1
|
Khatami N, Caraus I, Rahaman M, Nepotchatykh E, Elbakry M, Elremaly W, Franco A, Beauséjour M, Laberge AM, Parent S, Labelle H, Aubin CÉ, Lachaine J, Moreau A. Genome-wide profiling of circulating microRNAs in adolescent idiopathic scoliosis and their relation to spinal deformity severity, and disease pathophysiology. Sci Rep 2025; 15:5305. [PMID: 39939711 PMCID: PMC11822005 DOI: 10.1038/s41598-025-88985-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 02/03/2025] [Indexed: 02/14/2025] Open
Abstract
Adolescent Idiopathic Scoliosis (AIS) is the most common orthopedic condition requiring surgery, affecting 4% of adolescents. There is currently no proven method or prognostic test to identify symptomatic patients at risk of developing severe scoliosis who could benefit from growth-guided devices or minimally invasive non-fusion instrumentation surgeries. These innovative treatments must be performed at an early disease stage in younger patients to benefit from their growth potential. In this prospective cross-sectional study, we investigated the clinical utility of circulating microRNAs (miRNAs), an important class of small non-coding RNA, as biomarkers to predict the risk of developing severe scoliosis in AIS. Blood samples and clinical data were collected from 116 AIS patients who were followed until skeletal maturity and stratified according to their clinical outcome. Genome-wide expression profiling of miRNAs was performed with plasma obtained at the time of diagnosis of AIS (mean age of 13.3 ± 1.7 years with a mean Cobb angle of 24.4° ± 12.4°). This approach led to the identification of 15 circulating miRNAs that are upregulated in AIS patients who developed a severe scoliosis (Cobb angle ≥ 45°) at skeletal maturity compared to moderate and mild scoliosis groups (Cobb angle between 25°-44° and < 25° respectively). After optimization and the application of Random Forest Models a panel of six miRNAs (miR-1-3p, miR-19a-3p, miR-19b-3p, miR-133b, miR-143-3p, and miR-148b-3p) out of 15 led us to develop an algorithm predicting the risk of developing a severe scoliosis with great accuracy (100%), sensitivity (100%) and specificity (100%). Having a scoliosis predictive bioassay and decision-making tools to predict curve progression in order to find the best treatment plan will undoubtedly transform the orthopedic care system in the field of pediatric scoliosis by integrating innovative precision medicine approaches. In addition, investigation of genes targeted by these miRNAs could fill our gaps in our understanding of AIS pathogenesis and reveal new actionable targets.
Collapse
Affiliation(s)
- Nasrin Khatami
- Viscogliosi Laboratory in Molecular Genetics of Musculoskeletal Diseases, Azrieli Research Center, CHU Sainte-Justine, room 2.17.027, 3175 Cote-Ste-Catherine Road, Montreal, QC, H3T 1C5, Canada
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Iurie Caraus
- Viscogliosi Laboratory in Molecular Genetics of Musculoskeletal Diseases, Azrieli Research Center, CHU Sainte-Justine, room 2.17.027, 3175 Cote-Ste-Catherine Road, Montreal, QC, H3T 1C5, Canada
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Mahamuda Rahaman
- Viscogliosi Laboratory in Molecular Genetics of Musculoskeletal Diseases, Azrieli Research Center, CHU Sainte-Justine, room 2.17.027, 3175 Cote-Ste-Catherine Road, Montreal, QC, H3T 1C5, Canada
| | - Evguenia Nepotchatykh
- Viscogliosi Laboratory in Molecular Genetics of Musculoskeletal Diseases, Azrieli Research Center, CHU Sainte-Justine, room 2.17.027, 3175 Cote-Ste-Catherine Road, Montreal, QC, H3T 1C5, Canada
- Molecular Biology PhD Program, Faculty of Graduate and Postdoctoral Studies, Université de Montréal, Montreal, QC, Canada
| | - Mohamed Elbakry
- Viscogliosi Laboratory in Molecular Genetics of Musculoskeletal Diseases, Azrieli Research Center, CHU Sainte-Justine, room 2.17.027, 3175 Cote-Ste-Catherine Road, Montreal, QC, H3T 1C5, Canada
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Wesam Elremaly
- Viscogliosi Laboratory in Molecular Genetics of Musculoskeletal Diseases, Azrieli Research Center, CHU Sainte-Justine, room 2.17.027, 3175 Cote-Ste-Catherine Road, Montreal, QC, H3T 1C5, Canada
| | - Anita Franco
- Viscogliosi Laboratory in Molecular Genetics of Musculoskeletal Diseases, Azrieli Research Center, CHU Sainte-Justine, room 2.17.027, 3175 Cote-Ste-Catherine Road, Montreal, QC, H3T 1C5, Canada
| | - Marie Beauséjour
- Azrieli Research Center, CHU Sainte-Justine, Montreal, QC, Canada
- Department of Surgery, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
- Department of Community Health Sciences, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Longueuil, QC, Canada
| | - Anne-Marie Laberge
- Medical Genetics, Department of Pediatrics, CHU Sainte-Justine and Université de Montréal, Montreal, QC, Canada
| | - Stefan Parent
- Azrieli Research Center, CHU Sainte-Justine, Montreal, QC, Canada
- Department of Surgery, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
- Orthopedic Division, CHU Sainte-Justine, Montreal, QC, Canada
- Institut TransMedTech Montreal, CHU Sainte-Justine, Montreal, QC, Canada
| | - Hubert Labelle
- Azrieli Research Center, CHU Sainte-Justine, Montreal, QC, Canada
- Department of Surgery, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
- Orthopedic Division, CHU Sainte-Justine, Montreal, QC, Canada
- Institut TransMedTech Montreal, CHU Sainte-Justine, Montreal, QC, Canada
| | - Carl-Éric Aubin
- Azrieli Research Center, CHU Sainte-Justine, Montreal, QC, Canada
- Institut TransMedTech Montreal, CHU Sainte-Justine, Montreal, QC, Canada
- Polytechnique Montréal, Montreal, QC, Canada
| | - Jean Lachaine
- Faculty of Pharmacy, Université de Montréal, Montreal, QC, Canada
| | - Alain Moreau
- Viscogliosi Laboratory in Molecular Genetics of Musculoskeletal Diseases, Azrieli Research Center, CHU Sainte-Justine, room 2.17.027, 3175 Cote-Ste-Catherine Road, Montreal, QC, H3T 1C5, Canada.
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada.
- Molecular Biology PhD Program, Faculty of Graduate and Postdoctoral Studies, Université de Montréal, Montreal, QC, Canada.
- Institut TransMedTech Montreal, CHU Sainte-Justine, Montreal, QC, Canada.
- Department of Stomatology, Faculty of Dentistry, Université de Montréal, Montreal, QC, Canada.
| |
Collapse
|
2
|
Stanaway IB, Suri P, Afari N, Dochtermann D, Gerstenberger A, Pyarajan S, Roseen EJ, Gasperi M. Multi-ancestry meta-analysis of genome-wide association studies discovers 67 new loci associated with chronic back pain. Nat Commun 2025; 16:1525. [PMID: 39934103 PMCID: PMC11814113 DOI: 10.1038/s41467-024-55326-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/06/2024] [Indexed: 02/13/2025] Open
Abstract
This multi-ancestry meta-analysis of genome-wide association studies (GWAS) investigated the genetic factors underlying chronic back pain (CBP) in a sample from the Million Veteran Program comprised of 553,601 Veterans of African (19.2%), European (72.6%), and Hispanic (8.2%) ancestry. The results revealed novel (N = 67) and known (N = 20) genome-wide significant loci associated with CBP, with 43 independent variants replicating in a non-overlapping contemporary meta-GWAS of the spinal pain dorsalgia phenotype. The most significant novel variant was rs12533005 (chr7:114416000, p = 1.61 × 10-20, OR = 0.96 (95% CI: 0.95-0.97), EA = C, EAF = 0.39), in an intron of the FOXP2 gene. In silico functional characterization revealed enrichment in brain and pituitary tissues. Mendelian randomization analysis of 62 variants for CBP-MVP revealed 48 with causal links to dorsalgia. Notably, four genes (INPP5B, DRD2, HTT, SLC30A6) associated with these variants are targets of existing drugs. Our findings more than double the number of previously reported genetic predictors across all spinal pain phenotypes.
Collapse
Affiliation(s)
- Ian B Stanaway
- VA Puget Sound Health Care System (VAPSHCS), Seattle, WA, USA
- Department of Nephrology, University of Washington, Seattle, WA, USA
| | - Pradeep Suri
- VA Puget Sound Health Care System (VAPSHCS), Seattle, WA, USA
- Seattle Epidemiologic Research and Information Center, VAPSCHS, Seattle, WA, USA
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA, USA
- Clinical Learning, Evidence, and Research (CLEAR) Center, University of Washington, Seattle, WA, USA
| | - Niloofar Afari
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- VA San Diego Healthcare System (VASDHS), San Diego, CA, USA
- Center of Excellence for Stress and Mental Health, VASDHS, San Diego, CA, USA
| | - Daniel Dochtermann
- Center for Data and Computational Sciences (C-DACS), VA Boston Healthcare System (VABHS), Boston, MA, USA
| | - Armand Gerstenberger
- VA Puget Sound Health Care System (VAPSHCS), Seattle, WA, USA
- Mental Illness Research Education and Clinical Center (MIRECC), VAPSHCS, Seattle, WA, USA
| | - Saiju Pyarajan
- Center for Data and Computational Sciences (C-DACS), VA Boston Healthcare System (VABHS), Boston, MA, USA
| | - Eric J Roseen
- Section of General Internal Medicine, Department of Medicine, Boston University Chobanian & Avedision School of Medicine and Boston Medical Center, Boston, MA, USA
- Department of Physical Medicine & Rehabilitation, VA Boston Healthcare System, Boston, MA, USA
| | - Marianna Gasperi
- VA Puget Sound Health Care System (VAPSHCS), Seattle, WA, USA.
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA.
- VA San Diego Healthcare System (VASDHS), San Diego, CA, USA.
- Center of Excellence for Stress and Mental Health, VASDHS, San Diego, CA, USA.
- Mental Illness Research Education and Clinical Center (MIRECC), VAPSHCS, Seattle, WA, USA.
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA.
| |
Collapse
|
3
|
Rao J, Qian S, Li X, Xu Y. Single nucleotide polymorphisms of estrogen receptors are risk factors for the progression of adolescent idiopathic scoliosis: a systematic review and meta-analyses. J Orthop Surg Res 2024; 19:605. [PMID: 39342385 PMCID: PMC11438150 DOI: 10.1186/s13018-024-05102-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 09/20/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND There have been some studies on the occurrence of ESR1 and 2 polymorphisms and AIS, but some data extraction is wrong, and there are no studies on the progress of AIS. METHODS Computer searches were conducted on PubMed, EMBASE, ScienceDirect and Scopus from the establishment of the database to April 2024. Cross-sectional and case-control studies on estrogen receptor ESR1, two single nucleotide polymorphisms, and the occurrence and development of AIS were collected, and statistical analysis was performed using the Revman 5.3 software. RESULTS In the comparison of the association between single nucleotide polymorphisms of estrogen receptors ESR1 and 2 and the occurrence and development of AIS, eight studies were included, including 2706 cases and 1736 controls.The results showed that the AA genotype [OR = 0.50,95%Cl(0.34,0.72),P = 0.0003] at the XbaI locus of ESR1,CC genotype [OR = 1.67,95%Cl(1.16,2.42), P = 0.006], C allele [OR = 1.28,95%Cl(1.03,1.59),P = 0.03], and T allele [OR = 0.78,95%] Cl(0.63,0.97),P = 0.03] at the PvuII locus of ESR1 and TT genotype [OR = 0.50,95%Cl(0.26,0.93),P = 0.03] at the AlwNI locus of ESR2 showed statistically significant differences between the progressive and stable AIS patients. CONCLUSION Single nucleotide polymorphisms of ESR1 and ESR2 were not related to the occurrence of AIS; however, some of them were related to the progression of AIS.
Collapse
Affiliation(s)
- Jingyi Rao
- The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628, Zhenyuan Road, Xinhu Street, Guangming District, Shenzhen City, Guangdong Province, China
- Sun Yat-sen University School of Medicine, 66 Gongchang Road, Guangming District, Shenzhen City, Guangdong Province, China
- A The First Affiliated Hospital of Sun Yat-sen University, No.58, Zhongshan 2nd Road, Yuexiu District, Guangzhou City, Guangdong Province, China
| | - Shuping Qian
- The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628, Zhenyuan Road, Xinhu Street, Guangming District, Shenzhen City, Guangdong Province, China
- Sun Yat-sen University School of Medicine, 66 Gongchang Road, Guangming District, Shenzhen City, Guangdong Province, China
- A The First Affiliated Hospital of Sun Yat-sen University, No.58, Zhongshan 2nd Road, Yuexiu District, Guangzhou City, Guangdong Province, China
| | - Xuan Li
- The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628, Zhenyuan Road, Xinhu Street, Guangming District, Shenzhen City, Guangdong Province, China
- Sun Yat-sen University School of Medicine, 66 Gongchang Road, Guangming District, Shenzhen City, Guangdong Province, China
- A The First Affiliated Hospital of Sun Yat-sen University, No.58, Zhongshan 2nd Road, Yuexiu District, Guangzhou City, Guangdong Province, China
| | - Yi Xu
- The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628, Zhenyuan Road, Xinhu Street, Guangming District, Shenzhen City, Guangdong Province, China.
- Sun Yat-sen University School of Medicine, 66 Gongchang Road, Guangming District, Shenzhen City, Guangdong Province, China.
- A The First Affiliated Hospital of Sun Yat-sen University, No.58, Zhongshan 2nd Road, Yuexiu District, Guangzhou City, Guangdong Province, China.
| |
Collapse
|
4
|
Ru L, Zheng H, Lian W, Zhao S, Fan Q. Knowledge mapping of idiopathic scoliosis genes and research hotspots (2002-2022): a bibliometric analysis. Front Pediatr 2023; 11:1177983. [PMID: 38111628 PMCID: PMC10725947 DOI: 10.3389/fped.2023.1177983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 11/06/2023] [Indexed: 12/20/2023] Open
Abstract
Background The etiology of idiopathic scoliosis (IS) remains unclear. Gene-based studies on genetic etiology and molecular mechanisms have improved our understanding of IS and guided treatment and diagnosis. Therefore, it is imperative to explicate and demarcate the preponderant areas of inquiry, key scholars, and their aggregate scholarly output, in addition to the collaborative associations amongst publications or researchers. Methods Documents were retrieved from the Web of Science Core Collection (WoSCC) with the following criteria: TS = ("idiopathic scoliosis" AND gene) refined by search operators (genomic OR "hereditary substance" OR "germ plasm" OR Cistrons OR genetics OR genetic OR genes OR Polygenic OR genotype OR genome OR allele OR polygenes OR Polygene) AND DOCUMENT TYPES (ARTICLE OR REVIEW), and the timespan of 2002-01-01 to 2022-11-26. The online bibliometric analysis platform (bibliometric), bibliographic item co-occurrence matrix builder (BICOMB), CiteSpace 6.1. R6 and VOS viewer were used to evaluate articles for publications, nations, institutions, journals, references, knowledge bases, keywords, and research hotspots. Results A total of 479 documents were retrieved from WoSCC. Fourty-four countries published relevant articles. The country with the most significant number of articles was China, and the institution with the most significant number of articles was Nanjing University. Citation analysis formed eight meaningful clusters and 16 high-frequency keywords. (2) The citation knowledge map included single nucleotide polymorphisms, whole exome sequencing, axonal dynamin, drug development, mesenchymal stem cells, dietary intake, curve progression, zebrafish development model, extracellular matrix, and rare variants were the current research hotspots and frontiers. Conclusions Recent research has focused on IS-related genes, whereas the extracellular matrix and unusual variants are research frontiers and hotspots. Functional analysis of susceptibility genes will prove to be valuable for identifying this disease.
Collapse
Affiliation(s)
- Like Ru
- School of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, China
| | - Hong Zheng
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
- School of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, China
| | - Wenjun Lian
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Shuying Zhao
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Qimeng Fan
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
5
|
Orang A, Dredge BK, Liu CY, Bracken JM, Chen CH, Sourdin L, Whitfield HJ, Lumb R, Boyle ST, Davis MJ, Samuel MS, Gregory PA, Khew-Goodall Y, Goodall GJ, Pillman KA, Bracken CP. Basonuclin-2 regulates extracellular matrix production and degradation. Life Sci Alliance 2023; 6:e202301984. [PMID: 37536977 PMCID: PMC10400885 DOI: 10.26508/lsa.202301984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/16/2023] [Accepted: 07/20/2023] [Indexed: 08/05/2023] Open
Abstract
Epithelial-mesenchymal transition is essential for tissue patterning and organization. It involves both regulation of cell motility and alterations in the composition and organization of the ECM-a complex environment of proteoglycans and fibrous proteins essential for tissue homeostasis, signaling in response to chemical and biomechanical stimuli, and is often dysregulated under conditions such as cancer, fibrosis, and chronic wounds. Here, we demonstrate that basonuclin-2 (BNC2), a mesenchymal-expressed gene, that is, strongly associated with cancer and developmental defects across genome-wide association studies, is a novel regulator of ECM composition and degradation. We find that at endogenous levels, BNC2 controls the expression of specific collagens, matrix metalloproteases, and other matrisomal components in breast cancer cells, and in fibroblasts that are primarily responsible for the production and processing of the ECM within the tumour microenvironment. In so doing, BNC2 modulates the motile and invasive properties of cancers, which likely explains the association of high BNC2 expression with increasing cancer grade and poor patient prognosis.
Collapse
Affiliation(s)
- Ayla Orang
- Centre for Cancer Biology, An Alliance of SA Pathology and University of South Australia, Adelaide, Australia
| | - B Kate Dredge
- Centre for Cancer Biology, An Alliance of SA Pathology and University of South Australia, Adelaide, Australia
| | - Chi Yau Liu
- Centre for Cancer Biology, An Alliance of SA Pathology and University of South Australia, Adelaide, Australia
| | - Julie M Bracken
- Centre for Cancer Biology, An Alliance of SA Pathology and University of South Australia, Adelaide, Australia
| | - Chun-Hsien Chen
- Centre for Cancer Biology, An Alliance of SA Pathology and University of South Australia, Adelaide, Australia
| | - Laura Sourdin
- Centre for Cancer Biology, An Alliance of SA Pathology and University of South Australia, Adelaide, Australia
| | - Holly J Whitfield
- Division of Bioinformatics, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Australia
| | - Rachael Lumb
- Centre for Cancer Biology, An Alliance of SA Pathology and University of South Australia, Adelaide, Australia
| | - Sarah T Boyle
- Centre for Cancer Biology, An Alliance of SA Pathology and University of South Australia, Adelaide, Australia
| | - Melissa J Davis
- South Australian ImmunogGENomics Cancer Institute, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia
- Division of Bioinformatics, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Australia
- Department of Clinical Pathology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Australia
- Fraser Institute, University of Queensland, Wooloongabba, Australia
| | - Michael S Samuel
- Centre for Cancer Biology, An Alliance of SA Pathology and University of South Australia, Adelaide, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia
| | - Philip A Gregory
- Centre for Cancer Biology, An Alliance of SA Pathology and University of South Australia, Adelaide, Australia
- Department of Medicine and School of Biological Sciences, University of Adelaide, Adelaide, Australia
| | - Yeesim Khew-Goodall
- Centre for Cancer Biology, An Alliance of SA Pathology and University of South Australia, Adelaide, Australia
- Department of Medicine and School of Biological Sciences, University of Adelaide, Adelaide, Australia
| | - Gregory J Goodall
- Centre for Cancer Biology, An Alliance of SA Pathology and University of South Australia, Adelaide, Australia
- Department of Medicine and School of Biological Sciences, University of Adelaide, Adelaide, Australia
| | - Katherine A Pillman
- Centre for Cancer Biology, An Alliance of SA Pathology and University of South Australia, Adelaide, Australia
- Department of Medicine and School of Biological Sciences, University of Adelaide, Adelaide, Australia
| | - Cameron P Bracken
- Centre for Cancer Biology, An Alliance of SA Pathology and University of South Australia, Adelaide, Australia
- Department of Medicine and School of Biological Sciences, University of Adelaide, Adelaide, Australia
| |
Collapse
|
6
|
Wang W, Du X, Luo M, Yang N. FTO-dependent m 6A regulates muscle fiber remodeling in an NFATC1-YTHDF2 dependent manner. Clin Epigenetics 2023; 15:109. [PMID: 37408034 PMCID: PMC10320966 DOI: 10.1186/s13148-023-01526-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/27/2023] [Indexed: 07/07/2023] Open
Abstract
BACKGROUND Adolescent idiopathic scoliosis (AIS) is characterized by low lean mass without vertebral deformity. The cause-and-effect relationship between scoliosis and paraspinal muscle imbalance has long puzzled researchers. Although FTO has been identified as a susceptibility gene for AIS, its potential role in the asymmetry of paraspinal muscles has not been fully elucidated. METHODS We investigated the role of Fto in murine myoblast proliferation, migration, and myogenic differentiation. We examined its precise regulatory influence on murine muscle fiber remodeling in vitro and in vivo. We identified the downstream target gene of Fto by screening key regulators of murine muscle fiber remodeling and identified its m6A reader. Deep paraspinal muscle samples were obtained from the concave and convex sides of AIS patients with or without Schroth exercises, and congenital scoliosis served as a control group. We compared the content of type I fibers, expression patterns of fast- and slow-type genes, and levels of FTO expression. RESULTS FTO contributed to maintain the formation of murine slow-twitch fibers both in vitro and in vivo. These effects were mediated by the demethylation activity of FTO, which specifically demethylated NFATC1 and prevented YTHDF2 from degrading it. We found a significant reduction in type I fibers, mRNA levels of MYH7 and MYH7B, and expression of FTO on the concave side of AIS. The percentage of type I fibers showed a positive correlation with the expression level of FTO. The asymmetric patterns observed in AIS were consistent with those seen in congenital scoliosis, and the asymmetry of FTO expression and fiber type in AIS was largely restored by Schroth exercises. CONCLUSIONS FTO supports the formation of murine slow-twitch fibers in an NFATC1-YTHDF2 dependent manner. The consistent paraspinal muscle features seen in AIS and congenital scoliosis, as well as the reversible pattern of muscle fibers and expression of FTO in AIS suggest that FTO may contribute to the muscle fiber remodeling secondary to scoliosis.
Collapse
Affiliation(s)
- Wengang Wang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Xueming Du
- Department of Gynaecology and Obstetrics, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Province, People's Republic of China
| | - Ming Luo
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, People's Republic of China.
| | - Ningning Yang
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China.
| |
Collapse
|
7
|
Estrogen Receptor Type 1 and Type 2 Presence in Paravertebral Skeletal Muscles: Expression Level and Relation to Phenotype in Children with Idiopathic Scoliosis. Genes (Basel) 2022; 13:genes13050739. [PMID: 35627124 PMCID: PMC9141030 DOI: 10.3390/genes13050739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/21/2022] [Accepted: 04/21/2022] [Indexed: 12/04/2022] Open
Abstract
The study aimed to detect the presence and assess the expression levels of the estrogen receptors type 1 (ESR1) and type 2 (ESR2) within paravertebral skeletal muscles of female patients with idiopathic scoliosis (IS) in relation to phenotype parameters. Intraoperatively, the muscle samples were obtained from 35 adolescent females. The RT-qPCR, western blot and immunohistochemistry techniques were applied. The ESR1 and ESR2 were detected within paravertebral skeletal muscle cells, either the superficial or the deep ones. The ESR1 expression level was significantly higher in the deep muscles compared to the superficial ones. A left-right asymmetry of the ESR1 and ESR2 expression level was demonstrated in the deep muscles. There was a significant relationship between the expression asymmetry and either the Cobb angle or the progression risk factor: both parameters decreased to the smallest values in the case of symmetric ESR1 or ESR2 expression, while they increased with increasing expression asymmetry. In conclusion, the ESR1 and ESR2 presence was confirmed in skeletal paravertebral muscles of patients with idiopathic scoliosis. The increased expression level and asymmetry of estrogen receptors in deep skeletal muscles was related to increasing scoliotic deformity magnitude or increasing risk of deformity deterioration. These findings may highlight the etiopathogenesis of IS in children.
Collapse
|