1
|
Mizukoshi R, Yagi M, Yamada Y, Yokoyama Y, Yamada M, Watanabe K, Nakamura M, Nagura T, Jinzaki M. Physiological rotation patterns of the thoracolumbar spine across different ages: A detailed analysis using upright CT. Gait Posture 2024; 114:305-312. [PMID: 39461329 DOI: 10.1016/j.gaitpost.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/11/2024] [Accepted: 10/05/2024] [Indexed: 10/29/2024]
Abstract
BACKGROUND The rotational motion of the spine plays a crucial role in daily activities. Understanding the mechanisms of spinal rotation is essential for evaluating normal spinal function, especially in standing positions due to the influence of gravity. However, previous studies on spinal rotation have been limited. RESEARCH QUESTION What are the differences in thoracolumbar rotation during trunk rotation in a standing position among different age and gender groups? METHODS This cross-sectional study involved 49 healthy volunteers without back pain, including 24 younger participants (13 males, 11 females) and 25 elderly participants (12 males, 13 females). Upright and trunk-rotated CT (right-rotated standing positions) scans were taken. Vertebral rotation was measured using the femoral head center as an axis. RESULTS Analysis of spinal alignment in the standing position revealed mild rotation from the lumbar to thoracic vertebrae. The lumbar spine exhibited left rotation at apex of L3 (L3: -1.3±3.8°, p=0.01), while the lower thoracic spine showed right rotation at apex of T8 (T8: 1.9±2.4°, p<0.001) and the upper thoracic spine showed left rotation at apex of T3 (T3: -2.6±2.9°, p<0.001). The lumbar spine showed minimal rotation during maximum trunk rotation, with significant rotation noted above T10 (16 % vs 84 %). The total thoracolumbar spinal rotation at T1 showed significant differences by gender and age (male vs. female: 23.9±° vs. 30.3±°, p=0.001; young vs. elderly: 29.2±° vs. 25.0±°, p=0.028; elderly male vs. elderly female: 19.2±° vs. 30.4±°, p<0.001). Younger participants did not show significant gender differences, while elderly females retained more rotation compared to males. SIGNIFICANCE This pioneering study provides the first detailed report on the range of spinal rotation in a physiological standing situation, highlighting significant differences by gender and age. These findings offer new insights into the natural patterns of spinal rotation and their potential implications for diagnosing and treating spinal disorders.
Collapse
Affiliation(s)
- Ryo Mizukoshi
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan; Department of Orthopedic Surgery, International University of Health and Welfare, School of Medicine, Chiba, Japan
| | - Mitsuru Yagi
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan; Department of Orthopedic Surgery, International University of Health and Welfare, School of Medicine, Chiba, Japan.
| | - Yoshitake Yamada
- Department of Radiology, Keio University School of Medicine, Tokyo, Japan
| | - Yoichi Yokoyama
- Department of Radiology, Keio University School of Medicine, Tokyo, Japan
| | - Minoru Yamada
- Department of Radiology, Keio University School of Medicine, Tokyo, Japan
| | - Kota Watanabe
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Masaya Nakamura
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Takeo Nagura
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan.
| | - Masahiro Jinzaki
- Department of Radiology, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
3
|
Requist MR, Mills MK, Carroll KL, Lenz AL. Quantitative Skeletal Imaging and Image-Based Modeling in Pediatric Orthopaedics. Curr Osteoporos Rep 2024; 22:44-55. [PMID: 38243151 DOI: 10.1007/s11914-023-00845-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/19/2023] [Indexed: 01/21/2024]
Abstract
PURPOSE OF REVIEW Musculoskeletal imaging serves a critical role in clinical care and orthopaedic research. Image-based modeling is also gaining traction as a useful tool in understanding skeletal morphology and mechanics. However, there are fewer studies on advanced imaging and modeling in pediatric populations. The purpose of this review is to provide an overview of recent literature on skeletal imaging modalities and modeling techniques with a special emphasis on current and future uses in pediatric research and clinical care. RECENT FINDINGS While many principles of imaging and 3D modeling are relevant across the lifespan, there are special considerations for pediatric musculoskeletal imaging and fewer studies of 3D skeletal modeling in pediatric populations. Improved understanding of bone morphology and growth during childhood in healthy and pathologic patients may provide new insight into the pathophysiology of pediatric-onset skeletal diseases and the biomechanics of bone development. Clinical translation of 3D modeling tools developed in orthopaedic research is limited by the requirement for manual image segmentation and the resources needed for segmentation, modeling, and analysis. This paper highlights the current and future uses of common musculoskeletal imaging modalities and 3D modeling techniques in pediatric orthopaedic clinical care and research.
Collapse
Affiliation(s)
- Melissa R Requist
- Department of Orthopaedics, University of Utah, 590 Wakara Way, Salt Lake City, UT, 84108, USA
- Department of Biomedical Engineering, University of Utah, 36 S Wasatch Dr., Salt Lake City, UT, 84112, USA
| | - Megan K Mills
- Department of Radiology and Imaging Sciences, University of Utah, 30 N Mario Capecchi Dr. 2 South, Salt Lake City, UT, 84112, USA
| | - Kristen L Carroll
- Department of Orthopaedics, University of Utah, 590 Wakara Way, Salt Lake City, UT, 84108, USA
- Shriners Hospital for Children, 1275 E Fairfax Rd, Salt Lake City, UT, 84103, USA
| | - Amy L Lenz
- Department of Orthopaedics, University of Utah, 590 Wakara Way, Salt Lake City, UT, 84108, USA.
- Department of Biomedical Engineering, University of Utah, 36 S Wasatch Dr., Salt Lake City, UT, 84112, USA.
| |
Collapse
|
4
|
Feldle P, Grunz JP, Kunz AS, Patzer TS, Huflage H, Hendel R, Luetkens KS, Ergün S, Bley TA, Conrads N. Weight-bearing gantry-free cone-beam CT of the lumbar spine: Image quality analysis and dose efficiency. Eur J Radiol 2023; 165:110951. [PMID: 37379623 DOI: 10.1016/j.ejrad.2023.110951] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 06/30/2023]
Abstract
PURPOSE The effect of static forces under load limits the prognostic value of lumbar spine CT in a horizontal position. Using a gantry-free scanner architecture, this study was designed to assess the feasibility of weight-bearing cone-beam CT (CBCT) of the lumbar spine and to establish the most dose-effective combination of scan parameters. METHODS Eight formalin-fixated cadaveric specimens were examined with a gantry-free CBCT system in upright position with the aid of a dedicated positioning backstop. Cadavers were scanned with eight combinations of tube voltage (102 or 117 kV), detector entrance dose level (high or low), and frame rates (16 or 30 fps). Five radiologists independently analyzed datasets for overall image quality and posterior wall assessability. Additionally, image noise and signal-to-noise ratio (SNR) were compared based on region-of-interest (ROI) measurements in the gluteal muscles. RESULTS Radiation dose ranged from 6.8 ± 1.6 (117 kV, dose level low, 16 fps) to 24.3 ± 6.3 mGy (102 kV, dose level high, 30 fps). Both image quality and posterior wall assessability were favored with 30 over 16 fps (all p ≤ 0.008). In contrast, both tube voltage (all p > 0.999) and dose level (all p > 0.096) did not significantly impact reader assessment. Image noise decreased considerably with higher frame rates (all p ≤ 0.040), while SNR ranged from 0.56 ± 0.03 to 1.11 ± 0.30 without a significant difference between scan protocols (all p ≥ 0.060). CONCLUSIONS Employing an optimized scan protocol, weight-bearing gantry-free CBCT of the lumbar spine allows for diagnostic imaging at reasonable radiation dose.
Collapse
Affiliation(s)
- Philipp Feldle
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany
| | - Jan-Peter Grunz
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany
| | - Andreas Steven Kunz
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany
| | - Theresa Sophie Patzer
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany
| | - Henner Huflage
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany
| | - Robin Hendel
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany
| | - Karsten Sebastian Luetkens
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, University of Würzburg, Koellikerstraße 6, 97070 Würzburg, Germany
| | - Thorsten Alexander Bley
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany
| | - Nora Conrads
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany.
| |
Collapse
|
5
|
Demehri S, Baffour FI, Klein JG, Ghotbi E, Ibad HA, Moradi K, Taguchi K, Fritz J, Carrino JA, Guermazi A, Fishman EK, Zbijewski WB. Musculoskeletal CT Imaging: State-of-the-Art Advancements and Future Directions. Radiology 2023; 308:e230344. [PMID: 37606571 PMCID: PMC10477515 DOI: 10.1148/radiol.230344] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/28/2023] [Accepted: 05/15/2023] [Indexed: 08/23/2023]
Abstract
CT is one of the most widely used modalities for musculoskeletal imaging. Recent advancements in the field include the introduction of four-dimensional CT, which captures a CT image during motion; cone-beam CT, which uses flat-panel detectors to capture the lower extremities in weight-bearing mode; and dual-energy CT, which operates at two different x-ray potentials to improve the contrast resolution to facilitate the assessment of tissue material compositions such as tophaceous gout deposits and bone marrow edema. Most recently, photon-counting CT (PCCT) has been introduced. PCCT is a technique that uses photon-counting detectors to produce an image with higher spatial and contrast resolution than conventional multidetector CT systems. In addition, postprocessing techniques such as three-dimensional printing and cinematic rendering have used CT data to improve the generation of both physical and digital anatomic models. Last, advancements in the application of artificial intelligence to CT imaging have enabled the automatic evaluation of musculoskeletal pathologies. In this review, the authors discuss the current state of the above CT technologies, their respective advantages and disadvantages, and their projected future directions for various musculoskeletal applications.
Collapse
Affiliation(s)
- Shadpour Demehri
- From the Russell H. Morgan Department of Radiology and Radiological
Science (S.D., J.G.K., E.G., H.A.I., K.M., K.T., E.K.F.) and Department of
Biomedical Engineering (W.B.Z.), Johns Hopkins University School of Medicine,
601 N Carolina St, Baltimore, MD 21287; Division of Musculoskeletal Imaging,
Department of Radiology, Mayo Clinic, Rochester, Minn (F.I.B.); Department of
Radiology, New York University Grossman School of Medicine, New York, NY (J.F.);
Department of Radiology and Imaging, Hospital for Special Surgery, New York, NY
(J.A.C.); and Department of Radiology, Quantitative Imaging Center, Boston
University School of Medicine, Boston, Mass (A.G.)
| | - Francis I. Baffour
- From the Russell H. Morgan Department of Radiology and Radiological
Science (S.D., J.G.K., E.G., H.A.I., K.M., K.T., E.K.F.) and Department of
Biomedical Engineering (W.B.Z.), Johns Hopkins University School of Medicine,
601 N Carolina St, Baltimore, MD 21287; Division of Musculoskeletal Imaging,
Department of Radiology, Mayo Clinic, Rochester, Minn (F.I.B.); Department of
Radiology, New York University Grossman School of Medicine, New York, NY (J.F.);
Department of Radiology and Imaging, Hospital for Special Surgery, New York, NY
(J.A.C.); and Department of Radiology, Quantitative Imaging Center, Boston
University School of Medicine, Boston, Mass (A.G.)
| | - Joshua G. Klein
- From the Russell H. Morgan Department of Radiology and Radiological
Science (S.D., J.G.K., E.G., H.A.I., K.M., K.T., E.K.F.) and Department of
Biomedical Engineering (W.B.Z.), Johns Hopkins University School of Medicine,
601 N Carolina St, Baltimore, MD 21287; Division of Musculoskeletal Imaging,
Department of Radiology, Mayo Clinic, Rochester, Minn (F.I.B.); Department of
Radiology, New York University Grossman School of Medicine, New York, NY (J.F.);
Department of Radiology and Imaging, Hospital for Special Surgery, New York, NY
(J.A.C.); and Department of Radiology, Quantitative Imaging Center, Boston
University School of Medicine, Boston, Mass (A.G.)
| | - Elena Ghotbi
- From the Russell H. Morgan Department of Radiology and Radiological
Science (S.D., J.G.K., E.G., H.A.I., K.M., K.T., E.K.F.) and Department of
Biomedical Engineering (W.B.Z.), Johns Hopkins University School of Medicine,
601 N Carolina St, Baltimore, MD 21287; Division of Musculoskeletal Imaging,
Department of Radiology, Mayo Clinic, Rochester, Minn (F.I.B.); Department of
Radiology, New York University Grossman School of Medicine, New York, NY (J.F.);
Department of Radiology and Imaging, Hospital for Special Surgery, New York, NY
(J.A.C.); and Department of Radiology, Quantitative Imaging Center, Boston
University School of Medicine, Boston, Mass (A.G.)
| | - Hamza Ahmed Ibad
- From the Russell H. Morgan Department of Radiology and Radiological
Science (S.D., J.G.K., E.G., H.A.I., K.M., K.T., E.K.F.) and Department of
Biomedical Engineering (W.B.Z.), Johns Hopkins University School of Medicine,
601 N Carolina St, Baltimore, MD 21287; Division of Musculoskeletal Imaging,
Department of Radiology, Mayo Clinic, Rochester, Minn (F.I.B.); Department of
Radiology, New York University Grossman School of Medicine, New York, NY (J.F.);
Department of Radiology and Imaging, Hospital for Special Surgery, New York, NY
(J.A.C.); and Department of Radiology, Quantitative Imaging Center, Boston
University School of Medicine, Boston, Mass (A.G.)
| | - Kamyar Moradi
- From the Russell H. Morgan Department of Radiology and Radiological
Science (S.D., J.G.K., E.G., H.A.I., K.M., K.T., E.K.F.) and Department of
Biomedical Engineering (W.B.Z.), Johns Hopkins University School of Medicine,
601 N Carolina St, Baltimore, MD 21287; Division of Musculoskeletal Imaging,
Department of Radiology, Mayo Clinic, Rochester, Minn (F.I.B.); Department of
Radiology, New York University Grossman School of Medicine, New York, NY (J.F.);
Department of Radiology and Imaging, Hospital for Special Surgery, New York, NY
(J.A.C.); and Department of Radiology, Quantitative Imaging Center, Boston
University School of Medicine, Boston, Mass (A.G.)
| | - Katsuyuki Taguchi
- From the Russell H. Morgan Department of Radiology and Radiological
Science (S.D., J.G.K., E.G., H.A.I., K.M., K.T., E.K.F.) and Department of
Biomedical Engineering (W.B.Z.), Johns Hopkins University School of Medicine,
601 N Carolina St, Baltimore, MD 21287; Division of Musculoskeletal Imaging,
Department of Radiology, Mayo Clinic, Rochester, Minn (F.I.B.); Department of
Radiology, New York University Grossman School of Medicine, New York, NY (J.F.);
Department of Radiology and Imaging, Hospital for Special Surgery, New York, NY
(J.A.C.); and Department of Radiology, Quantitative Imaging Center, Boston
University School of Medicine, Boston, Mass (A.G.)
| | - Jan Fritz
- From the Russell H. Morgan Department of Radiology and Radiological
Science (S.D., J.G.K., E.G., H.A.I., K.M., K.T., E.K.F.) and Department of
Biomedical Engineering (W.B.Z.), Johns Hopkins University School of Medicine,
601 N Carolina St, Baltimore, MD 21287; Division of Musculoskeletal Imaging,
Department of Radiology, Mayo Clinic, Rochester, Minn (F.I.B.); Department of
Radiology, New York University Grossman School of Medicine, New York, NY (J.F.);
Department of Radiology and Imaging, Hospital for Special Surgery, New York, NY
(J.A.C.); and Department of Radiology, Quantitative Imaging Center, Boston
University School of Medicine, Boston, Mass (A.G.)
| | - John A. Carrino
- From the Russell H. Morgan Department of Radiology and Radiological
Science (S.D., J.G.K., E.G., H.A.I., K.M., K.T., E.K.F.) and Department of
Biomedical Engineering (W.B.Z.), Johns Hopkins University School of Medicine,
601 N Carolina St, Baltimore, MD 21287; Division of Musculoskeletal Imaging,
Department of Radiology, Mayo Clinic, Rochester, Minn (F.I.B.); Department of
Radiology, New York University Grossman School of Medicine, New York, NY (J.F.);
Department of Radiology and Imaging, Hospital for Special Surgery, New York, NY
(J.A.C.); and Department of Radiology, Quantitative Imaging Center, Boston
University School of Medicine, Boston, Mass (A.G.)
| | - Ali Guermazi
- From the Russell H. Morgan Department of Radiology and Radiological
Science (S.D., J.G.K., E.G., H.A.I., K.M., K.T., E.K.F.) and Department of
Biomedical Engineering (W.B.Z.), Johns Hopkins University School of Medicine,
601 N Carolina St, Baltimore, MD 21287; Division of Musculoskeletal Imaging,
Department of Radiology, Mayo Clinic, Rochester, Minn (F.I.B.); Department of
Radiology, New York University Grossman School of Medicine, New York, NY (J.F.);
Department of Radiology and Imaging, Hospital for Special Surgery, New York, NY
(J.A.C.); and Department of Radiology, Quantitative Imaging Center, Boston
University School of Medicine, Boston, Mass (A.G.)
| | - Elliot K. Fishman
- From the Russell H. Morgan Department of Radiology and Radiological
Science (S.D., J.G.K., E.G., H.A.I., K.M., K.T., E.K.F.) and Department of
Biomedical Engineering (W.B.Z.), Johns Hopkins University School of Medicine,
601 N Carolina St, Baltimore, MD 21287; Division of Musculoskeletal Imaging,
Department of Radiology, Mayo Clinic, Rochester, Minn (F.I.B.); Department of
Radiology, New York University Grossman School of Medicine, New York, NY (J.F.);
Department of Radiology and Imaging, Hospital for Special Surgery, New York, NY
(J.A.C.); and Department of Radiology, Quantitative Imaging Center, Boston
University School of Medicine, Boston, Mass (A.G.)
| | - Wojciech B. Zbijewski
- From the Russell H. Morgan Department of Radiology and Radiological
Science (S.D., J.G.K., E.G., H.A.I., K.M., K.T., E.K.F.) and Department of
Biomedical Engineering (W.B.Z.), Johns Hopkins University School of Medicine,
601 N Carolina St, Baltimore, MD 21287; Division of Musculoskeletal Imaging,
Department of Radiology, Mayo Clinic, Rochester, Minn (F.I.B.); Department of
Radiology, New York University Grossman School of Medicine, New York, NY (J.F.);
Department of Radiology and Imaging, Hospital for Special Surgery, New York, NY
(J.A.C.); and Department of Radiology, Quantitative Imaging Center, Boston
University School of Medicine, Boston, Mass (A.G.)
| |
Collapse
|