1
|
Tai TH, Chu PJ, Lu KY, Wu JJ, Wong CC. Current Management and Volar Locking Plate Fixation with Bone Cement Augmentation for Elderly Distal Radius Fractures-An Updated Narrative Review. J Clin Med 2023; 12:6801. [PMID: 37959267 PMCID: PMC10648218 DOI: 10.3390/jcm12216801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/19/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Distal radius fractures (DRFs) are the most common among all kinds of fractures with an increase in incidence due to the rapidly expanded size of the elderly population in the past decades. Both non-surgical and surgical treatments can be applied for this common injury. Nowadays, more and more elderly patients with DRFs undergo surgical treatments to restore pre-injury activity levels faster. However, optimal treatment for geriatric DRFs is still debated, and careful evaluation and selection of patients are warranted considering clinical and functional outcomes, and complications following surgical treatments. Furthermore, osteoporosis is a predominant factor in elderly DRFs mostly deriving from a low-energy trauma, so many treatment modalities are developed to enhance better bone healing. Among various options for bone augmentation, bone cement is one of the most widely used measures. Bone cement such as calcium phosphate theoretically improves fracture stability and healing, but whether the elderly patients with DRFs can significantly benefit from surgical fixation with bone cement augmentation (BCA) remains controversial. Hence, in the present review, the latest literature regarding current concepts of management and evidence about volar locking plate fixation (VLPF) with BCA for elderly DRFs was searched in MEDLINE, Embase, Cochrane Central Register of Controlled Trials, and Web of Science; out of >1000 articles, full texts of 48 and 6 articles were then examined and analyzed separately for management and VLPF with BCA for elderly DRFs. We aim to provide the readers with updates concerning the above issues.
Collapse
Affiliation(s)
- Ting-Han Tai
- Department of Orthopedics, Taipei Medical University Shuang Ho Hospital, New Taipei City 235041, Taiwan (P.-J.C.)
| | - Po-Jui Chu
- Department of Orthopedics, Taipei Medical University Shuang Ho Hospital, New Taipei City 235041, Taiwan (P.-J.C.)
- Department of Primary Care Medicine, Taipei Medical University Shuang Ho Hospital, New Taipei City 235041, Taiwan
| | - Kuan-Yu Lu
- Department of Orthopedics, Taipei Medical University Shuang Ho Hospital, New Taipei City 235041, Taiwan (P.-J.C.)
| | - Jeffrey J. Wu
- Department of Orthopedics, Taipei Medical University Shuang Ho Hospital, New Taipei City 235041, Taiwan (P.-J.C.)
| | - Chin-Chean Wong
- Department of Orthopedics, Taipei Medical University Shuang Ho Hospital, New Taipei City 235041, Taiwan (P.-J.C.)
- Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
- Research Center of Biomedical Devices, Taipei Medical University, Taipei 110301, Taiwan
- International PhD Program for Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
| |
Collapse
|
2
|
Zhang S, Patel D, Brady M, Gambill S, Theivendran K, Deshmukh S, Swadener J, Junaid S, Leslie LJ. Experimental testing of fracture fixation plates: A review. Proc Inst Mech Eng H 2022; 236:1253-1272. [PMID: 35920401 PMCID: PMC9449446 DOI: 10.1177/09544119221108540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Metal and its alloys have been predominantly used in fracture fixation for
centuries, but new materials such as composites and polymers have begun to see
clinical use for fracture fixation during the past couple of decades. Along with
the emerging of new materials, tribological issues, especially debris, have
become a growing concern for fracture fixation plates. This article for the
first time systematically reviews the most recent biomechanical research, with a
focus on experimental testing, of those plates within ScienceDirect and PubMed
databases. Based on the search criteria, a total of 5449 papers were retrieved,
which were then further filtered to exclude nonrelevant, duplicate or
non-accessible full article papers. In the end, a total of 83 papers were
reviewed. In experimental testing plates, screws and simulated bones or cadaver
bones are employed to build a fixation construct in order to test the strength
and stability of different plate and screw configurations. The test set-up
conditions and conclusions are well documented and summarised here, including
fracture gap size, types of bones deployed, as well as the applied load, test
speed and test ending criteria. However, research on long term plate usage was
very limited. It is also discovered that there is very limited experimental
research around the tribological behaviour particularly on the debris’
generation, collection and characterisation. In addition, there is no identified
standard studying debris of fracture fixation plate. Therefore, the authors
suggested the generation of a suite of tribological testing standards on
fracture fixation plate and screws in the aim to answer key questions around the
debris from fracture fixation plate of new materials or new design and
ultimately to provide an insight on how to reduce the risks of debris-related
osteolysis, inflammation and aseptic loosening.
Collapse
Affiliation(s)
- Shiling Zhang
- Aston Institute of Materials Research (AIMR), Aston University, Birmingham, UK
| | - Dharmesh Patel
- Invibio Biomaterial Solutions Limited, Hillhouse International, Thornton-Cleveleys, UK
| | - Mark Brady
- Invibio Biomaterial Solutions Limited, Hillhouse International, Thornton-Cleveleys, UK
| | - Sherri Gambill
- Invibio Biomaterial Solutions Limited, Hillhouse International, Thornton-Cleveleys, UK
| | | | - Subodh Deshmukh
- Sandwell and West Birmingham Hospital NHS Trust, Birmingham, UK
| | - John Swadener
- Aston Institute of Materials Research (AIMR), Aston University, Birmingham, UK
| | - Sarah Junaid
- Aston Institute of Materials Research (AIMR), Aston University, Birmingham, UK
| | - Laura Jane Leslie
- Aston Institute of Materials Research (AIMR), Aston University, Birmingham, UK
| |
Collapse
|
3
|
Zhang H, Hu Y, Chen X, Wang S, Cao L, Dong S, Shi Z, Chen Y, Xiong L, Zhang Y, Zhang D, Yu B, Chen W, Wang Q, Tong P, Liu X, Zhang J, Zhou Q, Niu F, Yang W, Zhang W, Wang Y, Chen S, Jia J, Yang Q, Zhang P, Zhang Y, Miao J, Sun K, Shen T, Yu B, Yang L, Zhang L, Wang D, Liu G, Zhang Y, Su J. Expert consensus on the bone repair strategy for osteoporotic fractures in China. Front Endocrinol (Lausanne) 2022; 13:989648. [PMID: 36387842 PMCID: PMC9643410 DOI: 10.3389/fendo.2022.989648] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/03/2022] [Indexed: 11/13/2022] Open
Abstract
Osteoporotic fractures, also known as fragility fractures, are prevalent in the elderly and bring tremendous social burdens. Poor bone quality, weak repair capacity, instability, and high failure rate of internal fixation are main characteristics of osteoporotic fractures. Osteoporotic bone defects are common and need to be repaired by appropriate materials. Proximal humerus, distal radius, tibia plateau, calcaneus, and spine are common osteoporotic fractures with bone defect. Here, the consensus from the Osteoporosis Group of Chinese Orthopaedic Association concentrates on the epidemiology, characters, and management strategies of common osteoporotic fractures with bone defect to standardize clinical practice in bone repair of osteoporotic fractures.
Collapse
Affiliation(s)
- Hao Zhang
- Institute of Translational Medicine, Shanghai University, Shanghai, China
- Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yan Hu
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Xiao Chen
- Changhai Hospital, Naval Medical University, Shanghai, China
| | - Sicheng Wang
- Department of Orthopedics, Shanghai Zhongye Hospital, Shanghai, China
| | - Liehu Cao
- Department of Orthopedics, Shanghai Baoshan Luodian Hospital, Shanghai, China
| | - Shiwu Dong
- Department of Biomedical Materials Science, Army Medical University, Chongqing, China
| | - Zhongmin Shi
- Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Yanxi Chen
- Zhongshan Hospital, Fudan University, Shanghai, China
| | - Liming Xiong
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yunfei Zhang
- Tangdu Hospital, Air Force Medical University, Xi'an, China
| | | | - Baoqing Yu
- Department of Orthopedics, Shanghai Pudong Hospital, Shanghai, China
| | - Wenming Chen
- Institute of Biomedical Engineering, Academy for Engineering and Technology, Fudan University, Shanghai, China
| | - Qining Wang
- Department of Advanced Manufacturing and Robotics, College of Engineering, Peking University, Beijing, China
| | - Peijian Tong
- Department of Orthopedics, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Ximing Liu
- Department of Orthopedics, General Hospital of Central Theater Command, Wuhan, China
| | - Jianzheng Zhang
- Department of Orthopedic Surgery, People's Liberation Army (PLA), Army General Hospital, Beijing, China
| | - Qiang Zhou
- Department of Orthopedics, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Feng Niu
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| | - Weiguo Yang
- Li Ka Shing Faculty of Medicine, Hongkong University, Hong Kong, Hong Kong SAR, China
| | - Wencai Zhang
- Department of Orthopedics, The Third Affiliated Hospital of Guangzhou University of Traditional Chinese medicine (TCM), Guangzhou, China
| | - Yong Wang
- Department of Orthopedics, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, China
| | - Shijie Chen
- Department of Orthopedics, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Jinpeng Jia
- Department of Orthopedics, Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Qiang Yang
- Department of Orthopedics, Tianjin Hospital, Tianjin, China
| | - Peng Zhang
- Department of Orthopedics, Shandong Province Hospital, Jinan, China
| | - Yong Zhang
- Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Jun Miao
- Department of Orthopedics, Tianjin Hospital, Tianjin, China
| | - Kuo Sun
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Tao Shen
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Bin Yu
- Department of Orthopedics, Peking Union Medical College Hospital, Beijing, China
| | - Lei Yang
- Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lei Zhang
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dongliang Wang
- Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Dongliang Wang, ; Guohui Liu, ; Yingze Zhang, ; Jiacan Su,
| | - Guohui Liu
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Dongliang Wang, ; Guohui Liu, ; Yingze Zhang, ; Jiacan Su,
| | - Yingze Zhang
- Department of Orthopedics, Third Hospital of Hebei Medical University, Shijiazhuang, China
- *Correspondence: Dongliang Wang, ; Guohui Liu, ; Yingze Zhang, ; Jiacan Su,
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai, China
- Changhai Hospital, Naval Medical University, Shanghai, China
- *Correspondence: Dongliang Wang, ; Guohui Liu, ; Yingze Zhang, ; Jiacan Su,
| |
Collapse
|
4
|
Biodegradable cement augmentation of gamma nail osteosynthesis reduces migration in pertrochanteric fractures, a biomechanical in vitro study. Clin Biomech (Bristol, Avon) 2021; 84:105327. [PMID: 33773169 DOI: 10.1016/j.clinbiomech.2021.105327] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 03/09/2021] [Accepted: 03/13/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Cut-out of gamma nail often results from poor primary bone stability, suboptimal reduction (varus) and excentric placement of the head element which may lead to "instability" and frequently requires revision. Various studies have shown that augmentation with polymethylmethacrylate cement increases the primary stability of osteosynthesis. However, it has not yet been widely used in fracture treatment due to certain disadvantages, e.g., the lack of osteointegration, the formation of an interface membrane or the presence of toxic monomers. Few studies show that biodegradable bone cements increase the stability of osteosynthesis in different anatomical regions and therefore could be an alternative to polymethylmethacrylate cement in the treatment of pertrochanteric fractures. METHODS Two biomechanical situations were simulated using 24 Sawbones (simple and multifragmentary pertrochanteric fractures; AO-classification 31-A1 and 31-A2. Both groups were stabilized using the Gamma3® nailing system with and without biodegradable bone cement. Sawbones underwent the same cyclic loading test, simulating 10.000 gait cycles loading the bones with three times body weight. Migration was determined by comparing computed tomography scans recorded before and after the mechanical testing. The three-dimensional migration of the lag screw was calculated, and the rotation of the head around the longitudinal axis was determined. FINDINGS Biodegradable cement reduced migration by approximately 35% in 31-A1 fractures (25.4% in 31-A2 fractures) and the rotation of the head around the lag screw by approximately 37% in 31-A1 fractures (17.8%, 31-A2). INTERPRETATION Use of biodegradable bone cement improved the primary stability of gamma nail osteosynthesis in the biomechanical model.
Collapse
|
5
|
Sallent I, Capella-Monsonís H, Procter P, Bozo IY, Deev RV, Zubov D, Vasyliev R, Perale G, Pertici G, Baker J, Gingras P, Bayon Y, Zeugolis DI. The Few Who Made It: Commercially and Clinically Successful Innovative Bone Grafts. Front Bioeng Biotechnol 2020; 8:952. [PMID: 32984269 PMCID: PMC7490292 DOI: 10.3389/fbioe.2020.00952] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 07/23/2020] [Indexed: 12/11/2022] Open
Abstract
Bone reconstruction techniques are mainly based on the use of tissue grafts and artificial scaffolds. The former presents well-known limitations, such as restricted graft availability and donor site morbidity, while the latter commonly results in poor graft integration and fixation in the bone, which leads to the unbalanced distribution of loads, impaired bone formation, increased pain perception, and risk of fracture, ultimately leading to recurrent surgeries. In the past decade, research efforts have been focused on the development of innovative bone substitutes that not only provide immediate mechanical support, but also ensure appropriate graft anchoring by, for example, promoting de novo bone tissue formation. From the countless studies that aimed in this direction, only few have made the big jump from the benchtop to the bedside, whilst most have perished along the challenging path of clinical translation. Herein, we describe some clinically successful cases of bone device development, including biological glues, stem cell-seeded scaffolds, and gene-functionalized bone substitutes. We also discuss the ventures that these technologies went through, the hindrances they faced and the common grounds among them, which might have been key for their success. The ultimate objective of this perspective article is to highlight the important aspects of the clinical translation of an innovative idea in the field of bone grafting, with the aim of commercially and clinically informing new research approaches in the sector.
Collapse
Affiliation(s)
- Ignacio Sallent
- Regenerative, Modular & Developmental Engineering Laboratory, National University of Ireland Galway, Galway, Ireland
- Science Foundation Ireland Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Galway, Ireland
| | - Héctor Capella-Monsonís
- Regenerative, Modular & Developmental Engineering Laboratory, National University of Ireland Galway, Galway, Ireland
- Science Foundation Ireland Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Galway, Ireland
| | - Philip Procter
- Division of Applied Materials Science, Department of Engineering Sciences, Uppsala University, Uppsala, Sweden
- GPBio Ltd., Shannon, Ireland
| | - Ilia Y. Bozo
- Histograft LLC, Moscow, Russia
- Federal Medical Biophysical Center of FMBA of Russia, Moscow, Russia
| | - Roman V. Deev
- Histograft LLC, Moscow, Russia
- I.I. Mechnikov North-Western State Medical University, Saint Petersburg, Russia
| | - Dimitri Zubov
- State Institute of Genetic & Regenerative Medicine NAMSU, Kyiv, Ukraine
- Medical Company ilaya, Kyiv, Ukraine
| | - Roman Vasyliev
- State Institute of Genetic & Regenerative Medicine NAMSU, Kyiv, Ukraine
- Medical Company ilaya, Kyiv, Ukraine
| | | | | | - Justin Baker
- Viscus Biologics LLC, Cleveland, OH, United States
| | | | - Yves Bayon
- Sofradim Production, A Medtronic Company, Trévoux, France
| | - Dimitrios I. Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory, National University of Ireland Galway, Galway, Ireland
- Science Foundation Ireland Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
6
|
Abstract
PURPOSE OF REVIEW To provide an overview of emerging fixation constructs and materials used in the operative management of distal radius fractures. RECENT FINDINGS The indications, advantages, and disadvantages of relatively new implants and devices used to treat distal radius fractures are discussed. These include the intramedullary nail, intramedullary cage, radiolucent volar locking plate, distal radius hemiarthroplasty, and bone graft substitutes. The spectrum of distal radius fracture patterns may make it impossible to depend on a single device for fixation, and surgeons managing distal radius fractures should be adept at using various surgical approaches, techniques, and hardware systems. Additional studies demonstrating the cost-effectiveness, biomechanical properties, and clinical outcomes will be useful in determining the utility of the described techniques.
Collapse
Affiliation(s)
- Abdo Bachoura
- Philadelphia Hand to Shoulder Center, Thomas Jefferson University Hospital, 834 Chestnut Street, G114, Philadelphia, PA 19107 USA
| | - Eon K. Shin
- Philadelphia Hand to Shoulder Center, Thomas Jefferson University Hospital, 1203 Langhorne-Newtown Road, Suite 335, Langhorne, PA 19047 USA
| |
Collapse
|
7
|
Trabecular deformations during screw pull-out: a micro-CT study of lapine bone. Biomech Model Mechanobiol 2017; 16:1349-1359. [PMID: 28265781 PMCID: PMC5511599 DOI: 10.1007/s10237-017-0891-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 02/20/2017] [Indexed: 11/15/2022]
Abstract
The mechanical fixation of endosseous implants, such as screws, in trabecular bone is challenging because of the complex porous microstructure. Development of new screw designs to improve fracture fixation, especially in high-porosity osteoporotic bone, requires a profound understanding of how the structural system implant/trabeculae interacts when it is subjected to mechanical load. In this study, pull-out tests of screw implants were performed. Screws were first inserted into the trabecular bone of rabbit femurs and then pulled out from the bone inside a computational tomography scanner. The tests were interrupted at certain load steps to acquire 3D images. The images were then analysed with a digital volume correlation technique to estimate deformation and strain fields inside the bone during the tests. The results indicate that the highest shear strains are concentrated between the inner and outer thread diameter, whereas compressive strains are found at larger distances from the screw. Tensile strains were somewhat smaller. Strain concentrations and the location of trabecular failures provide experimental information that could be used in the development of new screw designs and/or to validate numerical simulations.
Collapse
|
8
|
Oppermann J, Wacker M, Stein G, Springorum HP, Neiss WF, Burkhart KJ, Eysel P, Dargel J. Anatomical fit of seven different palmar distal radius plates. Arch Orthop Trauma Surg 2014; 134:1483-9. [PMID: 25108754 DOI: 10.1007/s00402-014-2072-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Indexed: 11/27/2022]
Abstract
INTRODUCTION The purpose of this study was to compare the anatomical fit of different, precontoured palmar distal radius plates. METHODS The anatomical fit of seven different types of palmar distal radius plates [Königsee variable fixed-angle radius plate 7/3-hole, Königsee variable fixed-angle radius plate 5/3-hole (Allendorf, Germany), Medartis 2.5 Adaptive TriLock, Medartis 2.5 TriLock, Medartis 2.5 TriLock extraarticular, (Basel, Switzerland), Synthes VA-LCP distal two-column-radius, Synthes LCP extraarticular (Bettlach, Switzerland)] were investigated in 25 embalmed human cadaveric radii. An imprint of the space between the well-positioned plate and the distal radius was attained using a silicone mass and the maximum height of the silicone imprint was digitally measured. The mean maximum imprint height was compared between the seven plates using an analysis of variance with repeated measures and Bonferroni correction for multiple comparisons. RESULTS The mean maximum distance between the plates and the radial cortex was <2 mm for all plates. The greatest difference was found with the Medartis Adaptive (1.99 ± 0.45 mm) and the least difference with the Synthes two-column (1.56 ± 0.76 mm), this difference being statistically significant (p = 0.005). CONCLUSION Although there was no complete congruency between the plates and the radial cortex, all distal palmar radius plates investigated in this study presented a reasonable anatomical shape. The Synthes VA-LCP distal two-column-radius plate palmar showed the best anatomical fit. A low profile and optimized anatomical precontouring minimizes irritation of the surrounding soft tissues and should be considered with plate design and implant choice.
Collapse
Affiliation(s)
- Johannes Oppermann
- Department of Orthopaedics and Trauma Surgery, Medical Faculty, University Hospital of Cologne, Kerpener Strasse 62, 50937, Cologne, Germany,
| | | | | | | | | | | | | | | |
Collapse
|