1
|
Wiersema T, Tellegen AR, Beukers M, van Stralen M, Wouters E, van de Vooren M, Woike N, Mihov G, Thies JC, Creemers LB, Tryfonidou MA, Meij BP. Prospective Evaluation of Local Sustained Release of Celecoxib in Dogs with Low Back Pain. Pharmaceutics 2021; 13:1178. [PMID: 34452138 PMCID: PMC8398998 DOI: 10.3390/pharmaceutics13081178] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 11/16/2022] Open
Abstract
Back pain affects millions globally and in 40% of the cases is attributed to intervertebral disc degeneration. Oral analgesics are associated with adverse systemic side-effects and insufficient pain relief. Local drug delivery mitigates systemic effects and accomplishes higher local dosing. Clinical efficacy of intradiscally injected celecoxib (CXB)-loaded polyesteramide microspheres (PEAMs) was studied in a randomized prospective double-blinded placebo controlled veterinary study. Client-owned dog patients suffering from back pain were treated with CXB-loaded (n = 20) or unloaded PEAMs ("placebo") (n = 10) and evaluated by clinical examination, gait analysis, owners' questionnaires, and MRI at 6 and 12 weeks follow-up. At 6 and 12 weeks, CXB-treated dogs experienced significantly less pain interference with their daily life activities compared to placebo. The risk ratio for treatment success was 1.90 (95% C.I. 1.24-2.91, p = 0.023) at week 6 and 1.95 (95% C.I. 1.10-3.45, p = 0.036) at week 12. The beneficial effects of CXB-PEAMs were more pronounced for the subpopulation of male dogs and those with no Modic changes in MRI at inclusion in the study; disc protrusion did not affect the outcome. It remains to be determined whether intradiscal injection of CXB-PEAMs, in addition to analgesic properties, has the ability to halt the degenerative process in the long term or restore the disc.
Collapse
Affiliation(s)
- Tijn Wiersema
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 108, 3584 CM Utrecht, The Netherlands; (T.W.); (A.R.T.); (M.B.); (M.v.d.V.)
| | - Anna R. Tellegen
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 108, 3584 CM Utrecht, The Netherlands; (T.W.); (A.R.T.); (M.B.); (M.v.d.V.)
| | - Martijn Beukers
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 108, 3584 CM Utrecht, The Netherlands; (T.W.); (A.R.T.); (M.B.); (M.v.d.V.)
| | - Marijn van Stralen
- Image Sciences Institute, University Medical Centre Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands;
| | - Erik Wouters
- Anicura Dierenziekenhuis Dordrecht, Jan Valsterweg 26, 3315 LG Dordrecht, The Netherlands;
| | - Mandy van de Vooren
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 108, 3584 CM Utrecht, The Netherlands; (T.W.); (A.R.T.); (M.B.); (M.v.d.V.)
| | - Nina Woike
- DSM Biomedical, Koestraat 1, 6167 RA Geleen, The Netherlands; (N.W.); (G.M.); (J.C.T.)
| | - George Mihov
- DSM Biomedical, Koestraat 1, 6167 RA Geleen, The Netherlands; (N.W.); (G.M.); (J.C.T.)
| | - Jens C. Thies
- DSM Biomedical, Koestraat 1, 6167 RA Geleen, The Netherlands; (N.W.); (G.M.); (J.C.T.)
| | - Laura B. Creemers
- Department of Orthopaedics, University Medical Centre Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands;
| | - Marianna A. Tryfonidou
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 108, 3584 CM Utrecht, The Netherlands; (T.W.); (A.R.T.); (M.B.); (M.v.d.V.)
| | - Björn P. Meij
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 108, 3584 CM Utrecht, The Netherlands; (T.W.); (A.R.T.); (M.B.); (M.v.d.V.)
| |
Collapse
|
2
|
Joyce K, Sakai D, Pandit A. Preclinical models of vertebral osteomyelitis and associated infections: Current models and recommendations for study design. JOR Spine 2021; 4:e1142. [PMID: 34337331 PMCID: PMC8313152 DOI: 10.1002/jsp2.1142] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 01/22/2021] [Accepted: 01/27/2021] [Indexed: 12/17/2022] Open
Abstract
Spine-related infections, such as vertebral osteomyelitis, discitis, or spondylitis, are rare diseases that mostly affect adults, and are usually of hematogenous origin. The incidence of this condition has gradually risen in recent years because of increases in spine-related surgery and hospital-acquired infections, an aging population, and intravenous (IV) drug use. Spine infections are most commonly caused by Staphylococcus aureus, while other systemic infections such as tuberculosis and brucellosis can also cause spondylitis. Various animal models of vertebral osteomyelitis and associated infections have been investigated in mouse, rat, chicken, rabbit, dog, and sheep models by hematogenous and direct inoculation in surgery, each with their strengths and limitations. This review is the first of its kind to concisely analyze the various existing animal models used to reproduce clinically relevant models of infection. Spine-related infection models must address the unique anatomy of the spine, the avascular nature of its structures and tissues and the consequences of tissue destruction such as spinal cord compression. Further investigation is necessary to elucidate the specific mechanisms of host-microbe response to inform antimicrobial therapy and administration techniques in a technically demanding body cavity. Small-animal models are not suitable for large instrumentation, and difficult IV access thwarts antibiotic administration. In contrast, large-animal models can be implanted with clinically relevant instrumentation and are resilient to repeat procedures to study postoperative infection. A canine model of infection offers a unique opportunity to design and investigate antimicrobial treatments through recruitment a rich population of canine patients, presenting with a natural disease that is suitable for randomized trials.
Collapse
Affiliation(s)
- Kieran Joyce
- CÚRAM SFI Research Centre for Medical DevicesNational University of IrelandGalwayIreland
- School of MedicineNational University of IrelandGalwayIreland
| | - Daisuke Sakai
- Department of Orthopaedic SurgeryTokai University School of MedicineIseharaJapan
| | - Abhay Pandit
- CÚRAM SFI Research Centre for Medical DevicesNational University of IrelandGalwayIreland
| |
Collapse
|
3
|
Capoor MN, Konieczna A, McDowell A, Ruzicka F, Smrcka M, Jancalek R, Maca K, Lujc M, Ahmed FS, Birkenmaier C, Dudli S, Slaby O. Pro-Inflammatory and Neurotrophic Factor Responses of Cells Derived from Degenerative Human Intervertebral Discs to the Opportunistic Pathogen Cutibacterium acnes. Int J Mol Sci 2021; 22:ijms22052347. [PMID: 33652921 PMCID: PMC7956678 DOI: 10.3390/ijms22052347] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/16/2021] [Accepted: 02/21/2021] [Indexed: 12/20/2022] Open
Abstract
Previously, we proposed the hypothesis that similarities in the inflammatory response observed in acne vulgaris and degenerative disc disease (DDD), especially the central role of interleukin (IL)-1β, may be further evidence of the role of the anaerobic bacterium Cutibacterium (previously Propionibacterium) acnes in the underlying aetiology of disc degeneration. To investigate this, we examined the upregulation of IL-1β, and other known IL-1β-induced inflammatory markers and neurotrophic factors, from nucleus-pulposus-derived disc cells infected in vitro with C. acnes for up to 48 h. Upon infection, significant upregulation of IL-1β, alongside IL-6, IL-8, chemokine (C-C motif) ligand 3 (CCL3), chemokine (C-C motif) ligand 4 (CCL4), nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF), was observed with cells isolated from the degenerative discs of eight patients versus non-infected controls. Expression levels did, however, depend on gene target, multiplicity and period of infection and, notably, donor response. Pre-treatment of cells with clindamycin prior to infection significantly reduced the production of pro-inflammatory mediators. This study confirms that C. acnes can stimulate the expression of IL-1β and other host molecules previously associated with pathological changes in disc tissue, including neo-innervation. While still controversial, the role of C. acnes in DDD remains biologically credible, and its ability to cause disease likely reflects a combination of factors, particularly individualised response to infection.
Collapse
Affiliation(s)
- Manu N. Capoor
- Laboratory of Bacterial Pathogenesis and Immunology, Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
- Correspondence: (M.N.C.); (O.S.)
| | - Anna Konieczna
- Central European Institute of Technology (CEITEC), Masaryk University, 625 00 Brno, Czech Republic; (A.K.); (F.S.A.)
| | - Andrew McDowell
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine BT52 1SA, UK;
| | - Filip Ruzicka
- Department of Microbiology, Faculty of Medicine, St. Anne’s University Hospital, Masaryk University, 656 91 Brno, Czech Republic;
| | - Martin Smrcka
- Department of Neurosurgery, University Hospital Brno, Masaryk University, 625 00 Brno, Czech Republic; (M.S.); (K.M.)
| | - Radim Jancalek
- Department of Neurosurgery, St. Anne’s University Hospital, Masaryk University, 656 91 Brno, Czech Republic;
| | - Karel Maca
- Department of Neurosurgery, University Hospital Brno, Masaryk University, 625 00 Brno, Czech Republic; (M.S.); (K.M.)
| | - Michael Lujc
- Department of Orthopaedic Surgery, University Hospital Brno, Masaryk University, 625 00 Brno, Czech Republic;
| | - Fahad S. Ahmed
- Central European Institute of Technology (CEITEC), Masaryk University, 625 00 Brno, Czech Republic; (A.K.); (F.S.A.)
| | - Christof Birkenmaier
- Department of Orthopaedic Surgery, Physical Medicine and Rehabilitation, University of Munich, 80331 Munich, Germany;
| | - Stefan Dudli
- Centre of Experimental Rheumatology, Department of Rheumatology, University Hospital, University of Zurich, 8091 Zurich, Switzerland;
- Department of Physical Medicine and Rheumatology, Balgrist University Hospital, University of Zurich, 8091 Zurich, Switzerland
| | - Ondrej Slaby
- Central European Institute of Technology (CEITEC), Masaryk University, 625 00 Brno, Czech Republic; (A.K.); (F.S.A.)
- Department of Biology, Faculty of Medicine, Masaryk University, 601 77 Brno, Czech Republic
- Correspondence: (M.N.C.); (O.S.)
| |
Collapse
|
4
|
Tryfonidou MA, de Vries G, Hennink WE, Creemers LB. "Old Drugs, New Tricks" - Local controlled drug release systems for treatment of degenerative joint disease. Adv Drug Deliv Rev 2020; 160:170-185. [PMID: 33122086 DOI: 10.1016/j.addr.2020.10.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 10/14/2020] [Accepted: 10/20/2020] [Indexed: 12/12/2022]
Abstract
Osteoarthritis (OA) and chronic low back pain (CLBP) caused by intervertebral disc (IVD) degeneration are joint diseases that have become major causes for loss of quality of life worldwide. Despite the unmet need, effective treatments other than invasive, and often ineffective, surgery are lacking. Systemic administration of drugs entails suboptimal local drug exposure in the articular joint and IVD. This review provides an overview of the potency of biomaterial-based drug delivery systems as novel treatment modality, with a focus on the biological effects of drug release systems that have reached translation at the level of in vivo models and relevant ex vivo models. These studies have shown encouraging results of biomaterial-based local delivery of several types of drugs, mostly inhibitors of inflammatory cytokines or other degenerative factors. Prevention of inflammation and degeneration and pain relief was achieved, although mainly in small animal models, with interventions applied at an early disease stage. Less convincing data were obtained with the delivery of regenerative factors. Multidisciplinary efforts towards tackling the discord between in vitro and in vivo release, combined with adaptations in the regulatory landscape may be needed to enhance safe and expeditious introduction of more and more effective controlled release-based treatments with the OA and CLBP patients.
Collapse
|
5
|
Hyperbaric oxygen treatment: A complementary treatment modality of Modic changes? Med Hypotheses 2020; 138:109617. [PMID: 32065934 DOI: 10.1016/j.mehy.2020.109617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 02/05/2020] [Accepted: 02/09/2020] [Indexed: 11/23/2022]
Abstract
Modic changes (MCs) have attracted great interest in recent years. The complex process of MC development and progression seems to involve interplay between mechanical, infective, inflammatory, and degenerative processes that cannot be clearly differentiated. Based on signal intensity on T1- and T2-weighted MRI scans, MCs can be divided three types: Type 1, Type 2, and Type 3. Predominantly Type 1 MCs are commonly associated with chronic low back pain that is unresponsive to classic treatment options. Infection with low-virulent anaerobic microorganisms, most commonly Propionibacterium acnes, has been implicated in MC development following a disc herniation when a tear enables bacteria to enter the disc. Recent studies in patients with chronic low back pain following a lumbar disc herniation associated with Type 1 MCs have reported promising results following prolonged systemic antibiotic treatment with amoxicillin-clavulanate. Hyperbaric oxygen therapy, as primary or adjuvant treatment in association combination with systemic antibiotics or anti-inflammatory therapy, could offer important advantages in treating patients with suspected low-virulent disc infections due to anaerobic microorganisms associated with Type 1 MCs. We believe that hyperbaric oxygenation could contribute to faster resolution of Type 1 MCs and associated pain through multiple effects-including direct antimicrobial effects through formation of reactive oxygen species (ROS), altering the favorable low oxygen tension milieu such that it becomes unfavorable for bacterial growth and survival, and anti-biofilm effects. Additionally, hyperbaric oxygenation could contribute to faster pain resolution via direct and indirect anti-inflammatory effects. As an adjuvant treatment administered in combination with systemic antibiotics, HBOT could increase the sensitivity of Propionibacterium acnes to antimicrobial drugs under hyperoxic conditions, resulting in faster MC resolution. Overall, the faster infection resolution, diminished bacterial load, and anti-inflammatory effects due to reduced cytokine expression and levels of infectious by-products could lead to faster pain resolution following HBOT, and a significant improvement of quality of life in these patients.
Collapse
|
6
|
Could Hyperbaric Oxygen Be a Solution in the Treatment of Spinal Infections? ACTA ACUST UNITED AC 2019; 55:medicina55050164. [PMID: 31137457 PMCID: PMC6571771 DOI: 10.3390/medicina55050164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/02/2019] [Accepted: 05/16/2019] [Indexed: 12/20/2022]
Abstract
Background and Objective: Pyogenic spinal infections are rare and potentially devastating, requiring prompt recognition and management. Parallel to the ever-increasing number of invasive spinal procedures, its incidence is on a steady rise, particularly in an expanding elderly population. The aim of this study was to evaluate the efficacy of hyperbaric oxygen (HBO2) therapy in the treatment of this heterogeneous group of disorders. Materials and Methods: Nineteen patients who were referred to our center for HBO2 with a clinical diagnosis of spinal infections (vertebral osteomyelitis, pyogenic spondylitis, spondylodiscitis, surgical site infection following spine surgery, epidural abscess) were retrospectively reviewed. Results: Infection resolution was adequately achieved in 12 of 13 patients (92.3%) on magnetic resonance imaging at the end of HBO2 treatment or during the first month of follow-up. The mean follow-up period was 11 months (range 1 month to 3 years). Conclusions: This study suggests that HBO2 therapy is efficacious in patients with pyogenic spinal infections complicated by primary therapy failure or by medical comorbidities that may impede the eradication of microbial infection and delay wound healing. HBO2 therapy may be useful for reducing long hospital stays, repeated surgeries, and morbidities.
Collapse
|
7
|
Intradiscal delivery of celecoxib-loaded microspheres restores intervertebral disc integrity in a preclinical canine model. J Control Release 2018; 286:439-450. [PMID: 30110616 DOI: 10.1016/j.jconrel.2018.08.019] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 08/09/2018] [Accepted: 08/10/2018] [Indexed: 01/08/2023]
Abstract
Low back pain, related to degeneration of the intervertebral disc (IVD), affects millions of people worldwide. Clinical studies using oral cyclooxygenase-2 (COX-2) inhibitors have shown beneficial effects, although side-effects were reported. Therefore, intradiscal delivery of nonsteroidal anti-inflammatory drugs can be an alternative treatment strategy to halt degeneration and address IVD-related pain. In the present study, the controlled release and biologic potency of celecoxib, a selective COX-2 inhibitor, from polyesteramide microspheres was investigated in vitro. In addition, safety and efficacy of injection of celecoxib-loaded microspheres were evaluated in vivo in a canine IVD degeneration model. In vitro, a sustained release of celecoxib was noted for over 28 days resulting in sustained inhibition of inflammation, as indicated by decreased prostaglandin E2 (PGE2) production, and anti-catabolic effects in nucleus pulposus (NP) cells from degenerated IVDs on qPCR. In vivo, there was no evidence of adverse effects on computed tomography and magnetic resonance imaging or macroscopic evaluation of IVDs. Local and sustained delivery of celecoxib prevented progression of IVD degeneration corroborated by MRI, histology, and measurement of NP proteoglycan content. Furthermore, it seemed to harness inflammation as indicated by decreased PGE2 tissue levels and decreased neuronal growth factor immunopositivity, providing indirect evidence that local delivery of a COX-2 inhibitor could also address pain related to IVD degeneration. In conclusion, intradiscal controlled release of celecoxib from polyesteramide microspheres prevented progression of IVD degeneration both in vitro and in vivo. Follow-up studies are warranted to determine the clinical efficacy of celecoxib-loaded PEAMs in chronic back pain.
Collapse
|
8
|
Tellegen AR, Willems N, Beukers M, Grinwis GCM, Plomp SGM, Bos C, van Dijk M, de Leeuw M, Creemers LB, Tryfonidou MA, Meij BP. Intradiscal application of a PCLA-PEG-PCLA hydrogel loaded with celecoxib for the treatment of back pain in canines: What's in it for humans? J Tissue Eng Regen Med 2018; 12:642-652. [PMID: 28544701 DOI: 10.1002/term.2483] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 05/02/2017] [Accepted: 05/13/2017] [Indexed: 12/19/2022]
Abstract
Chronic low back pain is a common clinical problem in both the human and canine population. Current pharmaceutical treatment often consists of oral anti-inflammatory drugs to alleviate pain. Novel treatments for degenerative disc disease focus on local application of sustained released drug formulations. The aim of this study was to determine safety and feasibility of intradiscal application of a poly(ε-caprolactone-co-lactide)-b-poly(ethylene glycol)-bpoly(ε-caprolactone-co-lactide) PCLA-PEG-PCLA hydrogel releasing celecoxib, a COX-2 inhibitor. Biocompatibility was evaluated after subcutaneous injection in mice, and safety of intradiscal injection of the hydrogel was evaluated in experimental dogs with early spontaneous intervertebral disc (IVD) degeneration. COX-2 expression was increased in IVD samples surgically obtained from canine patients, indicating a role of COX-2 in clinical IVD disease. Ten client-owned dogs with chronic low back pain related to IVD degeneration received an intradiscal injection with the celecoxib-loaded hydrogel. None of the dogs showed adverse reactions after intradiscal injection. The hydrogel did not influence magnetic resonance imaging signal at long-term follow-up. Clinical improvement was achieved by reduction of back pain in 9 of 10 dogs, as was shown by clinical examination and owner questionnaires. In 3 of 10 dogs, back pain recurred after 3 months. This study showed the safety and effectiveness of intradiscal injections in vivo with a thermoresponsive PCLA-PEG-PCLA hydrogel loaded with celecoxib. In this set-up, the dog can be used as a model for the development of novel treatment modalities in both canine and human patients with chronic low back pain.
Collapse
Affiliation(s)
- Anna R Tellegen
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Nicole Willems
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Martijn Beukers
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Guy C M Grinwis
- Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Saskia G M Plomp
- Department of Orthopaedic Surgery, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Clemens Bos
- Imaging Division, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | - Laura B Creemers
- Department of Orthopaedic Surgery, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Marianna A Tryfonidou
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Björn P Meij
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
9
|
Bostian PA, Karnes JM, Cui S, Robinson LJ, Daffner SD, Witt MR, Emery SE. Novel rat tail discitis model using bioluminescent Staphylococcus aureus. J Orthop Res 2017; 35:2075-2081. [PMID: 27918144 PMCID: PMC5459675 DOI: 10.1002/jor.23497] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 11/16/2016] [Indexed: 02/04/2023]
Abstract
Management of spondylodiscitis is a challenging clinical problem requiring medical and surgical treatment strategies. The purpose of this study was to establish a rat model of spondylodiscitis that utilizes bioluminescent Staphylococcus aureus (S. aureus), thus permitting in vivo surveillance of infection intensity. Inocula of the bioluminescent S. aureus strain XEN36 were created in concentrations of 102 CFU/0.1 ml, 104 CFU/0.1 ml, and 106 CFU/0.1 ml. Three groups of rats were injected with the bacteria in the most proximal intervertebral tail segment. The third most proximal tail segment was injected with saline as a control. Bioluminescence was measured at baseline, 3 days, and weekly for a total of 6 weeks. Detected bioluminescence for each group peaked at day 3 and returned to baseline in 21 days. The average intensity was highest for the experimental group injected with the most concentrated bacterial solution (106 CFU/0.1 ml). Radiographic analysis revealed loss of intervertebral disc space and evidence of osseous bridging. Saline-injected spaces exhibited no decrease in intervertebral spacing as compared to distal sites. Histologic analysis revealed neutrophilic infiltrates, destruction of the annulus fibrosus and nucleus pulposus, destruction of vertebral endplates, and osseous bridging. Saline-injected discs exhibited preserved annulus fibrosus and nucleus pulposus on histology. This study demonstrates that injection of bioluminescent S. aureus into the intervertebral disc of a rat tail is a viable animal model for spondylodiscitis research. This model allows for real-time, in vivo quantification of infection intensity, which may decrease the number of animals required for infection studies of the intervertebral disc. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2075-2081, 2017.
Collapse
Affiliation(s)
- Phillip A. Bostian
- Department of Orthopaedics, West Virginia University, P.O. Box 9196, Morgantown, WV 26506-9196
| | - Jonathan M. Karnes
- Department of Orthopaedics, West Virginia University, P.O. Box 9196, Morgantown, WV 26506-9196
| | - Shari Cui
- Department of Orthopaedics, West Virginia University, P.O. Box 9196, Morgantown, WV 26506-9196
| | - Lisa J. Robinson
- Department of Pathology, West Virginia University, Lab Room 2156, HSC North, Morgantown, WV 26506
| | - Scott D. Daffner
- Department of Orthopaedics, West Virginia University, P.O. Box 9196, Morgantown, WV 26506-9196
| | - Michelle R. Witt
- Department of Pathology, West Virginia University, Lab Room 2156, HSC North, Morgantown, WV 26506
| | - Sanford E. Emery
- Department of Orthopaedics, West Virginia University, P.O. Box 9196, Morgantown, WV 26506-9196
| |
Collapse
|