1
|
Kelly CJ, Lindsay SL, Smith RS, Keh S, Cunningham KT, Thümmler K, Maizels RM, Campbell JDM, Barnett SC. Development of Good Manufacturing Practice-Compatible Isolation and Culture Methods for Human Olfactory Mucosa-Derived Mesenchymal Stromal Cells. Int J Mol Sci 2024; 25:743. [PMID: 38255817 PMCID: PMC10815924 DOI: 10.3390/ijms25020743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/21/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
Demyelination in the central nervous system (CNS) resulting from injury or disease can cause loss of nerve function and paralysis. Cell therapies intended to promote remyelination of axons are a promising avenue of treatment, with mesenchymal stromal cells (MSCs) a prominent candidate. We have previously demonstrated that MSCs derived from human olfactory mucosa (hOM-MSCs) promote myelination to a greater extent than bone marrow-derived MSCs (hBM-MSCs). However, hOM-MSCs were developed using methods and materials that were not good manufacturing practice (GMP)-compliant. Before considering these cells for clinical use, it is necessary to develop a method for their isolation and expansion that is readily adaptable to a GMP-compliant environment. We demonstrate here that hOM-MSCs can be derived without enzymatic tissue digestion or cell sorting and without culture antibiotics. They grow readily in GMP-compliant media and express typical MSC surface markers. They robustly produce CXCL12 (a key secretory factor in promoting myelination) and are pro-myelinating in in vitro rodent CNS cultures. GMP-compliant hOM-MSCs are comparable in this respect to those grown in non-GMP conditions. However, when assessed in an in vivo model of demyelinating disease (experimental autoimmune encephalitis, EAE), they do not significantly improve disease scores compared with controls, indicating further pre-clinical evaluation is necessary before their advancement to clinical trials.
Collapse
Affiliation(s)
- Christopher J. Kelly
- School of Infection and Immunity, 120 University Place, Glasgow G12 8TA, UK; (C.J.K.); (S.L.L.); (R.M.M.)
| | - Susan L. Lindsay
- School of Infection and Immunity, 120 University Place, Glasgow G12 8TA, UK; (C.J.K.); (S.L.L.); (R.M.M.)
| | - Rebecca Sherrard Smith
- School of Infection and Immunity, 120 University Place, Glasgow G12 8TA, UK; (C.J.K.); (S.L.L.); (R.M.M.)
| | - Siew Keh
- New Victoria Hospital, 55 Grange Road, Glasgow G42 9LF, UK
| | - Kyle T. Cunningham
- School of Infection and Immunity, 120 University Place, Glasgow G12 8TA, UK; (C.J.K.); (S.L.L.); (R.M.M.)
| | - Katja Thümmler
- School of Infection and Immunity, 120 University Place, Glasgow G12 8TA, UK; (C.J.K.); (S.L.L.); (R.M.M.)
| | - Rick M. Maizels
- School of Infection and Immunity, 120 University Place, Glasgow G12 8TA, UK; (C.J.K.); (S.L.L.); (R.M.M.)
| | - John D. M. Campbell
- School of Infection and Immunity, 120 University Place, Glasgow G12 8TA, UK; (C.J.K.); (S.L.L.); (R.M.M.)
- Tissues Cells and Advanced Therapeutics, SNBTS, Jack Copland Centre, Edinburgh EH14 4BE, UK
| | - Susan C. Barnett
- School of Infection and Immunity, 120 University Place, Glasgow G12 8TA, UK; (C.J.K.); (S.L.L.); (R.M.M.)
| |
Collapse
|
2
|
Shang Z, Wang M, Zhang B, Wang X, Wanyan P. Clinical translation of stem cell therapy for spinal cord injury still premature: results from a single-arm meta-analysis based on 62 clinical trials. BMC Med 2022; 20:284. [PMID: 36058903 PMCID: PMC9442938 DOI: 10.1186/s12916-022-02482-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/14/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND How much scientific evidence is there to show that stem cell therapy is sufficient in preclinical and clinical studies of spinal cord injury before it is translated into clinical practice? This is a complicated problem. A single, small-sample clinical trial is difficult to answer, and accurate insights into this question can only be given by systematically evaluating all the existing evidence. METHODS The PubMed, Ovid-Embase, Web of Science, and Cochrane databases were searched from inception to February 10, 2022. Two independent reviewers performed the literature search, identified and screened the studies, and performed a quality assessment and data extraction. RESULTS In total, 62 studies involving 2439 patients were included in the analysis. Of these, 42 were single-arm studies, and 20 were controlled studies. The meta-analysis showed that stem cells improved the ASIA impairment scale score by at least one grade in 48.9% [40.8%, 56.9%] of patients with spinal cord injury. Moreover, the rate of improvement in urinary and gastrointestinal system function was 42.1% [27.6%, 57.2%] and 52.0% [23.6%, 79.8%], respectively. However, 28 types of adverse effects were observed to occur due to stem cells and transplantation procedures. Of these, neuropathic pain, abnormal feeling, muscle spasms, vomiting, and urinary tract infection were the most common, with an incidence of > 20%. While no serious adverse effects such as tumorigenesis were reported, this could be due to the insufficient follow-up period. CONCLUSIONS Overall, the results demonstrated that although the efficacy of stem cell therapy is encouraging, the subsequent adverse effects remain concerning. In addition, the clinical trials had problems such as small sample sizes, poor design, and lack of prospective registration, control, and blinding. Therefore, the current evidence is not sufficiently strong to support the clinical translation of stem cell therapy for spinal cord injury, and several problems remain. Additional well-designed animal experiments and high-quality clinical studies are warranted to address these issues.
Collapse
Affiliation(s)
- Zhizhong Shang
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, China
| | - Mingchuan Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, China
| | - Baolin Zhang
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, China
| | - Xin Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, China.
- Chengren Institute of Traditional Chinese Medicine, Lanzhou, 730000, Gansu Province, China.
- Department of Spine, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China.
| | - Pingping Wanyan
- Gansu University of Chinese Medicine, Lanzhou, 730000, China
- The Second Hospital of Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
3
|
Xie JL, Wang XR, Li MM, Tao ZH, Teng WW, Saijilafu. Mesenchymal Stromal Cell Therapy in Spinal Cord Injury: Mechanisms and Prospects. Front Cell Neurosci 2022; 16:862673. [PMID: 35722621 PMCID: PMC9204037 DOI: 10.3389/fncel.2022.862673] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/09/2022] [Indexed: 12/13/2022] Open
Abstract
Spinal cord injury (SCI) often leads to severe motor, sensory, and autonomic dysfunction in patients and imposes a huge economic cost to individuals and society. Due to its complicated pathophysiological mechanism, there is not yet an optimal treatment available for SCI. Mesenchymal stromal cells (MSCs) are promising candidate transplant cells for use in SCI treatment. The multipotency of MSCs, as well as their rich trophic and immunomodulatory abilities through paracrine signaling, are expected to play an important role in neural repair. At the same time, the simplicity of MSCs isolation and culture and the bypassing of ethical barriers to stem cell transplantation make them more attractive. However, the MSCs concept has evolved in a specific research context to encompass different populations of cells with a variety of biological characteristics, and failure to understand this can undermine the quality of research in the field. Here, we review the development of the concept of MSCs in order to clarify misconceptions and discuss the controversy in MSCs neural differentiation. We also summarize a potential role of MSCs in SCI treatment, including their migration and trophic and immunomodulatory effects, and their ability to relieve neuropathic pain, and we also highlight directions for future research.
Collapse
Affiliation(s)
- Ji-Le Xie
- Department of Orthopaedics, The First Affiliated Hospital, Soochow University, Suzhou, China,Orthopaedic Institute, School of Medicine, Soochow University, Suzhou, China
| | - Xing-Ran Wang
- Orthopaedic Institute, School of Medicine, Soochow University, Suzhou, China
| | - Mei-Mei Li
- Orthopaedic Institute, School of Medicine, Soochow University, Suzhou, China
| | - Zi-Han Tao
- Orthopaedic Institute, School of Medicine, Soochow University, Suzhou, China
| | - Wen-Wen Teng
- Orthopaedic Institute, School of Medicine, Soochow University, Suzhou, China
| | - Saijilafu
- Department of Orthopaedics, The First Affiliated Hospital, Soochow University, Suzhou, China,Orthopaedic Institute, School of Medicine, Soochow University, Suzhou, China,*Correspondence: Saijilafu,
| |
Collapse
|
4
|
Tang QR, Xue H, Zhang Q, Guo Y, Xu H, Liu Y, Liu JM. Evaluation of the Clinical Efficacy of Stem Cell Transplantation in the Treatment of Spinal Cord Injury: A Systematic Review and Meta-analysis. Cell Transplant 2021; 30:9636897211067804. [PMID: 34939443 PMCID: PMC8725233 DOI: 10.1177/09636897211067804] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Stem cell transplantation has been applied to treat spinal cord injury (SCI) in
clinical trials for many years. However, the clinical efficacies of stem cell
transplantation in SCI have been quite diverse. The purpose of our study was to
systematically investigate the efficacy of stem cell transplantation in patients
with SCI. The PubMed, Web of Science, Ovid-Medline, Cochrane Library, China
National Knowledge Infrastructure, VIP, Wanfang, and SinoMed databases were
searched until October 27, 2020. Quantitative and qualitative data were analyzed
by Review Manager 5.3 and R. Nine studies (n = 328) were
included, and the overall risk of bias was moderate. The ASIA Impairment Scale
(AIS) grading improvement rate was analyzed in favor of stem cell
transplantation group [odds ratio (OR) = 6.06, 95% confidence interval (CI):
3.16–11.62, P < 0.00001]. Urodynamic indices also showed
improvement in bladder function. In subgroup analyses, the results indicated
that in patients with complete (AIS A) SCI, with the application of cell numbers
between n*(107–108), two cell types
(i.e., bone marrow–derived mesenchymal stem cells and bone marrow mononuclears),
and treatment time of more than 6 months, stem cell transplantation was more
beneficial for sensorimotor function (P < 0.05 for all
groups). The risk of fever incidence in the stem cell transplantation group was
4.22 (95% CI: 1.7–10.22, P = 0.001), and principal component
analysis (PCA) suggested it was more related to transplanted cell numbers. Thus,
stem cell transplantation can promote functional recovery in SCI patients.
Moreover, the type and quantity of transplanted stem cells and treatment time
are important factors affecting the therapeutic effect of stem cell
transplantation in SCI. Further studies are needed to evaluate the effects and
elucidate the mechanisms of these factors on stem cell therapy in SCI.
Collapse
Affiliation(s)
- Qiao-Rui Tang
- Department of Histology and Embryology,
College of Basic Medical Sciences, Jilin University, Changchun, P.R. China
| | - Hui Xue
- Department of Histology and Embryology,
College of Basic Medical Sciences, Jilin University, Changchun, P.R. China
| | - Qiao Zhang
- Department of Histology and Embryology,
College of Basic Medical Sciences, Jilin University, Changchun, P.R. China
| | - Ying Guo
- Department of Histology and Embryology,
College of Basic Medical Sciences, Jilin University, Changchun, P.R. China
| | - Hao Xu
- Department of Histology and Embryology,
College of Basic Medical Sciences, Jilin University, Changchun, P.R. China
| | - Ying Liu
- Department of Histology and Embryology,
College of Basic Medical Sciences, Jilin University, Changchun, P.R. China
| | - Jia-Mei Liu
- Department of Histology and Embryology,
College of Basic Medical Sciences, Jilin University, Changchun, P.R. China
- Ying Liu, Department of Histology and
Embryology, College of Basic Medical Sciences, Jilin University, Changchun
130021, Jilin Province, P.R. China.
| |
Collapse
|
5
|
Liu S, Zhang H, Wang H, Huang J, Yang Y, Li G, Yu K, Yang L. A comparative study of different stem cells transplantation for spinal cord injury: a systematic review and network meta-analysis. World Neurosurg 2021; 159:e232-e243. [PMID: 34954058 DOI: 10.1016/j.wneu.2021.12.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 10/19/2022]
Abstract
OBJECTIVE This study aimed to evaluate the efficacy and safety of different stem cell types for spinal cord injury (SCI) therapy and find out the superior treatment for SCI. METHODS A systematic literature search was performed using PubMed, Embase, the Cochrane Library, Web of Science, VIP, CNKI, and Wan Fang from database initiation to January 30, 2021. A Bayesian network meta-analysis was performed using ADDIS software. The PROSPERO registration number was CRD42020129635. RESULTS Twelve studies with 642 patients were enrolled in this study. Network meta-analysis revealed that bone mesenchymal stem cells combined with rehabilitation training (BMSCs + R) were significantly more effective than rehabilitation training alone (R) in improving American Spinal Injury Association (ASIA) impairment scale (AIS)-grading improvement rate (OR=94.25, 95% CI: 6.71 to 9321.95), ASIA motor score (WMD=6.67, 95% CI: 0.83 to 12.73), ASIA Sensory Functional score (WMD=12.41, 95%CI: 3.42 to 21.72), and Barthel Index (BI) score (WMD=7.24, 95% CI: 0.21 to 14.30). However, no statistically significant differences were observed between marrow mononuclear cells combined with rehabilitation training (MNCs + R), umbilical cord-derived mesenchymal stem cells combined with rehabilitation training (UCMSCs + R), or UCMSCs alone and R on all indicators. In terms of safety, there were no serious and permanent adverse effects after transplantation of BMSCs, MNCs, or UCMSCs. CONCLUSION BMSCs + R may be superior to the other stem cell treatments for SCI in improving AIS grading, ASIA motor score, ASIA Sensory Functional score, and BI score. The therapeutic effects of UCMSCs and MNCs remain to be confirmed.
Collapse
Affiliation(s)
- Shuangyan Liu
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Huai Zhang
- Medical School, Hangzhou Normal University, Hangzhou 310000, China
| | - Haiyan Wang
- Medical School, Hangzhou Normal University, Hangzhou 310000, China
| | - Juan Huang
- Medical School, Hangzhou Normal University, Hangzhou 310000, China
| | - Yi Yang
- Medical School, Hangzhou Normal University, Hangzhou 310000, China
| | - Guoxiang Li
- Medical School, Shihezi University, Shihezi 832000, China
| | - Kuai Yu
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Lei Yang
- Medical School, Hangzhou Normal University, Hangzhou 310000, China.
| |
Collapse
|
6
|
Grijalvo S, Nieto‐Díaz M, Maza RM, Eritja R, Díaz DD. Alginate Hydrogels as Scaffolds and Delivery Systems to Repair the Damaged Spinal Cord. Biotechnol J 2019; 14:e1900275. [DOI: 10.1002/biot.201900275] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 10/12/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Santiago Grijalvo
- Institute for Advanced Chemistry of Catalonia (IQAC, CSIC) Jordi Girona 18–26 E‐08034 Barcelona Spain
- Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER‐BBN) Jordi Girona 18–26 E‐08034 Barcelona Spain
| | - Manuel Nieto‐Díaz
- Molecular Neuroprotection GroupResearch Unit, National Hospital for Paraplegics (SESCAM) E‐45071 Toledo Spain
| | - Rodrigo M. Maza
- Molecular Neuroprotection GroupResearch Unit, National Hospital for Paraplegics (SESCAM) E‐45071 Toledo Spain
| | - Ramón Eritja
- Institute for Advanced Chemistry of Catalonia (IQAC, CSIC) Jordi Girona 18–26 E‐08034 Barcelona Spain
- Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER‐BBN) Jordi Girona 18–26 E‐08034 Barcelona Spain
| | - David Díaz Díaz
- Institut für Organische ChemieUniversität Regensburg, Universitätsstr. 31 93053 Regensburg Germany
- Institute of Natural Products and Abrobiology of the CSIC Avda. Astrofísico Francisco Sánchez 3 E‐3826 La Laguna Tenerife Spain
| |
Collapse
|