1
|
Ishihara N, Koma YI, Omori M, Komatsu S, Torigoe R, Yokoo H, Nakanishi T, Yamanaka K, Azumi Y, Tsukamoto S, Kodama T, Nishio M, Shigeoka M, Yokozaki H, Fukumoto T. Chemokine (C-C Motif) Ligand 2/CCR2/Extracellular Signal-Regulated Kinase Signal Induced through Cancer Cell-Macrophage Interaction Contributes to Hepatocellular Carcinoma Progression. THE AMERICAN JOURNAL OF PATHOLOGY 2025; 195:589-608. [PMID: 39756577 DOI: 10.1016/j.ajpath.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/23/2024] [Accepted: 12/27/2024] [Indexed: 01/07/2025]
Abstract
Tumor-infiltrating macrophages, known as tumor-associated macrophages, play a crucial role in the tumor microenvironment. Herein, immunohistochemistry revealed that intratumoral CD68-positive macrophages are associated with poor prognosis and clinicopathologic factors in patients with hepatocellular carcinoma (HCC). Subsequently, an indirect co-culture system involving HCC cells and peripheral blood-derived macrophages was developed. cDNA microarray analysis revealed that chemokine (C-C motif) ligand 2 (CCL2) was highly expressed in HCC cells co-cultured with macrophages. CCL2 neutralization suppressed proliferation, migration, and phosphorylation of extracellular signal-regulated kinase (Erk) in HCC cells and macrophages enhanced through co-culture. In contrast, recombinant human CCL2 (rhCCL2) addition facilitated these malignant phenotypes and increased Erk phosphorylation levels in HCC cells and macrophages. The primary CCL2 receptor, CCR2, was expressed in HCC cells and macrophages and was up-regulated in co-cultured HCC cells. CCR2 inhibition suppressed malignant phenotypes and reduced phosphorylated levels of Erk enhanced by rhCCL2. Additionally, the inhibition of Erk signal suppressed rhCCL2-enhanced malignant phenotypes. Moreover, serum CCL2 levels were higher in patients with HCC than those in healthy donors. On the basis of immunohistochemistry, CCL2-positive cases with high CCR2 expression and phosphorylated Erk-positive cases exhibited poor survival outcomes. Therefore, CCL2 up-regulation through interactions between HCC cells and macrophages contributed to HCC progression, making the CCL2/CCR2/Erk signal a potential target for HCC treatment.
Collapse
Affiliation(s)
- Nobuaki Ishihara
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan; Division of Hepato-Biliary-Pancreatic Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yu-Ichiro Koma
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan.
| | - Masaki Omori
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan; Division of Hepato-Biliary-Pancreatic Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shohei Komatsu
- Division of Hepato-Biliary-Pancreatic Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Rikuya Torigoe
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan; Division of Gastro-Intestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hiroki Yokoo
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan; Division of Gastro-Intestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takashi Nakanishi
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan; Division of Gastro-Intestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Keitaro Yamanaka
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan; Division of Obstetrics and Gynecology, Department of Surgery Related, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yuki Azumi
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan; Division of Gastro-Intestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shuichi Tsukamoto
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takayuki Kodama
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Mari Nishio
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Manabu Shigeoka
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hiroshi Yokozaki
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takumi Fukumoto
- Division of Hepato-Biliary-Pancreatic Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
2
|
Jain A, Mishra AK, Hurkat P, Shilpi S, Mody N, Jain SK. Navigating liver cancer: Precision targeting for enhanced treatment outcomes. Drug Deliv Transl Res 2025:10.1007/s13346-024-01780-x. [PMID: 39847205 DOI: 10.1007/s13346-024-01780-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2024] [Indexed: 01/24/2025]
Abstract
Cancer treatments such as surgery and chemotherapy have several limitations, including ineffectiveness against large or persistent tumors, high relapse rates, drug toxicity, and non-specificity of therapy. Researchers are exploring advanced strategies for treating this life-threatening disease to address these challenges. One promising approach is targeted drug delivery using prodrugs or surface modification with receptor-specific moieties for active or passive targeting. While various drug delivery systems have shown potential for reaching hepatic cells, nano-carriers offer significant size, distribution, and targetability advantages. Engineered nanocarriers can be customized to achieve effective and safe targeting of tumors by manipulating physical characteristics such as particle size or attaching receptor-specific ligands. This method is particularly advantageous in treating liver cancer by targeting specific hepatocyte receptors and enzymatic pathways for both passive and active therapeutic strategies. It highlights the epidemiology of liver cancer and provides an in-depth analysis of the various targeting approaches, including prodrugs, liposomes, magneto-liposomes, micelles, glycol-dendrimers, magnetic nanoparticles, chylomicron-based emulsion, and quantum dots surface modification with receptor-specific moieties. The insights from this review can be immensely significant for preclinical and clinical researchers working towards developing effective treatments for liver cancer. By utilizing these novel strategies, we can overcome the limitations of conventional therapies and offer better outcomes for liver cancer patients.
Collapse
Affiliation(s)
- Ankit Jain
- Department of Pharmacy, Birla Institute of Technology and Science (BITS), Pilani Campus, Pilani, Rajasthan, 333031, India.
| | - Ashwini Kumar Mishra
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra, 425405, India
- Central Ayurveda Research Institute, Jhansi, Uttar Pradesh, 284003, India
| | - Pooja Hurkat
- Dr. Hari Singh Gour Central University, Sagar, 470003, MP, India
| | - Satish Shilpi
- School of Pharmaceuticals and Population Health Informatics, FOP, DIT University, Dehradun, Uttarakahnad, India
| | - Nishi Mody
- Dr. Hari Singh Gour Central University, Sagar, 470003, MP, India
| | | |
Collapse
|
3
|
Fan Q, Wei P, Ma D, Cheng Q, Gao J, Zhu J, Li Z. Therapeutic efficacy and prognostic indicators in re-resection for recurrent hepatocellular carcinoma: Insights from a retrospective study. Surg Open Sci 2025; 23:16-23. [PMID: 39816698 PMCID: PMC11733202 DOI: 10.1016/j.sopen.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 12/05/2024] [Accepted: 12/16/2024] [Indexed: 01/18/2025] Open
Abstract
Aims To evaluate the efficacy of re-resection in recurrent hepatocellular carcinoma (rHCC), identify prognostic factors, and provide clinical guidance. Methods A retrospective analysis was conducted on 130 rHCC patients undergoing re-resection and 60 primary HCC patients undergoing initial hepatectomy at Peking University People's Hospital (2014-2022). Disease-free survival (DFS) and overall survival (OS) were compared. Prognostic factors were identified using univariate and multivariate COX regression analyses. Results Baseline characteristics were comparable between groups (P > 0.05). DFS was similar between groups (30.8 vs. 32.2 months, P = 0.612). The 1-year, 2-year, and 3-year DFS rates for the re-resection group were 88.5 %, 64.9 %, and 56.7 %, respectively, versus 88.3 %, 65.0 %, and 53.3 % for the primary resection group. OS was lower in the re-resection group (36.1 vs. 47.2 months, P = 0.041) with 1-year, 2-year, and 3-year OS rates of 90.8 %, 73.1 %, and 60.0 %, compared to 95.0 %, 80.0 %, and 68.3 % for the primary resection group. Significant factors affecting DFS were Child-Pugh classification (P = 0.044), time to recurrence (P = 0.002), tumor differentiation (P = 0.044), and satellite nodules (P = 0.019). Factors influencing OS included Child-Pugh classification (P = 0.040), time to recurrence (P = 0.002), and tumor differentiation (P = 0.032). Conclusions Re-resection is an effective treatment option for rHCC, with favorable outcomes as measured by DFS and OS, though OS is lower compared to initial hepatectomy. Key prognostic factors include Child-Pugh classification, time to recurrence, tumor differentiation, and satellite nodules.
Collapse
Affiliation(s)
- Qi Fan
- Department of General Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Pengcheng Wei
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, China
- Beijing Key Surgical Basic Research Laboratory of Liver Cirrhosis and Liver Cancer, Beijing, China
- Peking University Center of Liver Cancer Diagnosis and Treatment, Beijing, China
| | - Delin Ma
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, China
- Beijing Key Surgical Basic Research Laboratory of Liver Cirrhosis and Liver Cancer, Beijing, China
- Peking University Center of Liver Cancer Diagnosis and Treatment, Beijing, China
| | - Qian Cheng
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, China
- Beijing Key Surgical Basic Research Laboratory of Liver Cirrhosis and Liver Cancer, Beijing, China
- Peking University Center of Liver Cancer Diagnosis and Treatment, Beijing, China
| | - Jie Gao
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, China
- Beijing Key Surgical Basic Research Laboratory of Liver Cirrhosis and Liver Cancer, Beijing, China
- Peking University Center of Liver Cancer Diagnosis and Treatment, Beijing, China
- Peking University Institute of Organ Transplantation, Beijing, China
| | - Jiye Zhu
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, China
- Beijing Key Surgical Basic Research Laboratory of Liver Cirrhosis and Liver Cancer, Beijing, China
- Peking University Center of Liver Cancer Diagnosis and Treatment, Beijing, China
- Peking University Institute of Organ Transplantation, Beijing, China
| | - Zhao Li
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, China
- Beijing Key Surgical Basic Research Laboratory of Liver Cirrhosis and Liver Cancer, Beijing, China
- Peking University Center of Liver Cancer Diagnosis and Treatment, Beijing, China
- Peking University Institute of Organ Transplantation, Beijing, China
| |
Collapse
|
4
|
Gao H, Hu C, Wu Q, Fang Z. BAMBI Is a Prognostic Biomarker Associated with Macrophage Polarization, Glycolysis, and Lipid Metabolism in Hepatocellular Carcinoma. Int J Mol Sci 2024; 25:12713. [PMID: 39684424 DOI: 10.3390/ijms252312713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/15/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common types of cancer worldwide. Affected patients have poor prognoses due to high rates of post-surgical recurrence and metastasis. Bone morphogenetic protein and activin membrane-bound inhibitor (BAMBI) reportedly contributes to the development and progression of various human cancers. Thus far, there have been no comprehensive studies regarding the expression of BAMBI in HCC; similarly, no studies have investigated the prognostic significance of BAMBI and its associated mechanisms in HCC. In this study, we analyzed the expression profiles of BAMBI, along with its contributions to pathological findings, metastasis characteristics, and prognosis, in multiple human cancers. We found that upregulation of BAMBI was associated with poor prognosis in HCC. Next, we explored the associations of BAMBI with multiple cell signaling pathways, immune cells, and immune checkpoints in HCC. The results showed that BAMBI was associated with tumor proliferation, epithelial-mesenchymal transition (EMT) markers, glycolysis, fatty acid biosynthesis and degradation pathways, and immune checkpoint regulation in HCC. In vitro and in vivo experiments showed that BAMBI promoted polarization of M1 macrophages and is linked to the expression of key genes involved in glycolipid metabolism. Furthermore, protein-protein interaction analysis suggested that BAMBI plays multiple roles in HCC by regulating genes in the transforming growth factor (TGF)-β and Wnt signaling pathways. Our findings elucidated that BAMBI is a prognostic biomarker and is associated with macrophage polarization, glycolysis, and lipid metabolism in HCC.
Collapse
Affiliation(s)
- Huijie Gao
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Cuimin Hu
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Qing Wu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Zhongze Fang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
5
|
Mesaros O, Onciul M, Matei E, Joldes C, Jimbu L, Neaga A, Serban O, Zdrenghea M, Nanut AM. Macrophages as Potential Therapeutic Targets in Acute Myeloid Leukemia. Biomedicines 2024; 12:2306. [PMID: 39457618 PMCID: PMC11505058 DOI: 10.3390/biomedicines12102306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/15/2024] [Accepted: 09/20/2024] [Indexed: 10/28/2024] Open
Abstract
Acute myeloid leukemia (AML) is a heterogenous malignant hemopathy, and although new drugs have emerged recently, current treatment options still show limited efficacy. Therapy resistance remains a major concern due to its contribution to treatment failure, disease relapse, and increased mortality among patients. The underlying mechanisms of resistance to therapy are not fully understood, and it is crucial to address this challenge to improve therapy. Macrophages are immune cells found within the bone marrow microenvironment (BMME), of critical importance for leukemia development and progression. One defining feature of macrophages is their plasticity, which allows them to adapt to the variations in the microenvironment. While this adaptability is advantageous during wound healing, it can also be exploited in cancer scenarios. Thus, clinical and preclinical investigations that target macrophages as a therapeutic strategy appear promising. Existing research indicates that targeting macrophages could enhance the effectiveness of current AML treatments. This review addresses the importance of macrophages as therapeutic targets including relevant drugs investigated in clinical trials such as pexidartinib, magrolimab or bexmarilimab, but also provides new insights into lesser-known therapies, like macrophage receptor with a collagenous structure (MACRO) inhibitors and Toll-like receptor (TLR) agonists.
Collapse
Affiliation(s)
- Oana Mesaros
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Babes Str., 400012 Cluj-Napoca, Romania
- Department of Hematology, Ion Chiricuta Oncology Institute, 34-36 Republicii Str., 400015 Cluj-Napoca, Romania
| | - Madalina Onciul
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Babes Str., 400012 Cluj-Napoca, Romania
| | - Emilia Matei
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Babes Str., 400012 Cluj-Napoca, Romania
- Department of Pathology, Ion Chiricuta Oncology Institute, 34-36 Republicii Str., 400015 Cluj-Napoca, Romania
| | - Corina Joldes
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Babes Str., 400012 Cluj-Napoca, Romania
- Octavian Fodor” Regional Institute of Gastroenterology and Hepatology, 19-21 Croitorilor Str., 400162 Cluj-Napoca, Romania
| | - Laura Jimbu
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Babes Str., 400012 Cluj-Napoca, Romania
- Department of Hematology, Ion Chiricuta Oncology Institute, 34-36 Republicii Str., 400015 Cluj-Napoca, Romania
| | - Alexandra Neaga
- Department of Hematology, Ion Chiricuta Oncology Institute, 34-36 Republicii Str., 400015 Cluj-Napoca, Romania
| | - Oana Serban
- Regina Maria” Regional Laboratory in Cluj-Napoca, 109 Observatorului Str., 400363 Cluj-Napoca, Romania
| | - Mihnea Zdrenghea
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Babes Str., 400012 Cluj-Napoca, Romania
- Department of Hematology, Ion Chiricuta Oncology Institute, 34-36 Republicii Str., 400015 Cluj-Napoca, Romania
| | - Ana Maria Nanut
- Regina Maria” Regional Laboratory in Cluj-Napoca, 34-36 Republicii Str., 400015 Cluj-Napoca, Romania
| |
Collapse
|
6
|
Sabit H, Arneth B, Abdel-Ghany S, Madyan EF, Ghaleb AH, Selvaraj P, Shin DM, Bommireddy R, Elhashash A. Beyond Cancer Cells: How the Tumor Microenvironment Drives Cancer Progression. Cells 2024; 13:1666. [PMID: 39404428 PMCID: PMC11475877 DOI: 10.3390/cells13191666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/04/2024] [Accepted: 10/06/2024] [Indexed: 10/19/2024] Open
Abstract
Liver cancer represents a substantial global health challenge, contributing significantly to worldwide morbidity and mortality. It has long been understood that tumors are not composed solely of cancerous cells, but also include a variety of normal cells within their structure. These tumor-associated normal cells encompass vascular endothelial cells, fibroblasts, and various inflammatory cells, including neutrophils, monocytes, macrophages, mast cells, eosinophils, and lymphocytes. Additionally, tumor cells engage in complex interactions with stromal cells and elements of the extracellular matrix (ECM). Initially, the components of what is now known as the tumor microenvironment (TME) were thought to be passive bystanders in the processes of tumor proliferation and local invasion. However, recent research has significantly advanced our understanding of the TME's active role in tumor growth and metastasis. Tumor progression is now known to be driven by an intricate imbalance of positive and negative regulatory signals, primarily influenced by specific growth factors produced by both inflammatory and neoplastic cells. This review article explores the latest developments and future directions in understanding how the TME modulates liver cancer, with the aim of informing the design of novel therapies that target critical components of the TME.
Collapse
Affiliation(s)
- Hussein Sabit
- Department of Medical Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P.O. Box 77, Egypt; (H.S.); (E.F.M.)
| | - Borros Arneth
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Hospital of the Universities of Giessen and Marburg (UKGM), Philipps University Marburg, Baldinger Str., 35043 Marburg, Germany
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Hospital of the Universities of Giessen and Marburg (UKGM), Justus Liebig University Giessen, Feulgenstr. 12, 35392 Giessen, Germany
| | - Shaimaa Abdel-Ghany
- Department of Environmental Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P.O. Box 77, Egypt;
| | - Engy F. Madyan
- Department of Medical Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P.O. Box 77, Egypt; (H.S.); (E.F.M.)
| | - Ashraf H. Ghaleb
- Department of Surgery, College of Medicine, Misr University for Science and Technology, Giza P.O. Box 77, Egypt;
- Department of Surgery, College of Medicine, Cairo University, Giza 12613, Egypt
| | - Periasamy Selvaraj
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA; (P.S.); (R.B.)
| | - Dong M. Shin
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA;
| | - Ramireddy Bommireddy
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA; (P.S.); (R.B.)
| | - Ahmed Elhashash
- Department of Biology, Texas A&M University, 3258 TAMU I, College Station, TX 77843-3258, USA
| |
Collapse
|
7
|
Zhang Y, Han G, Gu J, Chen Z, Wu J. Role of tumor-associated macrophages in hepatocellular carcinoma: impact, mechanism, and therapy. Front Immunol 2024; 15:1429812. [PMID: 39170620 PMCID: PMC11335564 DOI: 10.3389/fimmu.2024.1429812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/08/2024] [Indexed: 08/23/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly frequent malignancy worldwide. The occurrence and progression of HCC is a complex process closely related to the polarization of tumor-associated macrophages (TAMs) in the tumor microenvironment (TME). The polarization of TAMs is affected by a variety of signaling pathways and surrounding cells. Evidence has shown that TAMs play a crucial role in HCC, through its interaction with other immune cells in the TME. This review summarizes the origin and phenotypic polarization of TAMs, their potential impacts on HCC, and their mechanisms and potential targets for HCC immunotherapy.
Collapse
Affiliation(s)
- Yinqi Zhang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China
- National Health Commission (NHC) Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China
| | - Guoyong Han
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China
- National Health Commission (NHC) Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China
| | - Jian Gu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China
- National Health Commission (NHC) Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China
| | - Zhiqiang Chen
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China
- National Health Commission (NHC) Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China
| | - Jindao Wu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China
- National Health Commission (NHC) Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China
| |
Collapse
|
8
|
Chen H, Li J, Cao D, Tang H. Construction of a Prognostic Model for Hepatocellular Carcinoma Based on Macrophage Polarization-Related Genes. J Hepatocell Carcinoma 2024; 11:857-878. [PMID: 38751862 PMCID: PMC11095518 DOI: 10.2147/jhc.s453080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 05/07/2024] [Indexed: 05/18/2024] Open
Abstract
Background The progression of hepatocellular carcinoma (HCC) is related to macrophage polarization (MP). Our aim was to identify genes associated with MP in HCC patients and develop a prognostic model based on these genes. Results We successfully developed a prognostic model consisting of six MP-related genes (SCN4A, EBF3, ADGRB2, HOXD9, CLEC1B, and MSC) to calculate the risk score for each patient. Patients were then classified into high- and low-risk groups based on their median risk score. The performance of the MP-related prognostic model was evaluated using Kaplan-Meier and ROC curves, which yielded favorable results. Additionally, the nomogram demonstrated good clinical effectiveness and displayed consistent survival predictions with actual observations. Gene Set Enrichment Analysis (GSEA) revealed enrichment of pathways related to KRAS signaling downregulation, the G2M checkpoint, and E2F targets in the high-risk group. Conversely, pathways associated with fatty acid metabolism, xenobiotic metabolism, bile acid metabolism, and adipogenesis were enriched in the low-risk group. The risk score positively correlated with the number of invasion-related genes. Immune checkpoint expression differed significantly between the two groups. Patients in the high-risk group exhibited increased sensitivity to mitomycin C, cisplatin, gemcitabine, rapamycin, and paclitaxel, while those in the low-risk group showed heightened sensitivity to doxorubicin. These findings suggest that the high-risk group may have more invasive HCC with greater susceptibility to specific drugs. IHC staining revealed higher expression levels of SCN4A in HCC tissues. Furthermore, experiments conducted on HepG2 cells demonstrated that supernatants from cells with reduced SCN4A expression promoted M2 macrophage polarization marker, CD163 in THP-1 cells. Reduced SCN4A expression induced HCC-related genes, while increased SCN4A expression reduced their expression in HepG2 cells. Conclusion The MP-related prognostic model comprising six MPRGs can effectively predict HCC prognosis, infer invasiveness, and guide drug therapy. SCN4A is identified as a suppressor gene in HCC.
Collapse
Affiliation(s)
- Han Chen
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, People’s Republic of China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Jianhao Li
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, People’s Republic of China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Dan Cao
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, People’s Republic of China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, People’s Republic of China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, People’s Republic of China
| |
Collapse
|
9
|
Wang J, Liu C, Hu R, Wu L, Li C. Statin therapy: a potential adjuvant to immunotherapies in hepatocellular carcinoma. Front Pharmacol 2024; 15:1324140. [PMID: 38362156 PMCID: PMC10867224 DOI: 10.3389/fphar.2024.1324140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/23/2024] [Indexed: 02/17/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent cancers worldwide and accounts for more than 90% of primary liver cancer. The advent of immune checkpoint inhibitor (ICI)-related therapies combined with angiogenesis inhibition has revolutionized the treatment of HCC in late-stage and unresectable HCC, as ICIs alone were disappointing in treating HCC. In addition to the altered immune microenvironment, abnormal lipid metabolism in the liver has been extensively characterized in various types of HCC. Stains are known for their cholesterol-lowering properties and their long history of treating hypercholesterolemia and reducing cardiovascular disease risk. Apart from ICI and other conventional therapies, statins are frequently used by advanced HCC patients with dyslipidemia, which is often marked by the abnormal accumulation of cholesterol and fatty acids in the liver. Supported by a body of preclinical and clinical studies, statins may unexpectedly enhance the efficacy of ICI therapy in HCC patients through the regulation of inflammatory responses and the immune microenvironment. This review discusses the abnormal changes in lipid metabolism in HCC, summarizes the clinical evidence and benefits of stain use in HCC, and prospects the possible mechanistic actions of statins in transforming the immune microenvironment in HCC when combined with immunotherapies. Consequently, the use of statin therapy may emerge as a novel and valuable adjuvant for immunotherapies in HCC.
Collapse
Affiliation(s)
- Jiao Wang
- Department of Laboratory Medicine, Wuhan Hospital of Traditional Chinese and Western Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chengyu Liu
- Department of Transfusion Medicine, Wuhan Hospital of Traditional Chinese and Western Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ronghua Hu
- Department of Transfusion Medicine, Wuhan Hospital of Traditional Chinese and Western Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Licheng Wu
- School of Clinical Medicine, Nanchang Medical College, Nanchang, China
| | - Chuanzhou Li
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
10
|
Fang XH, Li ZJ, Liu CY, Mor G, Liao AH. Macrophage memory: Types, mechanisms, and its role in health and disease. Immunology 2024; 171:18-30. [PMID: 37702350 DOI: 10.1111/imm.13697] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 09/05/2023] [Indexed: 09/14/2023] Open
Abstract
On the basis of the mechanisms of action and characteristics of immune effects, immunity is commonly categorized into innate and adaptive immunity. Adaptive immunity is associated with the response to non-self-entities and is characterized by high specificity and memory properties. In contrast, innate immunity has traditionally been considered devoid of memory characteristics. However, an increasing number of studies have sought to challenge this conventional immunological dogma and shown that innate immune cells exhibit a more robust and rapid response to secondary stimulation, thus providing evidence of the immunological memory in innate immunity. Macrophages, which are among the most important innate immune cells, can also acquire memory phenotype that facilitates the mediation of recall responses. Macrophage memory is a relatively new concept that is revolutionizing our understanding of macrophage biology and immunological memory and could lead to a new class of vaccines and immunotherapies. In this review, we describe the characteristics and mechanisms of macrophage memory, as well as its essential roles in various diseases.
Collapse
Affiliation(s)
- Xu-Hui Fang
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Zhi-Jing Li
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Chun-Yan Liu
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Gil Mor
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
- C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Ai-Hua Liao
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| |
Collapse
|
11
|
Chen H, Cao D, Han N, Zhang M, Jiang W, Wang X, Zeng Q, Tang H. Hepatitis B Virus-Encoded MicroRNA (HBV-miR-3) Inhibits FIH-1 Expression to Promote Tumor Angiogenesis in HBV-Related Hepatocellular Carcinoma. J Hepatocell Carcinoma 2023; 10:2337-2353. [PMID: 38163053 PMCID: PMC10757782 DOI: 10.2147/jhc.s436926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/08/2023] [Indexed: 01/03/2024] Open
Abstract
Introduction Hepatocellular carcinoma (HCC) is a solid tumor with a rich blood supply, and anti-angiogenesis has important clinical significance. Hepatitis B Virus-Encoded MicroRNA 3 (HBV-miR-3) has recently been reported to be involved in HCC development. In this study, we aim to elucidate the role of HBV-miR-3 in promoting HBV-related HCC angiogenesis through Factor Inhibiting Hypoxia-inducible factor 1 (FIH-1). Results By analyzing HBV-related HCC tissue samples, we found that high expression of HBV-miR-3 was associated with poor overall survival and HBV-miR-3 expression was significantly correlated with VEGFR2 and FIH-1 expressions. In vitro, HBV-miR-3 agomir repressed FIH-1 expression and promoted HIF-1α/VEGFA signaling activation in HepG2 cells, resulting in increased HUVEC lumen formation in HepG2-HUVEC co-culture model. Conversely, HBV-miR-3 antagomir induced FIH-1 expression and inhibited HIF-1α/VEGFA signaling activation in HepG2.2.15 cells, resulting in decreased HUVEC lumen formation in HepG2.2.15-HUVEC co-culture model. The effect of HBV-miR-3 to HCC angiogenesis was also confirmed by a mouse tumor bearing model. We also confirmed that HBV-miR-3 repressed FIH-1 expression via targeting the 3'-UTR of FIH-1 mRNA by luciferase activity assay. Conclusion HBV-miR-3 was related to HCC patients' overall survival and it promoted angiogenesis by repressing FIH-1 expression. HBV-miR-3 may be a new marker for predicting prognosis and a novel target for anti-angiogenic treatment of HBV-related HCC.
Collapse
Affiliation(s)
- Han Chen
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, Sichuan, People’s Republic of China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Dan Cao
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, Sichuan, People’s Republic of China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Ning Han
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, Sichuan, People’s Republic of China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Mingming Zhang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, Sichuan, People’s Republic of China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Wei Jiang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, Sichuan, People’s Republic of China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Xin Wang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, Sichuan, People’s Republic of China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Qinmin Zeng
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, Sichuan, People’s Republic of China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, Sichuan, People’s Republic of China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, People’s Republic of China
| |
Collapse
|
12
|
Lu Y, Han G, Zhang Y, Zhang L, Li Z, Wang Q, Chen Z, Wang X, Wu J. M2 macrophage-secreted exosomes promote metastasis and increase vascular permeability in hepatocellular carcinoma. Cell Commun Signal 2023; 21:299. [PMID: 37904170 PMCID: PMC10614338 DOI: 10.1186/s12964-022-00872-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/31/2022] [Indexed: 11/01/2023] Open
Abstract
BACKGROUND Metastasis is a key feature of malignant tumors and significantly contributes to their high mortality, particularly in hepatocellular carcinoma (HCC). Therefore, it is imperative to explore the mechanism of tumor metastasis. Recently, tumor-associated macrophages (TAMs) have been demonstrated to promote tumor progression, while TAM-derived molecules involved in HCC metastasis warrant further investigation. METHODS THP-1 was treated with IL-4 (Interleukin-4) and IL-13 (Interleukin-13) for M2 polarized macrophages. Exosomes derived from M2 macrophages were characterized. Then, HCC cells or human umbilical vein endothelial cells (HUVECs) were co-cultured with M2 macrophages or treated with M2 macrophage-secreted exosomes. Next, Transwell®, Scratch assay, tube formation, and endothelial permeability assays were performed. Moreover, RT-PCR, western blotting, immunofluorescence, and ELISA were used to assess mRNA and protein expression levels. Finally, the miRNA expression profiles of exosomes derived from M2 and M0 macrophages were analyzed. RESULTS M2 macrophage infiltration was correlated with metastasis and a poor prognosis in HCC patients. M2-derived exosomes were absorbed by HCC and HUVEC cells and promoted the epithelial-mesenchymal transition (EMT), vascular permeability, and angiogenesis. Notably, MiR-23a-3p levels were significantly higher in M2-derived exosomes and hnRNPA1 mediated miR-23a-3p packaging into exosomes. Phosphatase and tensin homolog (PTEN) and tight junction protein 1 (TJP1) were the targets of miR-23a-3p, as confirmed by luciferase reporter assays. Lastly, HCC cells co-cultured with M2-derived exosomes secreted more GM-CSF, VEGF, G-CSF, MCP-1, and IL-4, which in turn further recruited M2 macrophages. CONCLUSIONS Our findings suggest that M2 macrophage-derived miR-23a-3p enhances HCC metastasis by promoting EMT and angiogenesis, as well as increasing vascular permeability. Video Abstract.
Collapse
Affiliation(s)
- Yiwei Lu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation,, Nanjing Medical University Nanjing, Nanjing, Jiangsu Province, China
| | - Guoyong Han
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation,, Nanjing Medical University Nanjing, Nanjing, Jiangsu Province, China
| | - Yao Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation,, Nanjing Medical University Nanjing, Nanjing, Jiangsu Province, China
| | - Long Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation,, Nanjing Medical University Nanjing, Nanjing, Jiangsu Province, China
| | - Zhi Li
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qingyuan Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation,, Nanjing Medical University Nanjing, Nanjing, Jiangsu Province, China
| | - Zhiqiang Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation,, Nanjing Medical University Nanjing, Nanjing, Jiangsu Province, China
| | - Xuehao Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China.
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation,, Nanjing Medical University Nanjing, Nanjing, Jiangsu Province, China.
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.
| | - Jindao Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China.
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation,, Nanjing Medical University Nanjing, Nanjing, Jiangsu Province, China.
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
13
|
Nakano T, Chen CL, Chen IH, Tseng HP, Chiang KC, Lai CY, Hsu LW, Goto S, Lin CC, Cheng YF. Overexpression of miR-4669 Enhances Tumor Aggressiveness and Generates an Immunosuppressive Tumor Microenvironment in Hepatocellular Carcinoma: Its Clinical Value as a Predictive Biomarker. Int J Mol Sci 2023; 24:ijms24097908. [PMID: 37175615 PMCID: PMC10177802 DOI: 10.3390/ijms24097908] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Accumulating evidence suggests the involvement of tumor-derived exosomes in the development and recurrence of hepatocellular carcinoma (HCC). We previously identified miR-4669 as a highly expressed microRNA in circulating exosomes obtained from patients with post-transplant HCC recurrence. This study aimed to explore how overexpression of miR-4669 affects HCC development and recurrence. The impact of miR-4669 overexpression in Hep3B cells on tumor cell behavior and the tumor microenvironment was evaluated in vitro. In addition, the clinical value of exosomal miR-4669 for the prediction of treatment response to HCC downstaging therapies and following post-transplant HCC recurrence was explored. Overexpression of miR-4669 enhanced migration ability and led to acquired sorafenib resistance with an elevation of sirtuin 1 and long noncoding RNA associated with microvascular invasion. Active release of tumor-derived exosomes and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) contributed to generating an immunosuppressive tumor microenvironment through the induction of M2 macrophage polarization. The retrospective analysis demonstrated the clinical value of exosomal miR-4669 for predicting treatment response to HCC downstaging therapies and for risk assessment of post-transplant HCC recurrence. In summary, the present data demonstrate the impact of exosomal miR-4669 on HCC recurrence through the enhancement of tumor aggressiveness and generation of an immunosuppressive tumor microenvironment.
Collapse
Affiliation(s)
- Toshiaki Nakano
- Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Taoyuan 333, Taiwan
- Liver Transplantation Center, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Chao-Long Chen
- Liver Transplantation Center, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - I-Hsuan Chen
- Liver Transplantation Center, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Hui-Peng Tseng
- Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Taoyuan 333, Taiwan
- Liver Transplantation Center, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Kuei-Chen Chiang
- Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Taoyuan 333, Taiwan
- Liver Transplantation Center, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Chia-Yun Lai
- Liver Transplantation Center, Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Li-Wen Hsu
- Liver Transplantation Center, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Shigeru Goto
- Liver Transplantation Center, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- Nobeoka Medical Check Center, Fukuoka Institution of Occupational Health, Nobeoka 882-0872, Japan
| | - Chih-Che Lin
- Liver Transplantation Center, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Yu-Fan Cheng
- Liver Transplantation Center, Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| |
Collapse
|
14
|
Ishii M, Ibuki S, Morinaga J, Shimata K, Hirukawa K, Isono K, Honda M, Sugawara Y, Inomata Y, Hibi T. Elevated Alfa-Fetoprotein and Des-Gamma-Carboxy Prothrombin Levels Predict Poor Outcomes After Liver Transplantation for Hepatocellular Carcinoma Beyond the Japan Criteria. Transplant Proc 2023; 55:606-612. [PMID: 37005157 DOI: 10.1016/j.transproceed.2023.02.047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/24/2023] [Indexed: 04/03/2023]
Abstract
AIM The Japan criteria (Milan criteria + 5-5-500 rule) was established recently to select cirrhotic patients with hepatocellular carcinoma for liver transplantation. We evaluated factors associated with poor prognosis after liver transplantation and investigated whether a further extension of the criteria would be worthwhile. METHODS We retrospectively analyzed 86 patients who underwent liver transplantation for hepatocellular carcinoma at Kumamoto University Hospital since 2004; 69 patients (80.2%) met the Japan criteria (the JCIN group), and 17 patients (19.8%) did not (the JCOUT group). RESULTS The 5-year cancer-specific survival rates of the JCIN group (92.2%) were significantly better than that of the JCOUT group (39.2%; P < .001). In univariable analysis, alfa-fetoprotein and des-gamma-carboxy prothrombin were significant independent factors associated with cancer-specific survival rates. According to the receiver operating characteristic curves, the cutoff values of alfa-fetoprotein and des-gamma-carboxy prothrombin that predicted hepatocellular carcinoma recurrence after liver transplantation were 756 ng/mL and 1976 mAU/mL, respectively. The JCOUT group was divided into 2 subgroups according to alfa-fetoprotein and des-gamma-carboxy prothrombin: low risk (alfa-fetoprotein level <756 ng/mL and des-gamma-carboxy prothrombin level <1976 mAU/mL) and high risk (alfa-fetoprotein level ≥756 ng/mL and/or des-gamma-carboxy prothrombin level ≥1976 mAU/mL). The 5-year cancer-specific survival rate in the low-risk group (67.5%) was significantly better than that in the high-risk group (0%; P < .001). CONCLUSIONS Alfa-fetoprotein levels of <756 ng/mL and des-gamma-carboxy prothrombin levels of <1976 mAU/mL may help identify cirrhotic patients with hepatocellular carcinoma who do not meet the Japan criteria but still benefit from liver transplantation.
Collapse
|
15
|
Kanlı Z, Cabadak H, Aydın B. Potential antiproliferative and apoptotic effects of pilocarpine combined with TNF alpha in chronic myeloid leukemia cells. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023:10.1007/s00210-023-02418-4. [PMID: 36781441 DOI: 10.1007/s00210-023-02418-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 02/02/2023] [Indexed: 02/15/2023]
Abstract
Pilocarpine is a selective M1/M3 agonist of muscarinic acetylcholine receptor subtypes. Muscarinic acetylcholine receptors are G protein-coupled receptors. These receptors are different drug targets. The aim of the present work was to investigate the effect of pilocarpine on the expression of M3 muscarinic acetylcholine receptor, the AChE activity, IL-8 release response, and proliferation in K562 cells, via muscarinic receptor activation. Human chronic myeloid leukemic cell cultures were incubated with drugs. Proliferation assays were performed by BrdU assay. Expression of M3 muscarinic acetylcholine receptor and apoptosis proteins such as bcl, bax, cyt C, and caspases was assessed with the semiquantitative Western blotting method. Pilocarpine inhibits chronic myeloid cell proliferation and M3 muscarinic acetylcholine receptor protein expression. Pilocarpine increases caspase-8 and -9 expression levels, upregulating the proapoptotic protein Bax and downregulating the expression levels of the antiapoptotic protein Bcl-2. The apoptotic activity of pilocarpine is associated with an increase in AChE activity. M3 muscarinic acetylcholine receptors can activate multiple signal transduction systems and mediate inhibitory effects on chronic myeloid K562 cell proliferation depending on the presence of 1% FBS conditions. This apoptotic effect of pilocarpine may be due to the concentration of pilocarpine and the increase in AChE level. Our results suggest that inhibition of cell proliferation by inducing apoptosis of pilocarpine in K562 cells may be one of the targets. M3 selective agonist may have therapeutic potential in chronic myeloid leukemia.
Collapse
Affiliation(s)
- Zehra Kanlı
- Institute of Health Sciences, Marmara University, Basibuyuk-Maltepe, Istanbul, 34854, Turkey
| | - Hülya Cabadak
- Marmara University, School of Medicine, Department of Biophysics, Basic Medical Sciences Building, Maltepe, Istanbul, 34854, Turkey.
| | - Banu Aydın
- Marmara University, School of Medicine, Department of Biophysics, Basic Medical Sciences Building, Maltepe, Istanbul, 34854, Turkey
| |
Collapse
|
16
|
Pooladanda V, Thatikonda S, Priya Muvvala S, Godugu C. Acute respiratory distress syndrome enhances tumor metastasis into lungs: Role of BRD4 in the tumor microenvironment. Int Immunopharmacol 2023; 115:109701. [PMID: 36641892 PMCID: PMC9827001 DOI: 10.1016/j.intimp.2023.109701] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/26/2022] [Accepted: 01/04/2023] [Indexed: 01/10/2023]
Abstract
Acute respiratory distress syndrome (ARDS) is associated with severe lung inflammation, edema, hypoxia, and high vascular permeability. The COVID-19-associated pandemic ARDS caused by SARS-CoV-2 has created dire global conditions and has been highly contagious. Chronic inflammatory disease enhances cancer cell proliferation, progression, and invasion. We investigated how acute lung inflammation activates the tumor microenvironment and enhances lung metastasis in LPS induced in vitro and in vivo models. Respiratory illness is mainly caused by cytokine storm, which further influences oxidative and nitrosative stress. The LPS-induced inflammatory cytokines made the conditions suitable for the tumor microenvironment in the lungs. In the present study, we observed that LPS induced the cytokine storm and promoted lung inflammation via BRD4, which further caused the nuclear translocation of p65 NF-κB and STAT3. The transcriptional activation additionally triggers the tumor microenvironment and lung metastasis. Thus, BRD4-regulated p65 and STAT3 transcriptional activity in ARDS enhances lung tumor metastasis. Moreover, LPS-induced ARDS might promote the tumor microenvironment and increase cancer metastasis into the lungs. Collectively, BRD4 plays a vital role in inflammation-mediated tumor metastasis and is found to be a diagnostic and molecular target in inflammation-associated cancers.
Collapse
Affiliation(s)
- Venkatesh Pooladanda
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana 500037, India,Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA 02114, USA,Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Sowjanya Thatikonda
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana 500037, India,Department of Head and Neck‐Endocrine Oncology, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Sai Priya Muvvala
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana 500037, India
| | - Chandraiah Godugu
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana 500037, India.
| |
Collapse
|
17
|
Kurihara T, Harada N, Morinaga A, Tomiyama T, Toshida K, Kosai Y, Tomino T, Toshima T, Nagao Y, Morita K, Itoh S, Yoshizumi T. Predictive Factors for the Resectable Type of Hepatocellular Carcinoma Recurrence After Living Donor Liver Transplant. Transplant Proc 2023; 55:191-196. [PMID: 36564321 DOI: 10.1016/j.transproceed.2022.09.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 12/24/2022]
Abstract
Recurrence of hepatocellular carcinoma (HCC) after living donor liver transplant (LDLT) is an essential factor defining prognosis, and surgical resection is the only curative treatment. However, the factors that define whether surgical resection is possible remain unclear. Here, we compared resectable and unresectable HCC recurrence cases after LDLT and examined factors that determine whether surgical resection is possible. Resectable (n = 17) and unresectable (n = 14) groups among 264 patients who underwent LDLT for HCC from January 1999 to March 2020 were compared and examined for recurrence type, prognosis, and clinicopathologic factors. Overall survival after LDLT (median, 8.5 vs 1.7 years, P < .01) was significantly longer in the resectable group. In univariate analysis, female recipient rate, lymphocyte to monocyte ratio (LMR) ≥2.75, and tumor size ≤5.0 cm were significantly higher in the resectable group. Younger donors, lower Model for End-Stage Liver Disease scores, lower graft volume, and lower graft volume to standard liver volume ratio were evident in the resectable group. In multivariate analysis, female recipient rate (P = .0034) and LMR ≥2.75 (P = .0203) were independent predictive factors for resectable HCC recurrence after LDLT. Female recipient and LMR ≥2.75 before transplant could predict the surgically resectable type of HCC recurrence after LDLT.
Collapse
Affiliation(s)
- Takeshi Kurihara
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Noboru Harada
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Akinari Morinaga
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takahiro Tomiyama
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Katsuya Toshida
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yukiko Kosai
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takahiro Tomino
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takeo Toshima
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshihiro Nagao
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazutoyo Morita
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shinji Itoh
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomoharu Yoshizumi
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
18
|
Hu B, Qu C, Qi WJ, Liu CH, Xiu DR. Development and verification of the glycolysis-associated and immune-related prognosis signature for hepatocellular carcinoma. Front Genet 2022; 13:955673. [PMID: 36267406 PMCID: PMC9576873 DOI: 10.3389/fgene.2022.955673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 09/05/2022] [Indexed: 11/21/2022] Open
Abstract
Background: Hepatocellular carcinoma (HCC) refers to the malignant tumor associated with a high mortality rate. This work focused on identifying a robust tumor glycolysis-immune-related gene signature to facilitate the prognosis prediction of HCC cases. Methods: This work adopted t-SNE algorithms for predicting glycolysis status in accordance with The Cancer Genome Atlas (TCGA)-derived cohort transcriptome profiles. In addition, the Cox regression model was utilized together with LASSO to identify prognosis-related genes (PRGs). In addition, the results were externally validated with the International Cancer Genome Consortium (ICGC) cohort. Results: Accordingly, the glycolysis-immune-related gene signature, which consisted of seven genes, PSRC1, CHORDC1, KPNA2, CDCA8, G6PD, NEIL3, and EZH2, was constructed based on TCGA-HCC patients. Under a range of circumstances, low-risk patients had extended overall survival (OS) compared with high-risk patients. Additionally, the developed gene signature acted as the independent factor, which was significantly associated with clinical stage, grade, portal vein invasion, and intrahepatic vein invasion among HCC cases. In addition, as revealed by the receiver operating characteristic (ROC) curve, the model showed high efficiency. Moreover, the different glycolysis and immune statuses between the two groups were further revealed by functional analysis. Conclusion: Our as-constructed prognosis prediction model contributes to HCC risk stratification.
Collapse
|
19
|
Ding Y, Wang Z, Zhou F, Chen C, Qin Y. Associating resistance to immune checkpoint inhibitors with immunological escape in colorectal cancer. Front Oncol 2022; 12:987302. [PMID: 36248998 PMCID: PMC9561929 DOI: 10.3389/fonc.2022.987302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/13/2022] [Indexed: 11/13/2022] Open
Abstract
Colorectal cancer is a common malignant tumor that ranks third in incidence and second in mortality worldwide, and surgery in conjunction with chemotherapy and radiotherapy remains the most common treatment option. As a result of radiotherapy’s severe side effects and dismal survival rates, it is anticipated that more alternatives may emerge. Immunotherapy, a breakthrough treatment, has made significant strides in colorectal cancer over the past few years, overcoming specialized therapy, which has more selectivity and a higher survival prognosis than chemoradiotherapy. Among these, immune checkpoint inhibitor therapy has emerged as the primary immunotherapy for colorectal cancer nowadays. Nonetheless, as the use of immune checkpoint inhibitor has expanded, resistance has arisen inevitably. Immune escape is the primary cause of non-response and resistance to immune checkpoint inhibitors. That is the development of primary and secondary drug resistance. In this article, we cover the immune therapy-related colorectal cancer staging, the specific immune checkpoint inhibitors treatment mechanism, and the tumor microenvironment and immune escape routes of immunosuppressive cells that may be associated with immune checkpoint inhibitors resistance reversal. The objective is to provide better therapeutic concepts for clinical results and to increase the number of individuals who can benefit from colorectal cancer immunotherapy.
Collapse
Affiliation(s)
- Yi Ding
- Department of Oncology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zehua Wang
- Department of Oncology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fengmei Zhou
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Chen Chen
- Department of Oncology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanru Qin
- Department of Oncology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Yanru Qin,
| |
Collapse
|
20
|
Exosomal miR-452-5p Induce M2 Macrophage Polarization to Accelerate Hepatocellular Carcinoma Progression by Targeting TIMP3. J Immunol Res 2022; 2022:1032106. [PMID: 36164322 PMCID: PMC9508462 DOI: 10.1155/2022/1032106] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/17/2022] [Indexed: 12/04/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) cell-derived exosomes have shown effects on inducing M2 macrophage polarization and promoting HCC progression. MiR-452-5p was reported by recent studies to promote malignancy progression as an exosomal microRNA that secreted by HCC cells, of which the underlying mechanism remains unclear. Here, we further explored how miR-452-5p functions in HCC. Methods MiR-452-5p expressions in HCC cells was examined by in situ hybridization. Next, HCC cell lines were transfected with the mimics or the inhibitor of miR-452-5p. Transfected cells' biological behavior were analyzed by CCK-8, flow cytometry, and Transwell assay. Then, exosomes were purified from miR-452-5p inhibited or overexpressed HCC cells and cocultured with macrophages to examine the role of miR-452-5p in macrophage polarization. To examine the role of exosomal miR-452-5p on macrophage polarization and tumor growth. We also performed the dual-luciferase assay to explore the targeting relationship between miR-452-5p and TIMP3. Results The upregulation of miR-452-5p was identified in HCC. The effects of HCC cell-derived exosomes on accelerating HCC migration and invasion and inducing M2 macrophage polarization were confirmed, which were further enhanced after overexpressing miR-452-5p but neutralized after silencing miR-452-5p. In addition, in vivo experiments demonstrated the effect of miR-452-5p on accelerating HCC growth and metastasis. Also, we identified that TIMP3 overexpression inhibited the promoted cell invasion and migration by HCC cell-derived exosomes. Conclusion Exosomal miR-452-5p secreted from HCC cells could induce polarization of M2 macrophage and therefore stimulating HCC progression by targeting TIMP3. Thus, miR-452-5p might be a potential biomarker for HCC prognosis.
Collapse
|
21
|
Wang PW, Lin TY, Yang PM, Yeh CT, Pan TL. Hepatic Stellate Cell Modulates the Immune Microenvironment in the Progression of Hepatocellular Carcinoma. Int J Mol Sci 2022; 23:ijms231810777. [PMID: 36142683 PMCID: PMC9503407 DOI: 10.3390/ijms231810777] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/29/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a major cause of increases in the mortality rate due to cancer that usually develops in patients with liver fibrosis and impaired hepatic immunity. Hepatic stellate cells (HSCs) may directly or indirectly crosstalk with various hepatic cells and subsequently modulate extracellular remodeling, cell invasion, macrophage conversion, and cancer deterioration. In this regard, the tumor microenvironment created by activated HSC plays a critical role in mediating pathogenesis and immune escape during HCC progression. Herein, intermediately differentiated human liver cancer cell line (J5) cells were co-cultured with HSC-conditioned medium (HSC-CM); changes in cell phenotype and cytokine profiles were analyzed to assess the impact of HSCs on the development of hepatoma. The stage of liver fibrosis correlated significantly with tumor grade, and the administration of conditioned medium secreted by activated HSC (aHSC-CM) could induce the expression of N-cadherin, cell migration, and invasive potential, as well as the activity of matrix metalloproteinases in J5 cells, implying that aHSC-CM could trigger the epithelial-mesenchymal transition (EMT). Next, the HSC-CM was further investigated and network analysis indicated that specific cytokines and soluble proteins, such as activin A, released from activated HSCs could remarkably affect the tumor-associated immune microenvironment involved in macrophage polarization, which would, in turn, diminish a host’s immune surveillance and drive hepatoma cells into a more malignant phenotype. Together, our findings provide a novel insight into the integral roles of HSCs to enhance hepatocarcinogenesis through their immune-modulatory properties and suggest that HSC may serve as a potent target for the treatment of advanced HCC.
Collapse
Affiliation(s)
- Pei-Wen Wang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40447, Taiwan
| | - Tung-Yi Lin
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital at Keelung, Keelung 20401, Taiwan
| | - Pei-Ming Yang
- TMU Research Center of Cancer Translational Medicine, Taipei 11042, Taiwan
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11042, Taiwan
| | - Chau-Ting Yeh
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan 33375, Taiwan
| | - Tai-Long Pan
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan 33375, Taiwan
- School of Traditional Chinese Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Cosmetic Science, Research Center for Food and Cosmetic Safety, and Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan
- Correspondence: ; Tel.: +886-3-211-8800 (ext. 5105); Fax: +886-3-211-8700
| |
Collapse
|
22
|
Preoperative inflammatory markers as prognostic predictors after hepatocellular carcinoma resection: data from a western referral center. BMC Surg 2022; 22:329. [PMID: 36056350 PMCID: PMC9440527 DOI: 10.1186/s12893-022-01779-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 08/26/2022] [Indexed: 12/23/2022] Open
Abstract
Background Recent studies from eastern centers have demonstrate an association between inflammatory response and long-term outcomes after hepatocellular carcinoma (HCC) resection. However, the prognostic impact of inflammatory markers in western patients, with distinct tumor and epidemiologic features, is still unknown. Aim To evaluate the prognostic impact of preoperative neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), and monocyte-to-lymphocyte ratio (MLR), as well as their impact according to tumor size (< 5 cm, 5–10 cm, > 10 cm) in patients undergoing HCC resection with curative intent.
Methods Optimal cut-off values for NLR, PLR, and MLR were determined by plotting the receiver operator curves. Overall survival (OS) and disease-free survival (DFS) curves were calculated using the Kaplan–Meier method and compared using the log-rank test. The Cox method was used to identify independent predictors of OS and DFS. Results In total, 161 consecutive adult patients were included. A high NLR (> 1.715) was associated with worse OS (P = 0.018). High NLR (> 2.475; P = 0.047) and PLR (> 100.25; P = 0.028) were predictors of short DFS. In HCC < 5 cm, MLR (> 1.715) was associated with worse OS (P = 0.047). In the multivariate analysis, high PLR was an independent predictor of worse DFS [hazard ratio (HR) 3.029; 95%CI 1.499–6.121; P = 0.002]. Conclusion Inflammatory markers are useful tools to predict long-term outcomes after liver resection in western patients, high NLR was able to stratify subgroups of patients with short OS and DFS, an increased PLR was an independent predictor of short DFS, while high MLR was associated with short OS in patients with early HCC. Supplementary Information The online version contains supplementary material available at 10.1186/s12893-022-01779-6.
Collapse
|
23
|
Chen W, Hu M, Wei T, Liu Y, Tan T, Zhang C, Weng J. IL-1 receptor-associated kinase 1 participates in the modulation of the NLRP3 inflammasome by tumor-associated macrophages in hepatocellular carcinoma. J Gastrointest Oncol 2022; 13:1317-1329. [PMID: 35837195 PMCID: PMC9274051 DOI: 10.21037/jgo-22-471] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/16/2022] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND Hepatocellular carcinomas (HCCs) occur frequently in the digestive system and are associated with high mortality. This current study examined the regulatory relationship between interleukin (IL)-1 receptor-associated kinase 1 (IRAK1), NLR family pyrin domain-containing 3 (NLRP3) inflammasomes, and tumor-associated macrophages (TAMs) in the growth and metastasis of HCC. METHODS The expression of IRAK1 and NLRP3 was assessed in tissues and cells via quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot analysis. Immunohistology was performed to detect the macrophage markers CD68, CD163, and CD168 in tumor tissues. Small interfering (si)RNA targeting IRAK1 (si-IRAK1) was designed to silence IRAK1 expression. Following si-IRAK1 transfection and/or co-culture with TAMs, HCC cell viability, proliferation, migration, and invasion, as well as the expression of NLRP3 and pro-inflammatory cytokines IL-1 β, IL-18, and monocyte chemotactic protein 1 (MCP-1) were assessed. RESULTS HCC tissues showed elevated expression of IRAK1 and NLRP3, as well as increased expression of the macrophage markers CD68, CD163, and CD168, compared to adjacent healthy tissues. Silencing of IRAK1 expression in HepG2 and Huh7 cells resulted in suppression of cell proliferation, migration, and invasion, and also reduced expression of NLRP3 and the pro-inflammatory cytokines IL-1β, IL-18, and MCP-1. Moreover, TAMs promoted HepG2 and Huh7 cell proliferation, migration, and invasion, and elevated the expression of NLRP3, IL-1β, IL-18, and MCP-1. Furthermore, IRAK1 silencing reversed the effects of TAMs on HepG2 and Huh7 cells. CONCLUSIONS The expression of IRAK1 was associated with HCC growth and metastasis, as well as NLRP3 inflammasome activation. The ability of TAMs to promote HCC growth and metastasis may be activated by NLRP3 inflammasomes and regulated by IRAK1.
Collapse
Affiliation(s)
- Wei Chen
- Department of Oncology, People’s Hospital of Huadu District, Guangzhou, China
| | - Mingjuan Hu
- Department of Pathology, People’s Hospital of Huadu District, Guangzhou, China
| | - Tao Wei
- Department of Oncology, People’s Hospital of Huadu District, Guangzhou, China
| | - Ying Liu
- Department of Oncology, People’s Hospital of Huadu District, Guangzhou, China
| | - Tian Tan
- Department of Oncology, People’s Hospital of Huadu District, Guangzhou, China
| | - Chengfang Zhang
- Department of Oncology, People’s Hospital of Huadu District, Guangzhou, China
| | - Jiaxuan Weng
- Department of Oncology, People’s Hospital of Huadu District, Guangzhou, China
| |
Collapse
|
24
|
Interaction of M2 macrophages with hepatocellular carcinoma co-culture system in the presence of doxorubicin-loaded nanoparticles. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
25
|
Zhou J, Liu L, Hu X, Feng R, Zhao N, Zhang L, Hu W, Zhang J, Huang S, Liu L, Li W, Shan Y, Jin J. Matrix metalloproteinase-21 promotes metastasis via increasing the recruitment and M2 polarization of macrophages in HCC. Cancer Sci 2022; 114:423-435. [PMID: 35398966 PMCID: PMC9899621 DOI: 10.1111/cas.15368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 03/30/2022] [Accepted: 04/03/2022] [Indexed: 12/24/2022] Open
Abstract
MMP-21 is a newly identified member of the matrix metalloproteinase family and has been reported to regulate both embryonic development and tumor progression. However, the roles of MMP-21 in hemofiltrate C-C chemokine (HCC) remain largely unclear. In this study, we used western blot, qPCR and immunohistochemistry (IHC) to determine the upregulation of MMP-21 in HCC tissues, and showed that the increase in MMP-21 was associated with vascular invasion and poor prognosis. Although changing levels of MMP-21 in HCC cell lines had no significant effect on cell migration or invasion abilities in in vitro transwell tests, both IHC analysis and in vivo mouse models proved that upregulated MMP-21 promoted metastasis. Functional enrichments of MMP-21 using The Cancer Genome Atlas (TCGA) data suggested that MMP-21 might regulate metastasis via macrophages. Further experiments proved that MMP-21 enhanced macrophage recruitment by increasing CCL-14 levels and promoted M2-type polarization of macrophage by elevating the expression of CSF-1 and FGF-1. Taken together, this study revealed that MMP-21 controlled the tumor microenvironment remodeling and functional regulation of macrophages to regulate HCC metastasis.
Collapse
Affiliation(s)
- Jiangfan Zhou
- Department of Interventional RadiologyThe First Affiliated HospitalWenzhou Medical UniversityWenzhouChina
| | - Li Liu
- Key Laboratory of Laboratory MedicineMinistry of EducationSchool of Laboratory Medicine and Life SciencesWenzhou Medical UniversityWenzhouChina
| | - Xudong Hu
- Key Laboratory of Laboratory MedicineMinistry of EducationSchool of Laboratory Medicine and Life SciencesWenzhou Medical UniversityWenzhouChina
| | - Rong Feng
- Key Laboratory of Laboratory MedicineMinistry of EducationSchool of Laboratory Medicine and Life SciencesWenzhou Medical UniversityWenzhouChina
| | - Niannian Zhao
- Key Laboratory of Laboratory MedicineMinistry of EducationSchool of Laboratory Medicine and Life SciencesWenzhou Medical UniversityWenzhouChina
| | - Li Zhang
- Key Laboratory of Laboratory MedicineMinistry of EducationSchool of Laboratory Medicine and Life SciencesWenzhou Medical UniversityWenzhouChina
| | - Wenhao Hu
- Department of Interventional RadiologyThe First Affiliated HospitalWenzhou Medical UniversityWenzhouChina
| | - Jian Zhang
- Department of Interventional RadiologyThe First Affiliated HospitalWenzhou Medical UniversityWenzhouChina
| | - Shiyong Huang
- Department of Interventional RadiologyThe First Affiliated HospitalWenzhou Medical UniversityWenzhouChina
| | - Lin Liu
- Key Laboratory of Laboratory MedicineMinistry of EducationSchool of Laboratory Medicine and Life SciencesWenzhou Medical UniversityWenzhouChina
| | - Wei Li
- Key Laboratory of Laboratory MedicineMinistry of EducationSchool of Laboratory Medicine and Life SciencesWenzhou Medical UniversityWenzhouChina
| | - Yunfeng Shan
- Department of Hepatobiliary SurgeryThe First Affiliated HospitalWenzhou Medical UniversityWenzhouChina
| | - Jing Jin
- Institute of Glycobiological EngineeringZhejiang Provincial Key Laboratory of Medical GeneticsSchool of Laboratory Medicine and Life SciencesWenzhou Medical UniversityWenzhouChina
| |
Collapse
|
26
|
Xu Y, Wang X, Liu L, Wang J, Wu J, Sun C. Role of macrophages in tumor progression and therapy (Review). Int J Oncol 2022; 60:57. [PMID: 35362544 PMCID: PMC8997338 DOI: 10.3892/ijo.2022.5347] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
The number and phenotype of macrophages are closely related to tumor growth and prognosis. Macrophages are recruited to (and polarized at) the tumor site thereby promoting tumor growth, stimulating tumor angiogenesis, facilitating tumor cell migration, and creating a favorable environment for subsequent colonization by (and survival of) tumor cells. These phenomena contribute to the formation of an immunosuppressive tumor microenvironment (TME) and therefore speed up tumor cell proliferation and metastasis and reduce the efficacy of antitumor factors and therapies. The ability of macrophages to remodel the TME through interactions with other cells and corresponding changes in their number, activity, and phenotype during conventional therapies, as well as the association between these changes and drug resistance, make tumor-associated macrophages a new target for antitumor therapies. In this review, advantages and limitations of the existing antitumor strategies targeting macrophages in Traditional Chinese and Western medicine were analyzed, starting with the effect of macrophages on tumors and their interactions with other cells and then the role of macrophages in conventional treatments was explored. Possible directions of future developments in this field from an all-around multitarget standpoint were also examined.
Collapse
Affiliation(s)
- Yiwei Xu
- Institute of Integrated Medicine, School of Medicine, Qingdao University, Qingdao, Shandong 266073, P.R. China
| | - Xiaomin Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China
| | - Lijuan Liu
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, Shandong 261041, P.R. China
| | - Jia Wang
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, P.R. China
| | - Jibiao Wu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China
| | - Changgang Sun
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, Shandong 261041, P.R. China
| |
Collapse
|
27
|
Cucarull B, Tutusaus A, Rider P, Hernáez-Alsina T, Cuño C, García de Frutos P, Colell A, Marí M, Morales A. Hepatocellular Carcinoma: Molecular Pathogenesis and Therapeutic Advances. Cancers (Basel) 2022; 14:cancers14030621. [PMID: 35158892 PMCID: PMC8833604 DOI: 10.3390/cancers14030621] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/18/2022] [Accepted: 01/22/2022] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC), the most common form of liver cancer, continues to be a serious medical problem with poor prognosis, without major therapeutic improvement for years and increasing incidence. Fortunately, advances in systemic treatment options are finally arriving for HCC patients. After a decade of sorafenib as a standard therapy for advanced HCC, several tyrosine kinase inhibitors (TKIs), antiangiogenic antibodies, and immune checkpoint inhibitors have reached the clinic. Although infections by hepatitis B virus and hepatitis C virus remain principal factors for HCC development, the rise of non- alcoholic steatohepatitis from diabetes mellitus or metabolic syndrome is impeding HCC decline. Knowledge of specific molecular mechanisms, based on the etiology and the HCC microenvironment that influence tumor growth and immune control, will be crucial for physician decision-making among a variety of drugs to prescribe. In addition, markers of treatment efficacy are needed to speed the movement of patients towards other potentially effective treatments. Consequently, research to provide scientific data for the evidence-based management of liver cancer is guaranteed in the coming years and discussed here.
Collapse
Affiliation(s)
- Blanca Cucarull
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, 08036 Barcelona, Spain; (B.C.); (A.T.); (P.R.); (C.C.); (P.G.d.F.); (A.C.)
| | - Anna Tutusaus
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, 08036 Barcelona, Spain; (B.C.); (A.T.); (P.R.); (C.C.); (P.G.d.F.); (A.C.)
| | - Patricia Rider
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, 08036 Barcelona, Spain; (B.C.); (A.T.); (P.R.); (C.C.); (P.G.d.F.); (A.C.)
| | | | - Carlos Cuño
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, 08036 Barcelona, Spain; (B.C.); (A.T.); (P.R.); (C.C.); (P.G.d.F.); (A.C.)
| | - Pablo García de Frutos
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, 08036 Barcelona, Spain; (B.C.); (A.T.); (P.R.); (C.C.); (P.G.d.F.); (A.C.)
- Unidad Asociada (IMIM), IIBB-CSIC, CIBERCV, IDIBAPS, 08036 Barcelona, Spain
| | - Anna Colell
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, 08036 Barcelona, Spain; (B.C.); (A.T.); (P.R.); (C.C.); (P.G.d.F.); (A.C.)
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 08036 Barcelona, Spain
| | - Montserrat Marí
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, 08036 Barcelona, Spain; (B.C.); (A.T.); (P.R.); (C.C.); (P.G.d.F.); (A.C.)
- Correspondence: (M.M.); (A.M.); Tel.: +34-932558314 (M.M. & A.M.)
| | - Albert Morales
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, 08036 Barcelona, Spain; (B.C.); (A.T.); (P.R.); (C.C.); (P.G.d.F.); (A.C.)
- Barcelona Clinic Liver Cancer Group, Liver Unit, Hospital Clínic of Barcelona, University of Barcelona, CIBEREHD, IDIBAPS, 08036 Barcelona, Spain
- Correspondence: (M.M.); (A.M.); Tel.: +34-932558314 (M.M. & A.M.)
| |
Collapse
|
28
|
EMT and Inflammation: Crossroads in HCC. J Gastrointest Cancer 2022; 54:204-212. [PMID: 35020133 DOI: 10.1007/s12029-021-00801-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2021] [Indexed: 10/19/2022]
Abstract
Hepatocellular carcinoma is one of the major causes of cancer-related deaths worldwide and is associated with several inflammatory mediators, since 90% of HCCs occur based on chronic hepatitis B or C, alcoholism or increasingly metabolic syndrome-associated inflammation. EMT is a physiological process, with coordinated changes in epithelial gene signatures and is regulated by multiple factors, including cytokines and growth factors such as TGFβ, EGF, and FGF. Recent reports propose a strong association between EMT and inflammation, which is also correlated with tumor aggressiveness and poor outcomes. Cellular heterogeneity results collectively as an outcome of EMT, inflammation, and the tumor microenvironment, and it plays a fundamental role in the progression, complexity of cancer, and chemoresistance. In this review, we highlight recent developments concerning the association of EMT and inflammation in the context of HCC progression. Identifying potential EMT-related biomarkers and understanding EMT regulatory molecules will likely contribute to promising developments in clinical practice and will be a valuable tool for predicting metastasis in general and specifically in HCC.
Collapse
|
29
|
Gouda G, Gupta MK, Donde R, Behera L, Vadde R. Tumor microenvironment in heptocellular carcinoma. THERANOSTICS AND PRECISION MEDICINE FOR THE MANAGEMENT OF HEPATOCELLULAR CARCINOMA 2022:109-124. [DOI: 10.1016/b978-0-323-98806-3.00007-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
|
30
|
Papachristoforou E, Ramachandran P. Macrophages as key regulators of liver health and disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 368:143-212. [PMID: 35636927 DOI: 10.1016/bs.ircmb.2022.04.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Macrophages are a heterogeneous population of innate immune cells and key cellular components of the liver. Hepatic macrophages consist of embryologically-derived resident Kupffer cells (KC), recruited monocyte-derived macrophages (MDM) and capsular macrophages. Both the diversity and plasticity of hepatic macrophage subsets explain their different functions in the maintenance of hepatic homeostasis and in injury processes in acute and chronic liver diseases. In this review, we assess the evidence for macrophage involvement in regulating both liver health and injury responses in liver diseases including acute liver injury (ALI), chronic liver disease (CLD) (including liver fibrosis) and hepatocellular carcinoma (HCC). In healthy livers, KC display critical functions such as phagocytosis, danger signal recognition, cytokine release, antigen processing and the ability to orchestrate immune responses and maintain immunological tolerance. However, in most liver diseases there is a striking hepatic MDM expansion, which orchestrate both disease progression and regression. Single-cell approaches have transformed our understanding of liver macrophage heterogeneity, dynamics, and functions in both human samples and preclinical models. We will further discuss the new insights provided by these approaches and how they are enabling high-fidelity work to specifically identify pathogenic macrophage subpopulations. Given the important role of macrophages in regulating injury responses in a broad range of settings, there is now a huge interest in developing new therapeutic strategies aimed at targeting macrophages. Therefore, we also review the current approaches being used to modulate macrophage function in liver diseases and discuss the therapeutic potential of targeting macrophage subpopulations as a novel treatment strategy for patients with liver disorders.
Collapse
Affiliation(s)
- Eleni Papachristoforou
- University of Edinburgh Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh BioQuarter, Edinburgh, United Kingdom
| | - Prakash Ramachandran
- University of Edinburgh Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh BioQuarter, Edinburgh, United Kingdom.
| |
Collapse
|
31
|
Moradinasab S, Pourbagheri-Sigaroodi A, Ghaffari SH, Bashash D. Targeting macrophage-mediated tumor cell phagocytosis: An overview of phagocytosis checkpoints blockade, nanomedicine intervention, and engineered CAR-macrophage therapy. Int Immunopharmacol 2021; 103:108499. [PMID: 34972068 DOI: 10.1016/j.intimp.2021.108499] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/15/2021] [Accepted: 12/22/2021] [Indexed: 11/05/2022]
Abstract
Immunotherapy has been developing at an unprecedented speed with promising therapeutic outcomes in the wide spectrum of cancers. Up until now, most immunotherapies have focused on adaptive immunity; however, investigating the potential of macrophage phagocytosis and consequent adaptive immune cross-priming has led to a growing interest in exploiting macrophages in cancer therapy. In light of the positive evidence from preclinical studies and early clinical data, targeting macrophage phagocytosis has become a promising therapeutic strategy. Here, we review therapies based on harnessing and amplifying macrophage phagocytosis, such as blocking phagocytosis checkpoints and exploiting nanoparticles as efficient approaches in elevating macrophages-mediated phagocytosis. The present study introduces CAR-macrophage as the state-of-the-art modality serving as the bridge between the innate and adaptive immune system to mount a superior anti-tumor response in the treatment of cancer. We also take a look at the recent reports of therapies based on CAR-engineered macrophages with the hope of providing a future research direction for expanding the application of CAR-macrophage therapy.
Collapse
Affiliation(s)
- Susan Moradinasab
- Iranian Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Atieh Pourbagheri-Sigaroodi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed H Ghaffari
- Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
32
|
Circulating Tumour Cells (CTCs) in NSCLC: From Prognosis to Therapy Design. Pharmaceutics 2021; 13:pharmaceutics13111879. [PMID: 34834295 PMCID: PMC8619417 DOI: 10.3390/pharmaceutics13111879] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/27/2021] [Accepted: 10/30/2021] [Indexed: 02/08/2023] Open
Abstract
Designing optimal (neo)adjuvant therapy is a crucial aspect of the treatment of non-small-cell lung carcinoma (NSCLC). Standard methods of chemotherapy, radiotherapy, and immunotherapy represent effective strategies for treatment. However, in some cases with high metastatic activity and high levels of circulating tumour cells (CTCs), the efficacy of standard treatment methods is insufficient and results in treatment failure and reduced patient survival. CTCs are seen not only as an isolated phenomenon but also a key inherent part of the formation of metastasis and a key factor in cancer death. This review discusses the impact of NSCLC therapy strategies based on a meta-analysis of clinical studies. In addition, possible therapeutic strategies for repression when standard methods fail, such as the administration of low-toxicity natural anticancer agents targeting these phenomena (curcumin and flavonoids), are also discussed. These strategies are presented in the context of key mechanisms of tumour biology with a strong influence on CTC spread and metastasis (mechanisms related to tumour-associated and -infiltrating cells, epithelial–mesenchymal transition, and migration of cancer cells).
Collapse
|
33
|
Schobert IT, Savic LJ. Current Trends in Non-Invasive Imaging of Interactions in the Liver Tumor Microenvironment Mediated by Tumor Metabolism. Cancers (Basel) 2021; 13:3645. [PMID: 34359547 PMCID: PMC8344973 DOI: 10.3390/cancers13153645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/12/2021] [Accepted: 07/16/2021] [Indexed: 11/17/2022] Open
Abstract
With the increasing understanding of resistance mechanisms mediated by the metabolic reprogramming in cancer cells, there is a growing clinical interest in imaging technologies that allow for the non-invasive characterization of tumor metabolism and the interactions of cancer cells with the tumor microenvironment (TME) mediated through tumor metabolism. Specifically, tumor glycolysis and subsequent tissue acidosis in the realms of the Warburg effect may promote an immunosuppressive TME, causing a substantial barrier to the clinical efficacy of numerous immuno-oncologic treatments. Thus, imaging the varying individual compositions of the TME may provide a more accurate characterization of the individual tumor. This approach can help to identify the most suitable therapy for each individual patient and design new targeted treatment strategies that disable resistance mechanisms in liver cancer. This review article focuses on non-invasive positron-emission tomography (PET)- and MR-based imaging techniques that aim to visualize the crosstalk between tumor cells and their microenvironment in liver cancer mediated by tumor metabolism.
Collapse
Affiliation(s)
- Isabel Theresa Schobert
- Department of Radiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany;
| | - Lynn Jeanette Savic
- Department of Radiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany;
- Berlin Institute of Health, 10178 Berlin, Germany
| |
Collapse
|
34
|
Moeini P, Niedźwiedzka-Rystwej P. Tumor-Associated Macrophages: Combination of Therapies, the Approach to Improve Cancer Treatment. Int J Mol Sci 2021; 22:ijms22137239. [PMID: 34281293 PMCID: PMC8269174 DOI: 10.3390/ijms22137239] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/25/2021] [Accepted: 06/30/2021] [Indexed: 02/07/2023] Open
Abstract
Macrophages are one of the most important cells of the innate immune system and are known for their ability to engulf and digest foreign substances, including cellular debris and tumor cells. They can convert into tumor-associated macrophages (TAMs) when mature macrophages are recruited into the tumor microenvironment. Their role in cancer progression, metastasis, and therapy failure is of special note. The aim of this review is to understand how the presence of TAMs are both advantageous and disadvantageous in the immune system.
Collapse
Affiliation(s)
- Pedram Moeini
- Plant Virology Research Center, Shiraz University, Shiraz 71441-65186, Iran;
| | | |
Collapse
|
35
|
Kawasaki J, Toshima T, Yoshizumi T, Itoh S, Mano Y, Wang H, Iseda N, Harada N, Oda Y, Mori M. Prognostic Impact of Vessels that Encapsulate Tumor Cluster (VETC) in Patients who Underwent Liver Transplantation for Hepatocellular Carcinoma. Ann Surg Oncol 2021; 28:8186-8195. [PMID: 34091774 DOI: 10.1245/s10434-021-10209-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/29/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND There is limited published information about prognostic value of vessels that encapsulate tumor cluster (VETC) based on their involvement with immune cells in hepatocellular carcinoma (HCC). Our goal was to evaluate prognostic impact of VETC in patients who underwent living-donor liver transplantation (LDLT) for HCC, focusing on the involvement of VETC with immune status in tumor microenvironment (TME). METHODS Using a database of 150 patients who underwent LDLT for HCC, immunohistochemical staining of CD34 for VETC, angiopoietin-2 (Ang-2), CD3, and CD68, was reviewed with patients' clinicopathological factors. RESULTS A strong correlation between VETC pattern and malignant potential in HCC was observed; larger tumor size (P < 0.001), more numbers of tumors (P = 0.003), higher α-fetoprotein levels (P = 0.001), higher des-γ-carboxy prothrombin levels (P = 0.022), microvascular invasion (P < 0.001), and poor differentiation (P = 0.010). Overall survival (OS) of patients with VETC(+) was significantly lower than those with VETC(-) (P = 0.021; 5-year OS rates, 72.0% vs. 87.1%). Furthermore, the ratio of CD3(+) cells was significantly lower in VETC(+) group (P = 0.001), indicating that VETC activity may be strongly correlated with lymphocyte activity. Moreover, combination status of VETC(+)/CD3low was an independent risk factor for mortality (hazard ratio 2.760, 95% confidence interval 1.183-6.439, P = 0.019). Additionally, the combination of VETC expression with immune status (low CD3 levels) enabled further classification of patients based on their clinical outcome. CONCLUSIONS Our results show the prognostic impact of VETC expression, tumor-infiltrating lymphocytes (TILs), and their combination in the setting of LDLT for HCC, which can be a novel prognostic biomarker for mortality after LDLT.
Collapse
Affiliation(s)
- Junji Kawasaki
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takeo Toshima
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomoharu Yoshizumi
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Shinji Itoh
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yohei Mano
- Department of Surgery, National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan
| | - Huanlin Wang
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Norifumi Iseda
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Noboru Harada
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masaki Mori
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
36
|
Wu J, Gao W, Tang Q, Yu Y, You W, Wu Z, Fan Y, Zhang L, Wu C, Han G, Zuo X, Zhang Y, Chen Z, Ding W, Li X, Lin F, Shen H, Tang J, Zhang Y, Wang X. M2 Macrophage-Derived Exosomes Facilitate HCC Metastasis by Transferring α M β 2 Integrin to Tumor Cells. Hepatology 2021; 73:1365-1380. [PMID: 32594528 PMCID: PMC8360085 DOI: 10.1002/hep.31432] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/26/2020] [Accepted: 05/27/2020] [Indexed: 12/29/2022]
Abstract
BACKGROUND AND AIMS The development and progression of hepatocellular carcinoma (HCC) is dependent on its local microenvironment. Tumor-associated macrophages (TAMs) are deemed a key factor for the tumor microenvironment and attribute to contribute to tumor aggressiveness. However, the detailed mechanism underlying the pro-metastatic effect of TAMs on HCC remains undefined. APPROACH AND RESULTS The present study proved that TAMs were enriched in HCC. TAMs were characterized by an M2-polarized phenotype and accelerated the migratory potential of HCC cells in vitro and in vivo. Furthermore, we found that M2-derived exosomes induced TAM-mediated pro-migratory activity. With the use of mass spectrometry, we identified that integrin, αM β2 (CD11b/CD18), was notably specific and efficient in M2 macrophage-derived exosomes (M2 exos). Blocking either CD11b and/or CD18 elicited a significant decrease in M2 exos-mediated HCC cell metastasis. Mechanistically, M2 exos mediated an intercellular transfer of the CD11b/CD18, activating the matrix metalloproteinase-9 signaling pathway in recipient HCC cells to support tumor migration. CONCLUSIONS Collectively, the exosome-mediated transfer of functional CD11b/CD18 protein from TAMs to tumor cells may have the potency to boost the migratory potential of HCC cells, thus providing insights into the mechanism of tumor metastasis.
Collapse
Affiliation(s)
- Jindao Wu
- Hepatobiliary CenterThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina,Key Laboratory of Liver TransplantationChinese Academy of Medical SciencesNanjingChina,NHC Key Laboratory of Living Donor Liver TransplantationNanjing Medical UniversityNanjingChina,State Key Laboratory of Reproductive MedicineNanjing Medical UniversityNanjingChina
| | - Wen Gao
- Department of OncologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Qiyun Tang
- Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Yue Yu
- Hepatobiliary CenterThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina,Key Laboratory of Liver TransplantationChinese Academy of Medical SciencesNanjingChina,NHC Key Laboratory of Living Donor Liver TransplantationNanjing Medical UniversityNanjingChina
| | - Wei You
- Hepatobiliary CenterThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina,Key Laboratory of Liver TransplantationChinese Academy of Medical SciencesNanjingChina,NHC Key Laboratory of Living Donor Liver TransplantationNanjing Medical UniversityNanjingChina,Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Zhengshan Wu
- Hepatobiliary CenterThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina,Key Laboratory of Liver TransplantationChinese Academy of Medical SciencesNanjingChina,NHC Key Laboratory of Living Donor Liver TransplantationNanjing Medical UniversityNanjingChina,Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Ye Fan
- Hepatobiliary CenterThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina,Key Laboratory of Liver TransplantationChinese Academy of Medical SciencesNanjingChina,NHC Key Laboratory of Living Donor Liver TransplantationNanjing Medical UniversityNanjingChina,Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Long Zhang
- Hepatobiliary CenterThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina,Key Laboratory of Liver TransplantationChinese Academy of Medical SciencesNanjingChina,NHC Key Laboratory of Living Donor Liver TransplantationNanjing Medical UniversityNanjingChina
| | - Chen Wu
- Hepatobiliary CenterThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina,Key Laboratory of Liver TransplantationChinese Academy of Medical SciencesNanjingChina,NHC Key Laboratory of Living Donor Liver TransplantationNanjing Medical UniversityNanjingChina
| | - Guoyong Han
- Hepatobiliary CenterThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina,Key Laboratory of Liver TransplantationChinese Academy of Medical SciencesNanjingChina,NHC Key Laboratory of Living Donor Liver TransplantationNanjing Medical UniversityNanjingChina
| | - Xueliang Zuo
- Hepatobiliary CenterThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina,Key Laboratory of Liver TransplantationChinese Academy of Medical SciencesNanjingChina,NHC Key Laboratory of Living Donor Liver TransplantationNanjing Medical UniversityNanjingChina
| | - Yao Zhang
- Hepatobiliary CenterThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina,Key Laboratory of Liver TransplantationChinese Academy of Medical SciencesNanjingChina,NHC Key Laboratory of Living Donor Liver TransplantationNanjing Medical UniversityNanjingChina
| | - Zhiqiang Chen
- Hepatobiliary CenterThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina,Key Laboratory of Liver TransplantationChinese Academy of Medical SciencesNanjingChina,NHC Key Laboratory of Living Donor Liver TransplantationNanjing Medical UniversityNanjingChina
| | - Wenzhou Ding
- Hepatobiliary CenterThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina,Key Laboratory of Liver TransplantationChinese Academy of Medical SciencesNanjingChina,NHC Key Laboratory of Living Donor Liver TransplantationNanjing Medical UniversityNanjingChina
| | - Xiangcheng Li
- Hepatobiliary CenterThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina,Key Laboratory of Liver TransplantationChinese Academy of Medical SciencesNanjingChina,NHC Key Laboratory of Living Donor Liver TransplantationNanjing Medical UniversityNanjingChina
| | - Fengming Lin
- The State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Hongbing Shen
- State Key Laboratory of Reproductive MedicineNanjing Medical UniversityNanjingChina,Department of Epidemiology and BiostatisticsJiangsu Key Lab of Cancer Biomarkers, Prevention and TreatmentCollaborative Innovation Center for Cancer Personalized MedicineSchool of Public HealthNanjing Medical UniversityNanjingChina
| | - Jinhai Tang
- Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Yaqin Zhang
- Key Laboratory of Human Functional Genomics of Jiangsu ProvinceDepartment of Biochemistry and Molecular BiologyNanjing Medical UniversityNanjingChina,The State Key Laboratory of Pharmaceutical BiotechnologyNanjing UniversityNanjingChina
| | - Xuehao Wang
- Hepatobiliary CenterThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina,Key Laboratory of Liver TransplantationChinese Academy of Medical SciencesNanjingChina,NHC Key Laboratory of Living Donor Liver TransplantationNanjing Medical UniversityNanjingChina,State Key Laboratory of Reproductive MedicineNanjing Medical UniversityNanjingChina
| |
Collapse
|
37
|
Sakr MA, Mohamed KAH, Hussein AM, Fouad MH, Allam AS, Safwat E. Diagnostic and prognostic value of serum soluble CD163 in cirrhotic patients with hepatitis C virus-related hepatocellular carcinoma before and after locoregional therapy. EGYPTIAN LIVER JOURNAL 2021. [DOI: 10.1186/s43066-021-00090-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Abstract
Background
Tumor-associated macrophages (TAMs), inflammatory cells in tumor microenvironment, are crucial for the tumor occurrence and progression which in turn increase the expression of soluble CD163 (sCD163). Nevertheless, not much has been established regarding sCD163 and its connection to HCC diagnosis and prognosis. This study was conducted to evaluate the diagnostic and prognostic role of sCD163 in patients with HCC on top of HCV-related liver cirrhosis. Forty adult patients with HCV-related liver cirrhosis and HCC (HCC group) were randomly selected and subjected to locoregional therapies, either transarterial chemoembolization (TACE) or radiofrequency ablation (RFA). Four patients were excluded because of portal vein invasion. Another group of 20 patients with liver cirrhosis only served as controls (LC group). Routine laboratory studies and abdominal ultrasound were done for all. Alpha-fetoprotein (AFP) and sCD163 were measured twice, at baseline and 1-month post-intervention, using a commercially available enzyme-linked immunosorbent assay kit.
Results
At baseline, sCD163 showed an insignificant higher value in HCC group (p > 0.05). The best cutoff value for sCD163 and AFP was 6.2 mg/L and 195 ng/mL, respectively. AFP had a larger area under the curve (0.88 vs. 0.767). An overall significant decline was seen in sCD163 after treatment (6.5±1.5 to 3.1±2.5 mg/L; p < 0.001), while AFP showed an insignificant decrease (p > 0.05). Also, sCD163 decreased significantly in the eradicated cases (6.1±1.4 mg/L before intervention vs. 2.3±1.4 mg/L after intervention, p < 0.01), while there was a significant increase in the recurrent cases (8.4±0.4 mg/L before intervention vs. 10.3±1.6 after intervention; p < 0.05). Moreover, sCD163 showed a significant difference in its pre-intervention and post-intervention values between recurrent and eradicated HCC cases (p < 0.01).
Conclusions
It is concluded that sCD163 has a minor role as a diagnostic marker for HCC, yet it could be used as a good prognostic marker in predicting the tumor response to locoregional therapies.
Collapse
|
38
|
Characterization of the inflammatory microenvironment and hepatic macrophage subsets in experimental hepatocellular carcinoma models. Oncotarget 2021; 12:562-577. [PMID: 33796224 PMCID: PMC7984829 DOI: 10.18632/oncotarget.27906] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 02/15/2021] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death worldwide. HCC typically develops on a background of chronic inflammation and fibrosis with tumor associated macrophages (TAMs) playing an important role in chronic inflammation-induced HCC and progression. However, the liver harbors unique macrophages, resident liver Kupffer cells (KCs) and monocyte-derived macrophages (Mo-Mφ), and their contribution to HCC and to the population of TAMs is incompletely known. Here, we characterized the tumor microenvironment and the proportion and transcriptional profile of hepatic macrophages (Mφ) in two commonly used HCC mouse models. A gradually increased expression of inflammatory, immune regulatory, fibrotic and cell proliferation pathways and markers was observed during diethylnitrosamine (DEN)- and non-alcoholic steatohepatitis (NASH)-induced HCC development. The transcriptional phenotypes of isolated hepatic Mφ subsets were clearly distinct and shifted during HCC development, with mixed pro-inflammatory and tumor-promoting expression profiles. There were marked differences between the models as well, with Mφ in NASH-HCC exhibiting a more immunomodulatory phenotype, in conjunction with an upregulation of lipid metabolism genes. Our data show that at least some infiltrated macrophages display expression of pro-tumoral markers, and that Kupffer cells are part of the population of TAMs and enhance tumor progression. These insights are useful to further unravel sequential pathogenic events during hepatocarcinogenesis and direct future development of new treatment strategies for HCC.
Collapse
|
39
|
Tu K, Li J, Mo H, Xian Y, Xu Q, Xiao X. Identification and validation of redox-immune based prognostic signature for hepatocellular carcinoma. Int J Med Sci 2021; 18:2030-2041. [PMID: 33850474 PMCID: PMC8040390 DOI: 10.7150/ijms.56289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 02/24/2021] [Indexed: 01/03/2023] Open
Abstract
The intimate interaction between redox signaling and immunity has been widely revealed. However, the clinical application of relevant therapeutic is unavailable due to the absence of validated markers that stratify patients. Here, we identified novel biomarkers for prognosis prediction in hepatocellular carcinoma (HCC). Prognostic redox-immune-related genes for predicting overall survival (OS) of HCC were identified using datasets from TCGA, LIRI-JP, and GSE14520. LASSO Cox regression was employed to construct the signature model and generate a risk score in the TCGA cohort. The signature contained CDO1, G6PD, LDHA, GPD1L, PPARG, FABP4, CCL20, SPP1, RORC, HDAC1, STC2, HDGF, EPO, and IL18RAP. Patients in the high-risk group had a poor prognosis compared to the low-risk group. Univariate and multivariate Cox regressions identified this signature as an independent factor for predicting OS. Nomogram constructed by multiple clinical parameters showed good performance for predicting OS indicated by the c-index, the calibration curve, and AUC. GSEA showed that oxidoreductase activity and peroxisome-related metabolic pathways were enriched in the low-risk group, while glycolysis activity and hypoxia were higher in the high-risk group. Furthermore, immune profiles analysis showed that the immune score and stromal score were significantly decreased in the high-risk group in the TCGA cohort. There was a considerably lower infiltration of anti-tumor immune cells while a higher proportion of pro-tumor immune cells in silico. Immune markers were distinctly expressed between the subgroups, and redox-sensitive immunoregulatory biomarkers were at higher levels in the high-risk group. Altogether, we identified a redox-immune prognostic signature. A more severe redox perturbation-driven immunosuppressive environment in the high-risk group stratified by the signature may account for poor survival. This may provide a clue to the combined therapy targeting redox and immune in HCC.
Collapse
Affiliation(s)
- Kangsheng Tu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Jin Li
- Department of Shoulder and Elbow Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China
| | - Huanye Mo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yao Xian
- Department of Nutrition, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Qiuran Xu
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou 310014, China
| | - Xuelian Xiao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
40
|
Saito Y, Imura S, Morine Y, Ikemoto T, Yamada S, Shimada M. Preoperative prognostic nutritional index predicts short- and long-term outcomes after liver resection in patients with hepatocellular carcinoma. Oncol Lett 2020; 21:153. [PMID: 33552271 DOI: 10.3892/ol.2020.12414] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 10/14/2020] [Indexed: 01/19/2023] Open
Abstract
The prognostic nutritional index (PNI) is one of the immune parameters calculated on the basis of the serum albumin and the total lymphocyte count. The aim of the present study was to investigate the prognostic significance of the PNI for short- and long-term outcomes after liver resection for patients with hepatocellular carcinoma (HCC). Data from 162 surgically treated patients with HCC (without any previous treatment) were retrospectively analyzed. The cutoff value of preoperative PNI was 45.0, which was calculated by a receiver operating characteristic curve for predicting the recurrence of HCC after liver resection. Patients were divided into low (n=86) and high (n=76) PNI groups. In short-term outcomes, patients in the low PNI group were more likely to experience postoperative complications compared with those in the high PNI group. The 5-year disease-free survival (DFS) rate in the low PNI group was significantly lower compared with that in the high PNI group (20.5% vs. 48.7%). In the multivariate analysis, a low PNI was an independent prognostic factor for DFS (HR, 1.65; 95% CI, 1.00-2.71). In conclusion, the preoperative PNI may be a prognostic factor for evaluating short- and long-term outcomes after liver resection in patients with HCC.
Collapse
Affiliation(s)
- Yu Saito
- Department of Surgery, Tokushima University, Tokushima 770-8503, Japan
| | - Satoru Imura
- Department of Surgery, Tokushima University, Tokushima 770-8503, Japan
| | - Yuji Morine
- Department of Surgery, Tokushima University, Tokushima 770-8503, Japan
| | - Tetsuya Ikemoto
- Department of Surgery, Tokushima University, Tokushima 770-8503, Japan
| | - Shinichiro Yamada
- Department of Surgery, Tokushima University, Tokushima 770-8503, Japan
| | - Mitsuo Shimada
- Department of Surgery, Tokushima University, Tokushima 770-8503, Japan
| |
Collapse
|
41
|
Ji Y, Jones C, Baek Y, Park GK, Kashiwagi S, Choi HS. Near-infrared fluorescence imaging in immunotherapy. Adv Drug Deliv Rev 2020; 167:121-134. [PMID: 32579891 DOI: 10.1016/j.addr.2020.06.012] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 12/11/2022]
Abstract
Near-infrared (NIR) light possesses many suitable optophysical properties for medical imaging including low autofluorescence, deep tissue penetration, and minimal light scattering, which together allow for high-resolution imaging of biological tissue. NIR imaging has proven to be a noninvasive and effective real-time imaging methodology that provides a high signal-to-background ratio compared to other potential optical imaging modalities. In response to this, the use of NIR imaging has been extensively explored in the field of immunotherapy. To date, NIR fluorescence imaging has successfully offered reliable monitoring of the localization, dynamics, and function of immune responses, which are vital in assessing not only the efficacy but also the safety of treatments to design immunotherapies optimally. This review aims to provide an overview of the current research on NIR imaging of the immune response. We expect that the use of NIR imaging will expand further in response to the recent success in cancer immunotherapy. We will also offer our insights on how this technology will meet rapidly growing expectations in the future.
Collapse
Affiliation(s)
- Yuanyuan Ji
- Scientific Research Centre, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China; Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Catherine Jones
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Yoonji Baek
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - G Kate Park
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Satoshi Kashiwagi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| | - Hak Soo Choi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
42
|
Chen J, Huang ZB, Liao CJ, Hu XW, Li SL, Qi M, Fan XG, Huang Y. LncRNA TP73-AS1/miR-539/MMP-8 axis modulates M2 macrophage polarization in hepatocellular carcinoma via TGF-β1 signaling. Cell Signal 2020; 75:109738. [DOI: 10.1016/j.cellsig.2020.109738] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 01/30/2023]
|
43
|
Ma R, Yi B, Riker AI, Xi Y. Metformin and cancer immunity. Acta Pharmacol Sin 2020; 41:1403-1409. [PMID: 32868904 PMCID: PMC7656961 DOI: 10.1038/s41401-020-00508-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/13/2020] [Indexed: 12/12/2022] Open
Abstract
The immune system plays an essential and central role in tumor cell differentiation, proliferation, angiogenesis, apoptosis, invasion, and metastasis. Over the past decade, cancer therapy has rapidly evolved from traditional approaches, such as surgery, chemotherapy, and radiotherapy, to revolutionary new treatment options with immunotherapy. This new era of cancer treatment options has now been clinically tested and applied to many forms of human malignancies, often with quite dramatic results. As we develop more effective combinations of cancer treatment, several agents have been recently investigated, putatively identified as anticancer agents, or immunostimulatory molecules. One such agent is metformin, originally developed as a fairly standard first-line therapy for patients with type-2 diabetes mellitus (T2DM). Given the underlying mechanisms of action, researchers began to examine the alternative functions and possible utility of metformin, finding that the cancer risk in patients with T2DM was reduced. It appears that metformin, at least in part, has an antitumor effect through activation of the 5' adenosine monophosphate-activated protein kinase (AMPK) signaling pathway. Moreover, numerous studies have demonstrated that metformin interferes with key immunopathological mechanisms that are involved in the pathological processes or associated with malignant progression. Such insights may shed light on further analyzing whether metformin enhances the effectiveness of the immunotherapy and overcomes the immunotherapy resistance in the patients. Herein, we provide a comprehensive review of the literature examining the impact of metformin upon the host immune system and cancer immunity.
Collapse
Affiliation(s)
- Ruixia Ma
- Department of Genetics, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, 221000, China
| | - Bin Yi
- Department of Genetics, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Adam I Riker
- Geaton and JoAnn DeCesaris Cancer Institute, Anne Arundel Medical Center, Luminis Health, Annapolis, MD, USA.
| | - Yaguang Xi
- Department of Genetics, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA.
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA.
| |
Collapse
|
44
|
The novel glycyrrhetinic acid–tetramethylpyrazine conjugate TOGA induces anti-hepatocarcinogenesis by inhibiting the effects of tumor-associated macrophages on tumor cells. Pharmacol Res 2020; 161:105233. [DOI: 10.1016/j.phrs.2020.105233] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 02/06/2023]
|
45
|
Wu YN, Zhang L, Chen T, Li X, He LH, Liu GX. Granulocyte-macrophage colony-stimulating factor protects mice against hepatocellular carcinoma by ameliorating intestinal dysbiosis and attenuating inflammation. World J Gastroenterol 2020; 26:5420-5436. [PMID: 33024394 PMCID: PMC7520605 DOI: 10.3748/wjg.v26.i36.5420] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/11/2020] [Accepted: 08/25/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the third leading cause of cancer mortality worldwide. The gut microbiota can help maintain healthy metabolism and immunity. Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a critical factor in promoting health and homeostasis; it promotes intestinal immunity, stimulates bone marrow precursors to generate macrophage colonies, and enhances the antibacterial and antitumor activity of circulating monocytes. As such, GM-CSF may protect against HCC development by regulating immunity as well as intestinal microecology.
AIM To investigate the impact of GM-CSF on the gut microbiome and metabolic characteristics of HCC.
METHODS Thirty-six male BALB/c nude mice were divided into three groups: Control (n = 10), HCC (n = 13), and HCC + GM-CSF (GM-CSF overexpression, n = 13). We utilized HCC cells to establish orthotopic transplantation tumor models of HCC with normal and over-expressing GM-CSF. Liver injury, immune inflammatory function and intestinal barrier function were evaluated. The fecal microbiome and metabolome were studied using 16S rRNA absolute quantification sequencing and gas chromatography-mass spectrometry.
RESULTS GM-CSF overexpression significantly affected the gut microbiome of mice with HCC and resulted in a high abundance of organisms of the genera Roseburia, Blautia and Butyricimonass, along with a significant reduction in Prevotella, Parabacteroides, Anaerotruncus, Streptococcus, Clostridium, and Mucispirillum. Likewise, GM-CSF overexpression resulted in a substantial increase in fecal biotin and oleic acid levels, along with a prominent decrease in the fecal succinic acid, adenosine, fumaric acid, lipoic acid, and maleic acid levels. Correlation analysis revealed that the intestinal microbiota and fecal metabolites induced by GM-CSF were primarily involved in pathways related to reducing the inflammatory response, biotin metabolism, and intestinal barrier dysfunction.
CONCLUSION GM-CSF can protect against HCC development by regulating immunity and modulating the abundance of specific intestinal microorganisms and their metabolites. This study provides new insights into the therapeutic approaches for HCC.
Collapse
Affiliation(s)
- Yong-Na Wu
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, Gansu Province, China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering of Gansu Province, Lanzhou 730000, Gansu Province, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- The First Hospital of Lanzhou University, Lanzhou University, Lanzhou 730000, Gansu Province, China
- Key Laboratory of Biological Therapy and Regenerative Medicine Transformation Gansu Province, Lanzhou 730000, Gansu Province, China
| | - Lei Zhang
- The First Hospital of Lanzhou University, Lanzhou University, Lanzhou 730000, Gansu Province, China
- Key Laboratory of Biological Therapy and Regenerative Medicine Transformation Gansu Province, Lanzhou 730000, Gansu Province, China
| | - Tuo Chen
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, Gansu Province, China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering of Gansu Province, Lanzhou 730000, Gansu Province, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xun Li
- The First Hospital of Lanzhou University, Lanzhou University, Lanzhou 730000, Gansu Province, China
- Key Laboratory of Biological Therapy and Regenerative Medicine Transformation Gansu Province, Lanzhou 730000, Gansu Province, China
| | - Li-Hong He
- The First Hospital of Lanzhou University, Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Guang-Xiu Liu
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, Gansu Province, China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering of Gansu Province, Lanzhou 730000, Gansu Province, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
46
|
Ren S, Zhang X, Hu Y, Wu J, Ju Y, Sun X, Liu Y, Shan B. Blocking the Notch signal transduction pathway promotes tumor growth in osteosarcoma by affecting polarization of TAM to M2 phenotype. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1057. [PMID: 33145276 PMCID: PMC7575992 DOI: 10.21037/atm-20-3881] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Osteosarcoma is a primary malignant tumor that seriously affects the health and life of patients. It is of great clinical significance to explore the molecular mechanism of osteosarcoma development and develop the corresponding therapeutic targets. Th1/Th2 cytokines in the normal human body are in a state of dynamic balance. When this balance is destroyed, it is related to many diseases such as a tumor, autoimmune disease, microbial infection, transplant rejection, among many others. Method The model of mouse tumor-associated macrophage (TAM) was induced by being co-cultured with inducer granulocyte-macrophage colony stimulating factor (GM-CSF) and osteosarcoma S180 cells. The Notch1 knockout mice were obtained by gene targeting technology. The distribution of M1- and M2-type TAMs in the tumor was visualized by immunofluorescence staining. And the western-blot testing was used to detect and quantified the protein level of Notch1 and Th1/Th2-type cytokines. Results In this study, the polarization of TAMs to the M2 phenotype occurred after coculture with osteosarcoma S180 cells and secretion level Th1/Th2-type cytokines changed. Also, the expression level of Notch1 reduced significantly. Further, the critical transcription factor Notch1 of the Notch signaling pathway was knocked out in mice. The tumor volume of Notch1 knockout mice was significantly more extensive than of the control mice. The results of microstructural observation on tumor showed that M2-type TAMs infiltrated into tumor increased with increased expression of Th2-type cytokines, but M1-type TAMs reduced with reduced expression of Th1-type cytokines. Conclusions According to our results, the Notch signal transduction pathway participates in tumor occurrence and growth with a negative role by maintaining Th1/Th2 balance.
Collapse
Affiliation(s)
- Shuguang Ren
- The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiangmei Zhang
- The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yueyang Hu
- The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jianhua Wu
- The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yingchao Ju
- The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xu Sun
- Hospital of Stomatology Hebei Medical University, Shijiazhuang, China
| | - Yunjiang Liu
- The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Baoen Shan
- The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
47
|
Hu B, Yang XB, Sang XT. Construction of a lipid metabolism-related and immune-associated prognostic signature for hepatocellular carcinoma. Cancer Med 2020; 9:7646-7662. [PMID: 32813933 PMCID: PMC7571839 DOI: 10.1002/cam4.3353] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/11/2020] [Accepted: 07/16/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most lethal malignancies. We aimed to identify a robust lipid metabolism-related signature associated with the HCC microenvironment to improve the prognostic prediction of HCC patients. METHODS We analyzed the gene expression profiles of lipid metabolism from Molecular Signatures Database and information of patients from The Cancer Genome Atlas. Gene set variation analysis (GSVA), gene set enrichment analysis (GSEA), and principal component analysis (PCA) were employed for functional annotation. Quantitative real-time polymerase chain reaction (qRT-PCR) was employed to verify the expression of model genes in HCC and adjacent tissues. RESULTS As a result, a lipid metabolism-related signature consisting of acyl-CoA synthetase long-chain family member 6 (ACSL6), lysophosphatidylcholine acyltransferase 1, phospholipase A2 group 1B, lecithin-cholesterol acyltransferase (LCAT), and sphingomyelin phosphodiesterase 4 (SMPD4) was identified among HCC patients. Lysophosphatidylcholine acyltransferase 1, PLA2G1B, and SMPD4 were proved significantly high expression while ACSL6 and LCAT were remarkably low expression in our 15 pairs of matched HCC and normal tissues by qRT-PCR. Under different conditions, the overall survival (OS) of patients in low-risk group was prolonged than that in high-risk group. Moreover, the as-constructed signature was an independent factor, which was remarkably associated with gender, histologic grade, and platelet level of HCC patients. In addition, the receiver operating characteristic (ROC) curve analysis confirmed the good potency of the model. Functional enrichment analysis further revealed that lower fatty acid (FA) oxidation and higher infiltration of immunocytes were detected in patients from the high-risk group compared with those in the low-risk group. CONCLUSIONS Our findings indicate that the lipid metabolism-related signature shows prognostic significance for HCC.
Collapse
Affiliation(s)
- Bo Hu
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiao-Bo Yang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin-Ting Sang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
48
|
Mroweh M, Decaens T, Marche PN, Macek Jilkova Z, Clément F. Modulating the Crosstalk between the Tumor and Its Microenvironment Using RNA Interference: A Treatment Strategy for Hepatocellular Carcinoma. Int J Mol Sci 2020; 21:E5250. [PMID: 32722054 PMCID: PMC7432232 DOI: 10.3390/ijms21155250] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver malignancy with one of the highest mortality rates among solid cancers. It develops almost exclusively in the background of chronic liver inflammation, which can be caused by viral hepatitis, chronic alcohol consumption or an unhealthy diet. Chronic inflammation deregulates the innate and adaptive immune responses that contribute to the proliferation, survival and migration of tumor cells. The continuous communication between the tumor and its microenvironment components serves as the overriding force of the tumor against the body's defenses. The importance of this crosstalk between the tumor microenvironment and immune cells in the process of hepatocarcinogenesis has been shown, and therapeutic strategies modulating this communication have improved the outcomes of patients with liver cancer. To target this communication, an RNA interference (RNAi)-based approach can be used, an innovative and promising strategy that can disrupt the crosstalk at the transcriptomic level. Moreover, RNAi offers the advantage of specificity in comparison to the treatments currently used for HCC in clinics. In this review, we will provide the recent data pertaining to the modulation of a tumor and its microenvironment by using RNAi and its potential for therapeutic intervention in HCC.
Collapse
Affiliation(s)
- Mariam Mroweh
- Institute for Advanced Biosciences, Research Center Inserm U 1209/CNRS 5309, 38700 La Tronche, France; (M.M.); (T.D.); (P.N.M.)
- Université Grenoble Alpes, 38000 Grenoble, France
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences I, Lebanese University, Hadath Beirut 6573-14, Lebanon
| | - Thomas Decaens
- Institute for Advanced Biosciences, Research Center Inserm U 1209/CNRS 5309, 38700 La Tronche, France; (M.M.); (T.D.); (P.N.M.)
- Université Grenoble Alpes, 38000 Grenoble, France
- Service d’hépato-Gastroentérologie, Pôle Digidune, CHU Grenoble Alpes, 38700 La Tronche, France
| | - Patrice N Marche
- Institute for Advanced Biosciences, Research Center Inserm U 1209/CNRS 5309, 38700 La Tronche, France; (M.M.); (T.D.); (P.N.M.)
- Université Grenoble Alpes, 38000 Grenoble, France
| | - Zuzana Macek Jilkova
- Institute for Advanced Biosciences, Research Center Inserm U 1209/CNRS 5309, 38700 La Tronche, France; (M.M.); (T.D.); (P.N.M.)
- Université Grenoble Alpes, 38000 Grenoble, France
- Service d’hépato-Gastroentérologie, Pôle Digidune, CHU Grenoble Alpes, 38700 La Tronche, France
| | - Flora Clément
- Institute for Advanced Biosciences, Research Center Inserm U 1209/CNRS 5309, 38700 La Tronche, France; (M.M.); (T.D.); (P.N.M.)
- Université Grenoble Alpes, 38000 Grenoble, France
| |
Collapse
|
49
|
Integrated analysis of single-cell RNA-seq and bulk RNA-seq unravels tumour heterogeneity plus M2-like tumour-associated macrophage infiltration and aggressiveness in TNBC. Cancer Immunol Immunother 2020; 70:189-202. [PMID: 32681241 DOI: 10.1007/s00262-020-02669-7] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/08/2020] [Indexed: 01/08/2023]
Abstract
Triple-negative breast cancer (TNBC) is characterized by a more aggressive clinical course with extensive inter- and intra-tumour heterogeneity. Combination of single-cell and bulk tissue transcriptome profiling allows the characterization of tumour heterogeneity and identifies the association of the immune landscape with clinical outcomes. We identified inter- and intra-tumour heterogeneity at a single-cell resolution. Tumour cells shared a high correlation amongst stemness, angiogenesis, and EMT in TNBC. A subset of cells with concurrent high EMT, stemness and angiogenesis was identified at the single-cell level. Amongst tumour-infiltrating immune cells, M2-like tumour-associated macrophages (TAMs) made up the majority of macrophages and displayed immunosuppressive characteristics. CIBERSORT was applied to estimate the abundance of M2-like TAM in bulk tissue transcriptome file from The Cancer Genome Atlas (TCGA). M2-like TAMs were associated with unfavourable prognosis in TNBC patients. A TAM-related gene signature serves as a promising marker for predicting prognosis and response to immunotherapy. Two commonly used machine learning methods, random forest and SVM, were applied to find the genes that were mostly associated with M2-like TAM densities in the gene signature. A neural network-based deep learning framework based on the TAM-related gene signature exhibits high accuracy in predicting the immunotherapy response.
Collapse
|
50
|
Yonemura Y, Yoshizumi T, Inokuchi S, Kosai‐Fujimoto Y, Harada N, Itoh S, Toshima T, Takeishi K, Yoshiya S, Mori M. Predictor of outcome after living donor liver transplantation for patients with hepatocellular carcinoma beyond the Japan criteria. Ann Gastroenterol Surg 2020; 4:413-421. [PMID: 32724885 PMCID: PMC7382431 DOI: 10.1002/ags3.12335] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/11/2020] [Accepted: 03/20/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The Japan criteria (JC, maximum tumor size within 5 cm, within five tumor nodules, AFP within 500 ng/mL or within Milan criteria) have been applied to cadaveric liver transplantation (LT) for hepatocellular carcinoma (HCC) and will be used for living donor LT (LDLT) in Japan. The aim of this study was to verify the JC in LDLT and to clarify the risk factor of HCC recurrence and mortality after LDLT beyond the JC. PATIENTS AND METHODS Adult patients who underwent LDLT for end-stage liver disease with HCC until October 2019 were reviewed retrospectively (n = 246). Patients were divided into two groups according to whether they were within JC (n = 203) or beyond JC (n = 43). Recurrence-free or overall survival rates after LDLT were compared. Univariate and multivariate analyses were performed to identify risk factors of HCC recurrence and HCC-related mortality after LDLT for patients beyond the JC. RESULTS Patients beyond the JC had significantly poorer 5-year recurrence-free (50.3% vs 95.9%, P < .001) or overall (61.7% vs 98.1%, P < .001) survival rates compared with patients within the JC. A multivariate analysis revealed that des-gamma-carboxy prothrombin (DCP) ≥ 300 mAU/mL (hazard ratio 9.36, 95% CI; 2.41-36.4, P = .001) was an independent risk factor for HCC recurrence and HCC-related mortality (hazard ratio 13.8, 95% CI; 1.92-98.6, P = .01) after LDLT in patients beyond the JC. CONCLUSION The outcome of LDLT for patients within the JC was favorable. Patients beyond the JC with DCP ≥ 300 mAU/mL might be contraindicated for LDLT.
Collapse
Affiliation(s)
| | - Tomoharu Yoshizumi
- Department of Surgery and ScienceGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Shoichi Inokuchi
- Department of Surgery and ScienceGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Yukiko Kosai‐Fujimoto
- Department of Surgery and ScienceGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Noboru Harada
- Department of Surgery and ScienceGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Shinji Itoh
- Department of Surgery and ScienceGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Takeo Toshima
- Department of Surgery and ScienceGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Kazuki Takeishi
- Department of Surgery and ScienceGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Shohei Yoshiya
- Department of Surgery and ScienceGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Masaki Mori
- Department of Surgery and ScienceGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| |
Collapse
|