1
|
Artha Wiguna IGLNA, Kristian Y, Deslivia MF, Limantara R, Cahyadi D, Liando IA, Hamzah HA, Kusuman K, Dimitri D, Anastasia M, Suyasa IK. A deep learning approach for cervical cord injury severity determination through axial and sagittal magnetic resonance imaging segmentation and classification. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2024:10.1007/s00586-024-08464-7. [PMID: 39198286 DOI: 10.1007/s00586-024-08464-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 07/30/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024]
Abstract
STUDY DESIGN Cross-sectional Database Study. OBJECTIVE While the American Spinal Injury Association (ASIA) Impairment Scale is the standard for assessing spinal cord injuries (SCI), it has limitations due to subjectivity and impracticality. Advances in machine learning (ML) and image recognition have spurred research into their use for outcome prediction. This study aims to analyze deep learning techniques for identifying and classifying cervical SCI severity from MRI scans. METHODS The study included patients with traumatic and nontraumatic cervical SCI admitted from 2019 to 2022. MRI images were labeled by two senior resident physicians. A deep convolutional neural network was trained using axial and sagittal cervical MRI images from the dataset. Model performance was assessed using Dice Score and IoU to measure segmentation accuracy by comparing predicted and ground truth masks. Classification accuracy was evaluated with the F1 Score, balancing false positives and negatives. RESULT In the axial spinal cord segmentation, we achieved a Dice score of 0.94 for and IoU score of 0.89. In the sagittal spinal cord segmentation, we obtained Dice score up to 0.9201 and IoU scores up to 0.8541. The model for axial image score classification gave a satisfactory result with an F1 score of 0.72 and AUC of 0.79. CONCLUSION Our models successfully identified cervical SCI on T2-weighted MR images with satisfactory performance. Further research is needed to develop more advanced models for predicting patient outcomes in SCI cases.
Collapse
Affiliation(s)
| | - Yosi Kristian
- Institut Sains dan Teknologi Terpadu Surabaya, Surabaya, East Java, Indonesia
| | | | - Rudi Limantara
- Institut Sains dan Teknologi Terpadu Surabaya, Surabaya, East Java, Indonesia
| | - David Cahyadi
- Institut Sains dan Teknologi Terpadu Surabaya, Surabaya, East Java, Indonesia
| | - Ivan Alexander Liando
- Department of Orthopaedic Surgery, Udayana University, Prof I G N G Ngoerah Hospital Jl. Diponegoro, Dauh Puri Klod, Denpasar, Bali, 80113, Indonesia
| | - Hendra Aryudi Hamzah
- Department of Orthopaedic Surgery, Udayana University, Prof I G N G Ngoerah Hospital Jl. Diponegoro, Dauh Puri Klod, Denpasar, Bali, 80113, Indonesia
| | - Kevin Kusuman
- Department of Orthopaedic Surgery, Udayana University, Prof I G N G Ngoerah Hospital Jl. Diponegoro, Dauh Puri Klod, Denpasar, Bali, 80113, Indonesia
| | - Dominicus Dimitri
- Department of Orthopaedic Surgery, Udayana University, Prof I G N G Ngoerah Hospital Jl. Diponegoro, Dauh Puri Klod, Denpasar, Bali, 80113, Indonesia
| | - Maria Anastasia
- Department of Orthopaedic Surgery, Udayana University, Prof I G N G Ngoerah Hospital Jl. Diponegoro, Dauh Puri Klod, Denpasar, Bali, 80113, Indonesia
| | - I Ketut Suyasa
- Department of Orthopaedic Surgery, Udayana University, Prof I G N G Ngoerah Hospital Jl. Diponegoro, Dauh Puri Klod, Denpasar, Bali, 80113, Indonesia
| |
Collapse
|
2
|
Payne DL, Xu X, Faraji F, John K, Pradas KF, Bernard VV, Bangiyev L, Prasanna P. Automated Detection of Cervical Spinal Stenosis and Cord Compression via Vision Transformer and Rules-Based Classification. AJNR Am J Neuroradiol 2024; 45:ajnr.A8141. [PMID: 38360785 PMCID: PMC11288556 DOI: 10.3174/ajnr.a8141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/15/2023] [Indexed: 02/17/2024]
Abstract
BACKGROUND AND PURPOSE Cervical spinal cord compression, defined as spinal cord deformity and severe narrowing of the spinal canal in the cervical region, can lead to severe clinical consequences, including intractable pain, sensory disturbance, paralysis, and even death, and may require emergent intervention to prevent negative outcomes. Despite the critical nature of cord compression, no automated tool is available to alert clinical radiologists to the presence of such findings. This study aims to demonstrate the ability of a vision transformer (ViT) model for the accurate detection of cervical cord compression. MATERIALS AND METHODS A clinically diverse cohort of 142 cervical spine MRIs was identified, 34% of which were normal or had mild stenosis, 31% with moderate stenosis, and 35% with cord compression. Utilizing gradient-echo images, slices were labeled as no cord compression/mild stenosis, moderate stenosis, or severe stenosis/cord compression. Segmentation of the spinal canal was performed and confirmed by neuroradiology faculty. A pretrained ViT model was fine-tuned to predict section-level severity by using a train:validation:test split of 60:20:20. Each examination was assigned an overall severity based on the highest level of section severity, with an examination labeled as positive for cord compression if ≥1 section was predicted in the severe category. Additionally, 2 convolutional neural network (CNN) models (ResNet50, DenseNet121) were tested in the same manner. RESULTS The ViT model outperformed both CNN models at the section level, achieving section-level accuracy of 82%, compared with 72% and 78% for ResNet and DenseNet121, respectively. ViT patient-level classification achieved accuracy of 93%, sensitivity of 0.90, positive predictive value of 0.90, specificity of 0.95, and negative predictive value of 0.95. Receiver operating characteristic area under the curve was greater for ViT than either CNN. CONCLUSIONS This classification approach using a ViT model and rules-based classification accurately detects the presence of cervical spinal cord compression at the patient level. In this study, the ViT model outperformed both conventional CNN approaches at the section and patient levels. If implemented into the clinical setting, such a tool may streamline neuroradiology workflow, improving efficiency and consistency.
Collapse
Affiliation(s)
- David L Payne
- From the Department of Radiology (D.L.P., F.F., K.J., K.F.P., V.V.B., L.B.), Stony Brook University Hospital, Stony Brook, New York
- Department of Biomedical Informatics (D.L.P., X.X., F.F., K.J., P.P.), Stony Brook University, Stony Brook, New York
| | - Xuan Xu
- Department of Biomedical Informatics (D.L.P., X.X., F.F., K.J., P.P.), Stony Brook University, Stony Brook, New York
| | - Farshid Faraji
- From the Department of Radiology (D.L.P., F.F., K.J., K.F.P., V.V.B., L.B.), Stony Brook University Hospital, Stony Brook, New York
- Department of Biomedical Informatics (D.L.P., X.X., F.F., K.J., P.P.), Stony Brook University, Stony Brook, New York
| | - Kevin John
- From the Department of Radiology (D.L.P., F.F., K.J., K.F.P., V.V.B., L.B.), Stony Brook University Hospital, Stony Brook, New York
- Department of Biomedical Informatics (D.L.P., X.X., F.F., K.J., P.P.), Stony Brook University, Stony Brook, New York
| | - Katherine Ferra Pradas
- From the Department of Radiology (D.L.P., F.F., K.J., K.F.P., V.V.B., L.B.), Stony Brook University Hospital, Stony Brook, New York
| | - Vahni Vishala Bernard
- From the Department of Radiology (D.L.P., F.F., K.J., K.F.P., V.V.B., L.B.), Stony Brook University Hospital, Stony Brook, New York
| | - Lev Bangiyev
- From the Department of Radiology (D.L.P., F.F., K.J., K.F.P., V.V.B., L.B.), Stony Brook University Hospital, Stony Brook, New York
| | - Prateek Prasanna
- Department of Biomedical Informatics (D.L.P., X.X., F.F., K.J., P.P.), Stony Brook University, Stony Brook, New York
| |
Collapse
|