse
|
33
|
In vivo changes in adjacent segment kinematics after lumbar decompression and fusion. J Biomech 2019; 102:109515. [PMID: 31767283 DOI: 10.1016/j.jbiomech.2019.109515] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/30/2019] [Accepted: 11/11/2019] [Indexed: 11/23/2022]
Abstract
The pathogenesis of lumbar adjacent segment disease is thought to be secondary to altered biomechanics resulting from fusion. Direct in vivo evidence for altered biomechanics following lumbar fusion is lacking. This study's aim was to describe in vivo kinematics of the superior adjacent segment relative to the fused segment before and after lumbar fusion. This study analyzed seven patients with symptomatic lumbar degenerative spondylolisthesis (5 M, 2F; age 65 ± 5.1 years) using a biplane radiographic imaging system. Each subject performed two to three trials of continuous flexion of their torso according to established protocols. Synchronized biplane radiographs were acquired at 20 images per second one month before and six months after single-level fusion at L4-L5 or L5-S1, or two-level fusion at L3-L5 or L4-S1. A previously validated volumetric model-based tracking process was used to track the position and orientation of vertebrae in the radiographic images. Intervertebral flexion/extension and AP translation (slip) at the superior adjacent segment were calculated over the entire dynamic flexion activity. Skin-mounted surface markers were tracked using conventional motion analysis and used to determine torso flexion. Change in adjacent segment kinematics after fusion was determined at corresponding angles of dynamic torso flexion. Changes in adjacent segment motion varied across patients, however, all patients maintained or increased the amount of adjacent segment slip or intervertebral flexion/extension. No patients demonstrated both decreased adjacent segment slip and decreased rotation. This study suggests that short-term changes in kinematics at the superior adjacent segment after lumbar fusion appear to be patient-specific.
Collapse
|
34
|
Zhou C, Willing R. Development of a Biconcave Mobile-Bearing Lumbar Total Disc Arthroplasty Concept Using Finite Element Analysis and Design Optimization. J Orthop Res 2019; 37:1805-1816. [PMID: 31042323 DOI: 10.1002/jor.24315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 04/04/2019] [Indexed: 02/04/2023]
Abstract
Total disc arthroplasty (TDA) is a motion-preserving surgical treatment for spinal disorders. However, adverse surgical outcomes, such as abnormal kinematics, facet joint (FJ) overloading, and polyethylene (PE) failures, have limited wide application of lumbar TDAs. The objectives of this computational study were to elucidate how implant design and FJ articulation both influence metal-on-polyethylene (MoP) motion and contact mechanics, as well as to propose and refine a new mobile-bearing TDA concept which enhanced postoperative performance. Simulation results show that abnormal motions (lift-off and/or unsymmetrical motion) are alleviated in fixed-/mobile-bearing TDA-treated segments, as the FJ gap increases. It clearly demonstrates that FJ articulation guides segmental motion and interferes with intended MoP articulation. For an existing biconvex mobile-bearing design, component impingement leads to a peak PE stress of 20.8 MPa (yield stress: 13 MPa), indicating a high risk of PE creep/fracture. Therefore, we proposed a new TDA concept featuring a biconcave PE core with a smooth shape, in order to strengthen the PE rim and mitigate edge-loading. Furthermore, the biconcave-core TDA was optimally designed to promote normal segmental range of motion (ROM), or to minimize polyethylene contact pressure (PCP). In extension (the severest loading scenario), the biconvex-core TDA design caused a ROM 3.6° (+88%) greater than the intact segment and a peak PCP of 116.5 MPa. In contrast, ROM-optimal or PCP-optimal biconcave-core TDA designs decreased the ROM difference to 0.0° or the peak PCP to 24.3 MPa. Therefore, this new TDA design can potentially reduce the incidence of hypermotion and PE damage. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:1805-1816, 2019.
Collapse
Affiliation(s)
- Chaochao Zhou
- Department of Mechanical Engineering, State University of New York at Binghamton, Binghamton, New York
| | - Ryan Willing
- Department of Mechanical Engineering, State University of New York at Binghamton, Binghamton, New York.,Department of Mechanical and Materials Engineering, Western University, London, Ontario, Canada
| |
Collapse
|
35
|
Zhou C, Cha T, Li G. An upper bound computational model for investigation of fusion effects on adjacent segment biomechanics of the lumbar spine. Comput Methods Biomech Biomed Engin 2019; 22:1126-1134. [PMID: 31294608 DOI: 10.1080/10255842.2019.1639047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Prediction of the biomechanical effects of fusion surgery on adjacent segments is a challenge in computational biomechanics of the spine. In this study, a two-segment L3-L4-L5 computational model was developed to simulate the effects of spinal fusion on adjacent segment biomechanical responses under a follower load condition. The interaction between the degenerative segment (L4-5) and the adjacent segment (L3-4) was simulated using an equivalent follower spring. The spring stiffness was calibrated using a rigid fusion of a completely degenerated disc model at the L4-5 level, resulting in an upper bound response at the adjacent (L3-4) segment. The obtained upper bound equivalent follower spring was used to simulate the upper bound biomechanical responses of fusion of the disc with different degeneration grades. It was predicted that as the disc degeneration grade at the degenerative segment decreased, the effect on the adjacent segment responses decreased accordingly after fusion. The data indicated that the upper bound computational model can be a useful computational tool for evaluation of the interaction between segments and for investigation of the biomechanical mechanisms of adjacent segment degeneration after fusion.
Collapse
Affiliation(s)
- Chaochao Zhou
- Orthopaedic Bioengineering Research Center , Newton-Wellesley Hospital, Harvard Medical School , Newton , MA , USA.,Department of Mechanical Engineering , State University of New York at Binghamton , Binghamton , NY , USA.,Department of Orthopaedic Surgery , Massachusetts General Hospital, Harvard Medical School , Boston , MA , USA
| | - Thomas Cha
- Department of Orthopaedic Surgery , Massachusetts General Hospital, Harvard Medical School , Boston , MA , USA
| | - Guoan Li
- Orthopaedic Bioengineering Research Center , Newton-Wellesley Hospital, Harvard Medical School , Newton , MA , USA.,Department of Orthopaedic Surgery , Massachusetts General Hospital, Harvard Medical School , Boston , MA , USA
| |
Collapse
|
36
|
Optimization of compressive loading parameters to mimic in vivo cervical spine kinematics in vitro. J Biomech 2019; 87:107-113. [PMID: 30905402 DOI: 10.1016/j.jbiomech.2019.02.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/22/2019] [Accepted: 02/25/2019] [Indexed: 01/12/2023]
Abstract
The human cervical spine supports substantial compressive load in vivo. However, the traditional in vitro testing methods rarely include compressive loads, especially in investigations of multi-segment cervical spine constructs. Previously, a systematic comparison was performed between the standard pure moment with no compressive loading and published compressive loading techniques (follower load - FL, axial load - AL, and combined load - CL). The systematic comparison was structured a priori using a statistical design of experiments and the desirability function approach, which was chosen based on the goal of determining the optimal compressive loading parameters necessary to mimic the segmental contribution patterns exhibited in vivo. The optimized set of compressive loading parameters resulted in in vitro segmental rotations that were within one standard deviation and 10% of average percent error of the in vivo mean throughout the entire motion path. As hypothesized, the values for the optimized independent variables of FL and AL varied dynamically throughout the motion path. FL was not necessary at the extremes of the flexion-extension (FE) motion path but peaked through the neutral position, whereas, a large negative value of AL was necessary in extension and increased linearly to a large positive value in flexion. Although further validation is required, the long-term goal is to develop a "physiologic" in vitro testing method, which will be valuable for evaluating adjacent segment effect following spinal fusion surgery, disc arthroplasty instrumentation testing and design, as well as mechanobiology experiments where correct kinematics and arthrokinematics are critical.
Collapse
|
37
|
Kinematics of the Spine Under Healthy and Degenerative Conditions: A Systematic Review. Ann Biomed Eng 2019; 47:1491-1522. [DOI: 10.1007/s10439-019-02252-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/21/2019] [Indexed: 01/05/2023]
|
38
|
Oikonomidis S, Sobottke R, Wilke HJ, Herren C, Beckmann A, Zarghooni K, Siewe J. Material failure in dynamic spine implants: are the standardized implant tests before market launch sufficient? EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2019; 28:872-882. [PMID: 30649613 DOI: 10.1007/s00586-019-05880-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 01/06/2019] [Indexed: 12/14/2022]
Abstract
PURPOSE International Standards Organization (ISO) 12189 and American Society for Testing and Materials F2624 are two standard material specification and test methods for spinal implant devices. The aim of this study was to assess whether the existing and required tests before market launch are sufficient. METHODS In three prospective studies, patients were treated due to degenerative disease of the lumbar spine or spondylolisthesis with lumbar interbody fusion and dynamic stabilization of the cranial adjacent level. The CD HORIZON BalanC rod and S4 Dynamic rod were implanted in 45 and 11 patients, respectively. RESULTS A fatigue fracture of the material of the topping off system has been found in five cases (11%) for the group fitted with the CD HORIZON BalanC rod. In the group using the S4 Dynamic rod group, a material failure of the dynamic part was demonstrated in seven patients (64%). All three studies were interrupted due to these results, and a report to the Federal Institute for Drugs and Medical Devices was generated. CONCLUSION Spinal implants have to be checked by a notified body before market launch. The notified body verifies whether the implants fulfil the requirements of the current standards. These declared studies suggest that the current standards for the testing of load bearing capacity and stand ability of dynamic spine implants might be insufficient. Revised standards depicting sufficient deformation and load pattern have to be developed and counted as a requirement for the market launch of an implant. These slides can be retrieved under Electronic Supplementary Material.
Collapse
Affiliation(s)
- Stavros Oikonomidis
- Department of Orthopedics and Trauma Surgery, Rhein-Maas Klinikum GmbH, Mauerfeldchen 25, 52146, Wuerselen, Germany. .,Faculty of Medicine and University Hospital Cologne, Department of Orthopedics and Trauma Surgery, University of Cologne, Joseph-Stelzmann-Str. 24, 50931, Cologne, Germany.
| | - Rolf Sobottke
- Department of Orthopedics and Trauma Surgery, Rhein-Maas Klinikum GmbH, Mauerfeldchen 25, 52146, Wuerselen, Germany.,Faculty of Medicine and University Hospital Cologne, Department of Orthopedics and Trauma Surgery, University of Cologne, Joseph-Stelzmann-Str. 24, 50931, Cologne, Germany
| | - Hans-Joachim Wilke
- Institute of Orthopedic Research and Biomechanics, Center of Musculoskeletal Research, University of Ulm, Helmholtzstr. 14, 89081, Ulm, Germany
| | - Christian Herren
- Department for Trauma and Reconstructive Surgery, University Hospital RWTH, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Agnes Beckmann
- Institute of General Mechanics, RWTH Aachen University, Templergraben 64, 52062, Aachen, Germany
| | - Kourosh Zarghooni
- Faculty of Medicine and University Hospital Cologne, Department of Orthopedics and Trauma Surgery, University of Cologne, Joseph-Stelzmann-Str. 24, 50931, Cologne, Germany
| | - Jan Siewe
- Faculty of Medicine and University Hospital Cologne, Department of Orthopedics and Trauma Surgery, University of Cologne, Joseph-Stelzmann-Str. 24, 50931, Cologne, Germany
| |
Collapse
|
39
|
Holewijn RM, Kingma I, de Kleuver M, Keijsers NLW. Posterior spinal surgery for adolescent idiopathic scoliosis does not induce compensatory increases in distal adjacent segment motion: a prospective gait analysis study. Spine J 2018; 18:2213-2219. [PMID: 29746962 DOI: 10.1016/j.spinee.2018.05.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 04/17/2018] [Accepted: 05/01/2018] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Patients with adolescent idiopathic scoliosis (AIS) perform surprisingly well after spinal correction and fusion. It was previously hypothesized that, during gait, certain mechanisms compensate for the loss in spinal motion. Still, previous studies could not identify such compensatory mechanisms in the lower body. PURPOSE This study aims to test the hypothesis of a compensatory increased motion of the distal unfused part of the spine during gait after posterior spinal correction and fusion. STUDY This is a prospective gait study. PATIENTS AND METHODS Twelve patients with AIS were included. Sets of three VICON skin markers were used to measure the 3D motion of the proximal part of the fusion in relation to the pelvis (PFP) and the distal part of the fusion in relation to the pelvis (DFP). By doing so, PFP represents the motion of the fused and unfused parts of the spine, and DFP represents the motion of the unfused part of the spine. Measurements were performed preoperatively and 3 and 12 months after posterior spinal correction and fusion. RESULTS Surgery resulted in a decrease in PFP transversal plane range of motion (ROM) (8.3° vs. 5.9°, p=.006). No compensatory increase in the ROM of DFP could be identified. Actually, DFP transversal plane ROM also decreased (8.2° vs. 5.6°, p=.019). No improvement over time was observed when comparing the 3- and 12-month postoperative measurements. CONCLUSIONS The hypothesis of a compensatory increase in motion of the distal unfused segments after spinal fusion for AIS is a much researched and controversial topic. This study is the first to study this hypothesis in such detail during gait and could not demonstrate such increase.
Collapse
Affiliation(s)
- Roderick M Holewijn
- Department of Orthopedic Surgery, VU University Medical Center, Amsterdam Movement Sciences, De Boelelaan 1117, Amsterdam, 1081 HV, The Netherlands.
| | - Idsart Kingma
- Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, De Boelelaan 1105, Amsterdam, 1081 HV, The Netherlands
| | - Marinus de Kleuver
- Department of Orthopedic Surgery, Radboud University Medical Center, Mailbox 9101, 6500 HB, Nijmegen, The Netherlands
| | - Noël L W Keijsers
- Sint Maartenskliniek Research, Sint Maartenskliniek, Mailbox 9011, 6500 GM, Ubbergen, The Netherlands
| |
Collapse
|
40
|
Okuda S, Yamashita T, Matsumoto T, Nagamoto Y, Sugiura T, Takahashi Y, Maeno T, Iwasaki M. Adjacent Segment Disease After Posterior Lumbar Interbody Fusion: A Case Series of 1000 Patients. Global Spine J 2018; 8:722-727. [PMID: 30443483 PMCID: PMC6232722 DOI: 10.1177/2192568218766488] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
STUDY DESIGN Retrospective study. OBJECTIVE There have been few reports of adjacent segment disease (ASD) after posterior lumbar interbody fusion (PLIF) with large numbers and long follow-up. The purpose of this study was to investigate (1) ASD incidence and time periods after primary PLIF, (2) repeat ASD incidence and time periods, and (3) ASD incidence and time periods by fusion length, age, and preoperative pathologies. METHODS A total of 1000 patients (average age 67 years, average follow-up 8.3 years) who underwent PLIF for degenerative lumbar disorders were reviewed. ASD was defined as a symptomatic condition in which revision surgery was required. RESULTS The overall ASD rate was 9.0%, and the average ASD period was 4.7 years after primary surgery. With respect to clinical features of ASD, degenerative spondylolisthesis at the cranial fusion segment was the most frequent. In terms of repeat ASD, second and third ASD incidences were 1.1% and 0.4%, respectively. As for ASD by fusion length, age, and preoperative pathologies, ASD incidence was increased by fusion length, while the time period to ASD was significantly shorter in elderly patients and those with degenerative lumbar scoliosis. CONCLUSIONS In the present study, the overall ASD incidence was 9.0%, and the average ASD period was 4.7 years after primary operation. Second and third ASD incidences were 1.1% and 0.4%, respectively. Fusion length affected the ASD incidence, while aging factor and preoperative pathology affected the ASD time period.
Collapse
Affiliation(s)
- Shinya Okuda
- Osaka Rosai Hospital, Osaka, Japan,Shinya Okuda, Department of Orthopaedic Surgery,
Osaka Rosai Hospital, 1179-3 Nagasone-cho, Kita-ku, Sakai, Osaka 591-8025, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
The influence of spinal fusion length on proximal junction biomechanics: a parametric computational study. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2018; 27:2262-2271. [PMID: 30039253 DOI: 10.1007/s00586-018-5700-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/09/2018] [Accepted: 07/11/2018] [Indexed: 12/28/2022]
Abstract
PURPOSE Proximal junctional kyphosis and failure are frequent complications in adult spinal deformity surgery with long fusion constructs. The aim of this study was to assess the biomechanics of the proximal segment for fusions of various lengths. METHODS A previously established musculoskeletal model of thoracolumbar spine was used to simulate full-range flexion task for fusions (modeled by introduction of rigid constraints) with lower instrumented vertebrae at L5 or S1 and upper instrumented vertebrae (UIV) at any level above, up to T2. Inverse dynamics simulations with force-dependent kinematics were performed for gradually increasing spinal flexion in order to predict global and segmental range of flexion, maximum passive moment, segmental compression and shear forces, which were compared to the uninstrumented case. RESULTS For long fusions, with the UIV at T11 or higher, the model predicted an increase in segmental flexion (by 33-860%, or 1.6°-4.7°) and passive moment (by 39-1370%, or 13-31 Nm) at the proximal junction-generally increasing with fusion length. While the maximum shear force was 57-239% (135-283 N) higher for the proximal junction at the upper thorax (UIV at T6 or above), the compression forces were reduced by up to 44% (375 N). CONCLUSIONS The length of the instrumentation has an important effect on the proximal segment biomechanics. Despite the limitations of the current model, musculoskeletal modeling appears to be a promising and versatile method to support planning of spinal instrumentation surgeries in the future. These slides can be retrieved under Electronic Supplementary Material.
Collapse
|
42
|
Digital tracking algorithm reveals the influence of structural irregularities on joint movements in the human cervical spine. Clin Biomech (Bristol, Avon) 2018; 56:11-17. [PMID: 29738991 DOI: 10.1016/j.clinbiomech.2018.04.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 04/19/2018] [Accepted: 04/25/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Disc height loss and osteophytes change the local mechanical environment in the spine; while previous research has examined kinematic dysfunction under degenerative change, none has looked at the influence of disc height loss and osteophytes throughout movement. METHODS Twenty patients with pain related to the head, neck or shoulders were imaged via videofluoroscopy as they underwent sagittal-plane flexion and extension. A clinician graded disc height loss and osteophytes as "severe/moderate", "mild", or "none". A novel tracking algorithm quantified motions of each vertebra. This information was used to calculate intervertebral angular and shear displacements. The digital algorithm made it practical to track individual vertebrae in multiple patients through hundreds of images without bias. FINDINGS Cases without height loss/osteophytes had a consistent increase in intervertebral angular displacement from C2/C3 to C5/C6, like that of healthy individuals, and mild height losses did not produce aberrations that were systematic or necessarily discernable. However, joints with moderate to severe disc height loss and osteophytes exhibited reduced range of motion compared to adjacent unaffected joints in that patient and corresponding joints in patients without structural irregularities. INTERPRETATION Digitally-obtained motion histories of individual joints allowed anatomical joint changes to be linked with changes in joint movement patterns. Specifically, disc height loss and osteophytes were found to influence cervical spine movement in the sagittal plane, reducing angular motions at affected joints by approximately 10% between those with and without height loss and osteophytes. Further, these joint changes were associated with perturbed intervertebral angular and shear movements.
Collapse
|
43
|
Reoperation of decompression alone or decompression plus fusion surgeries for degenerative lumbar diseases: a systematic review. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2018; 28:1371-1385. [DOI: 10.1007/s00586-018-5681-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 06/23/2018] [Indexed: 10/28/2022]
|
44
|
In vitro investigation of two connector types for continuous rod construct to extend lumbar spinal instrumentation. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2018; 27:1895-1904. [PMID: 29948326 DOI: 10.1007/s00586-018-5664-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 06/06/2018] [Indexed: 10/14/2022]
Abstract
PURPOSE Instrumentation of the lumbar spine is a common procedure for treating pathologic conditions. Studies have revealed the risks of pathologies in the adjacent segments, with the incidence rate being up to 36.1%. Revision procedures are often required, including extension of the instrumentation by the use of connectors to adjacent levels. The aim of this study was to determine the stiffness of side-to-side and end-to-end connectors for comparison with the use of continuous rods. METHODS Ten human lumbar spine specimens (L1-S1) were tested about the three axes under pure moment loading of ± 7.5 Nm. Nine conditions were used to investigate the functions of the extensions for different instrumentation lengths (L3-S1 and L2-S1) and different connector levels (L3/4 and L2/3). The intersegmental range of motion (iROM) and intersegmental neutral zone as well as total range of motion (tROM) and total neutral zone (tNZ) were analyzed. RESULTS The application of the spinal system significantly decreased the tROMs (- 44 to - 83%) and iROMs in levels L2/3 (- 56 to - 94%) and L3/4 (- 68 to - 99%) in all the tested directions, and the tNZ under flexion/extension (- 63 to - 71%) and axial rotation (- 34 to - 72%). These decreases were independent of the employed configuration (p < 0.05). The only significant changes in the iROM were observed under lateral bending between the continuous rod and the side-to-side connector at level L3/4 (p = 0.006). CONCLUSION From a biomechanical viewpoint, the tested connectors are comparable to continuous rods in terms of ROM and NZ. These slides can be retrieved under Electronic Supplementary Material.
Collapse
|
45
|
Full-field strain distribution in multi-vertebra spine segments: An in vitro application of digital image correlation. Med Eng Phys 2018; 52:76-83. [DOI: 10.1016/j.medengphy.2017.11.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 11/08/2017] [Accepted: 11/22/2017] [Indexed: 11/17/2022]
|
46
|
Lee CH, Kim YE, Lee HJ, Kim DG, Kim CH. Biomechanical effects of hybrid stabilization on the risk of proximal adjacent-segment degeneration following lumbar spinal fusion using an interspinous device or a pedicle screw–based dynamic fixator. J Neurosurg Spine 2017; 27:643-649. [DOI: 10.3171/2017.3.spine161169] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVEPedicle screw-rod–based hybrid stabilization (PH) and interspinous device–based hybrid stabilization (IH) have been proposed to prevent adjacent-segment degeneration (ASD) and their effectiveness has been reported. However, a comparative study based on sound biomechanical proof has not yet been reported. The aim of this study was to compare the biomechanical effects of IH and PH on the transition and adjacent segments.METHODSA validated finite element model of the normal lumbosacral spine was used. Based on the normal model, a rigid fusion model was immobilized at the L4–5 level by a rigid fixator. The DIAM or NFlex model was added on the L3–4 segment of the fusion model to construct the IH and PH models, respectively. The developed models simulated 4 different loading directions using the hybrid loading protocol.RESULTSCompared with the intact case, fusion on L4–5 produced 18.8%, 9.3%, 11.7%, and 13.7% increments in motion at L3–4 under flexion, extension, lateral bending, and axial rotation, respectively. Additional instrumentation at L3–4 (transition segment) in hybrid models reduced motion changes at this level. The IH model showed 8.4%, −33.9%, 6.9%, and 2.0% change in motion at the segment, whereas the PH model showed −30.4%, −26.7%, −23.0%, and 12.9%. At L2–3 (adjacent segment), the PH model showed 14.3%, 3.4%, 15.0%, and 0.8% of motion increment compared with the motion in the IH model. Both hybrid models showed decreased intradiscal pressure (IDP) at the transition segment compared with the fusion model, but the pressure at L2–3 (adjacent segment) increased in all loading directions except under extension.CONCLUSIONSBoth IH and PH models limited excessive motion and IDP at the transition segment compared with the fusion model. At the segment adjacent to the transition level, PH induced higher stress than IH model. Such differences may eventually influence the likelihood of ASD.
Collapse
Affiliation(s)
- Chang-Hyun Lee
- 1Department of Neurosurgery, Ilsan Paik Hospital, Inje University College of Medicine, Goyang-si, Gyeonggi-do
| | - Young Eun Kim
- 2Department of Mechanical Engineering, Dankook University, Yongin-si, Gyeonggi-do; and
| | - Hak Joong Lee
- 2Department of Mechanical Engineering, Dankook University, Yongin-si, Gyeonggi-do; and
| | - Dong Gyu Kim
- 3Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Chi Heon Kim
- 3Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
47
|
Kim YE, Choi HW. Does stabilization of the degenerative lumbar spine itself produce multifidus atrophy? Med Eng Phys 2017; 49:63-70. [PMID: 28774686 DOI: 10.1016/j.medengphy.2017.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 05/25/2017] [Accepted: 07/17/2017] [Indexed: 11/25/2022]
Abstract
The effect of stabilization of the degenerative segment on changes in the pattern of paraspinal muscle activity was investigated using a previously developed musculoskeletal model. Muscle activity change depending on L4-L5 segment stabilization with and without taking into account the presence of multifidus atrophy according to direct invasion of the back muscle during surgery (MADIBM) was analysed in erect standing and 20° flexed postures. For the stabilization of the degenerative segment, a fusion or non-fusion stabilization with a pedicle-based dynamic stabilization system (PBDS) was applied. During erect standing, fusion generated a 12% reduction in the total multifidus muscle force, while its reduction was 6.6% with PBDS application. The presence of MADIBM produced 23.0% and 22.5% reductions in fusion and with PBDS application, respectively. During 20° flexion, 10.5% and 9.3% reductions were produced for fusion and PBDS application, respectively, and the corresponding values were 23.4% and 23.0%, respectively, in the presence of MADIBM. Increased facet joint contact forces were produced at the non-stabilized levels after stabilization while in erect standing posture. Alterations in muscle activity, which could be regarded as adaptions to altered spinal stability, may generate unexpected secondary problems in the spine.
Collapse
Affiliation(s)
- Young Eun Kim
- Department of Mechanical Engineering, Dankook University, 152, Jukjeon-ro, Suji-gu, Yongin-si, Gyeonggi-do, 16890, Republic of Korea.
| | - Hae Won Choi
- Department of Mechanical Engineering, Dankook University, 152, Jukjeon-ro, Suji-gu, Yongin-si, Gyeonggi-do, 16890, Republic of Korea
| |
Collapse
|
48
|
Luo J, Annesley-Williams DJ, Adams MA, Dolan P. How are adjacent spinal levels affected by vertebral fracture and by vertebroplasty? A biomechanical study on cadaveric spines. Spine J 2017; 17:863-874. [PMID: 28167249 DOI: 10.1016/j.spinee.2017.01.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 12/21/2016] [Accepted: 01/30/2017] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Spinal injuries and surgery may have important effects on neighboring spinal levels, but previous investigations of adjacent-level biomechanics have produced conflicting results. We use "stress profilometry" and noncontact strain measurements to investigate thoroughly this long-standing problem. PURPOSE This study aimed to determine how vertebral fracture and vertebroplasty affect compressive load-sharing and vertebral deformations at adjacent spinal levels. STUDY DESIGN We conducted mechanical experiments on cadaver spines. METHODS Twenty-eight cadaveric spine specimens, comprising three thoracolumbar vertebrae and the intervening discs and ligaments, were dissected from fourteen cadavers aged 67-92 years. A needle-mounted pressure transducer was used to measure the distribution of compressive stress across the anteroposterior diameter of both intervertebral discs. "Stress profiles" were analyzed to quantify intradiscal pressure (IDP) and concentrations of compressive stress in the anterior and posterior annulus. Summation of stresses over discrete areas yielded the compressive force acting on the anterior and posterior halves of each vertebral body, and the compressive force resisted by the neural arch. Creep deformations of vertebral bodies under load were measured using an optical MacReflex system. All measurements were repeated following compressive injury to one of the three vertebrae, and again after the injury had been treated by vertebroplasty. The study was funded by a grant from Action Medical Research, UK ($143,230). Authors of this study have no conflicts of interest to disclose. RESULTS Injury usually involved endplate fracture, often combined with deformation of the anterior cortex, so that the affected vertebral body developed slight anterior wedging. Injury reduced IDP at the affected level, to an average 47% of pre-fracture values (p<.001), and transferred compressive load-bearing from nucleus to annulus, and also from disc to neural arch. Similar but reduced effects were seen at adjacent (non-fractured) levels, where mean IDP was reduced to 73% of baseline values (p<.001). Vertebroplasty partially reversed these changes, increasing mean IDP to 76% and 81% of baseline values at fractured and adjacent levels, respectively. Injury also increased creep deformation of the vertebral body under load, especially in the anterior region where a 14-fold increase was observed at the fractured level and a threefold increase was observed at the adjacent level. Vertebroplasty also reversed these changes, reducing deformation of the anterior vertebral body (compared with post-fracture values) by 62% at the fractured level, and by 52% at the adjacent level. CONCLUSIONS Vertebral fracture adversely affects compressive load-sharing and increases vertebral deformations at both fractured and adjacent levels. All effects can be partially reversed by vertebroplasty.
Collapse
Affiliation(s)
- Jin Luo
- School of Applied Sciences, London South Bank University, 103 Borough Rd, London SE1 0AA, UK
| | - Deborah J Annesley-Williams
- Department of Neuroradiology, Nottingham University Hospitals NHS Trust, Queen's Medical Centre, Derby Rd, Nottingham NG7 2UH, UK
| | - Michael A Adams
- Centre of Applied Anatomy, University of Bristol, Southwell St, Bristol, BS2 8EJ, UK
| | - Patricia Dolan
- Centre of Applied Anatomy, University of Bristol, Southwell St, Bristol, BS2 8EJ, UK.
| |
Collapse
|
49
|
In Vivo Characteristics of Nondegenerated Adjacent Segment Intervertebral Foramina in Patients With Degenerative Disc Disease During Flexion-Extension. Spine (Phila Pa 1976) 2017; 42:359-365. [PMID: 27379419 PMCID: PMC5203984 DOI: 10.1097/brs.0000000000001758] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN In vivo patient biomechanical study. OBJECTIVE To investigate the dimensions of lumbar intervertebral foramen (LIVF) of patients with degenerative disc disease (DDD) during a flexion-extension motion of the body. SUMMARY OF BACKGROUND DATA LIVF narrowing may result in nerve root compression. The area changes of degenerated and adjacent nondegenerated LIVFs in DDD patients under physiologic loading conditions are unknown. METHODS Nine symptomatic low back pain patients with radiological evidence of L4-S1 DDD were recruited. Each subject was magnetic resonance imaging scanned for construction of three-dimensional lumbar vertebral models, and fluoroscopically imaged when the body extended from 45 flexion to full extension for reconstruction of LIVF dimensions. The data of the adjacent segment L3/4 and diseased segments L4/5 and L5/S1 were compared with a normal control group at 45 flexion, upright, and full extension of the body. RESULTS The mean LIVF areas of DDD segments were significantly smaller than those of the normal subjects in all positions (P <0.05). In upright position, the LIVF areas of the DDD patients were 32.8% and 33.6% smaller than the normal subjects for L4/5 and L5/S1, respectively. For the adjacent L3/4, the LIVF area of the DDD patients was 32.3% smaller than that of the normal controls (P <0.05). The total change of L3/4 LIVF area in DDD patients from flexion to extension was significantly smaller than that of the normal subjects, but the changes in L4/5 and L5/S1 LIVF areas were similar between the two groups (P >0.05). CONCLUSION Similar reductions of the LIVF dimensions were observed at the adjacent and the involved levels of the DDD patients, implying that biomechanical changes might have already occurred at the adjacent segment despite the lack of radiographic evidence of degeneration. Subsequent research should focus on the effects of surgical fusion on the biomechanical features of the adjacent segment. LEVEL OF EVIDENCE N/A.
Collapse
|
50
|
Naserkhaki S, El-Rich M. Sensitivity of lumbar spine response to follower load and flexion moment: finite element study. Comput Methods Biomech Biomed Engin 2016; 20:550-557. [PMID: 27848266 DOI: 10.1080/10255842.2016.1257707] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The follower load (FL) combined with moments is commonly used to approximate flexed/extended posture of the lumbar spine in absence of muscles in biomechanical studies. There is a lack of consensus as to what magnitudes simulate better the physiological conditions. Considering the in-vivo measured values of the intradiscal pressure (IDP), intervertebral rotations (IVRs) and the disc loads, sensitivity of these spinal responses to different FL and flexion moment magnitudes was investigated using a 3D nonlinear finite element (FE) model of ligamentous lumbosacral spine. Optimal magnitudes of FL and moment that minimize deviation of the model predictions from in-vivo data were determined. Results revealed that the spinal parameters i.e. the IVRs, disc moment, and the increase in disc force and moment from neutral to flexed posture were more sensitive to moment magnitude than FL magnitude in case of flexion. The disc force and IDP were more sensitive to the FL magnitude than moment magnitude. The optimal ranges of FL and flexion moment magnitudes were 900-1100 N and 9.9-11.2 Nm, respectively. The FL magnitude had reverse effect on the IDP and disc force. Thus, magnitude for FL or flexion that minimizes the deviation of all the spinal parameters together from the in-vivo data can vary. To obtain reasonable compromise between the IDP and disc force, our findings recommend that FL of low magnitude must be combined with flexion moment of high intensity and vice versa.
Collapse
Affiliation(s)
- Sadegh Naserkhaki
- a Department of Civil and Environmental Engineering , University of Alberta , Edmonton , Canada
| | - Marwan El-Rich
- a Department of Civil and Environmental Engineering , University of Alberta , Edmonton , Canada
| |
Collapse
|