Van Ngoc Ty C, Fitton I, Arvieu R, Ferrero E, Garreau de Loubresse C, Khalifé M. Optimization of radiation doses for open lumbar spinal fusion using C-arm fluoroscopy and impact on radiation-induced cancer: a pilot study.
EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2024;
33:2043-2048. [PMID:
38565683 DOI:
10.1007/s00586-024-08236-3]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 01/11/2024] [Accepted: 03/17/2024] [Indexed: 04/04/2024]
Abstract
PURPOSE
Intraoperative fluoroscopy use is essential during spinal fusion procedures. The amount of radiation dose should always be minimized. This study aimed to determine the feasibility of halving the frame rate from 12.5 to 6.25 frames per second (fps) and to quantify the reduction in the risk of developing radiation-induced cancer.
METHODS
This pilot study included 34 consecutive patients operated for open lumbar posterolateral fusion (PLF) with or without transforaminal lumbar interbody fusion (TLIF). C-arm modes were changed from half-dose (12.5 frames per second (fps), group I) to quarter-dose (6.25 fps, group II). Age, body mass index, surgical procedure, number of treated levels, and complications were collected. Kerma area product (KAP), cumulative air kerma (CAK), and fluoroscopy time were compared. Effective dose and radiation-induced cancer risk were estimated.
RESULTS
Eighteen and 16 patients were, respectively, included in group I and II. Demographic, surgical data, and fluoroscopy time were similar in both groups. However, CAK, KAP, and effective dose were significantly lower in group II, respectively, 0.56 versus 0.41 mGy (p = 0.03), 0.09 versus 0.06 Gy cm2 (p = 0.04), and 0.03 versus 0.02 mSv (p = 0.04). Radiation-induced cancer risk decreased by 47.7% from 1.49 × 10-6 to 7.77 × 10-7 after optimization. No complications were recorded in either group.
CONCLUSION
This study demonstrates the feasibility of setting 6.25 fps for TLIF with and without PLF. By halving the fps, radiation-induced cancer risk could be almost divided by two, without compromising surgical outcome. Finally, after optimization, the risk of developing radiation-induced cancer was less than one in a million.
Collapse