1
|
Huang F, Lai J, Qian L, Hong W, Li LC. Differentiation of Uc-MSCs into insulin secreting islet-like clusters by trypsin through TGF-beta signaling pathway. Differentiation 2024; 135:100744. [PMID: 38128465 DOI: 10.1016/j.diff.2023.100744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 11/11/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023]
Abstract
Differentiation of human umbilical cord mesenchymal stem cells (Uc-MSCs) into islet-like clusters which are capable of synthesizing and secreting insulin can potentially serve as donors for islet transplantation in the patient deficiency in islet β cell function both in type 1 or type 2 diabetic patients. Therefore, we developed an easy and higher efficacy approach by trypsinazing the Uc-MSCs and followed culture in differentiation medium to induce of Uc-MSCs differentiation into islet-like clusters, and the potential mechanism that in the early stage of differentiation was also investigated by using RNA-sequencing and bioinformatics. Results show that induction efficacy was reached to 98% and TGF-β signaling pathway may play critical role in the early stage differentiation, it was further confirmed that the retardant effect of differentiation progress either in cell morphology or in islet specific genes expression can be observed upon blocking the activation of TGF-β signaling pathway using specific inhibitor of LY2109761 (TβRI/II kinase inhibitor). Our current study, for the first time, development a protocol for differentiation of Uc-MSCs into islet-like clusters, and revealed the importance of TGF-β signaling pathway in the early stage of differentiation of Uc-MSCs into islet-like clusters. Our study will provide alternative approach for clinical treatment of either type I or type II diabtes mellitus with dysfunctional pancreatic islets.
Collapse
Affiliation(s)
- Feirong Huang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Jiashuang Lai
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Lixia Qian
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Wanjin Hong
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China; Institute of Molecular and Cell Biology (IMCB), 61 Biopolis Drive, 138673, Singapore.
| | - Liang-Cheng Li
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
2
|
Perioperative Drug Treatment in Pancreatic Surgery-A Systematic Review and Meta-Analysis. J Clin Med 2023; 12:jcm12051750. [PMID: 36902534 PMCID: PMC10003556 DOI: 10.3390/jcm12051750] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
INTRODUCTION Pancreatic resections for malignant or benign diseases are associated with major morbidity and changes in physiology. To reduce perioperative complications and enhance recovery, many types of perioperative medical management have been introduced. The aim of this study was to provide an evidence-based overview on the best perioperative drug treatment. METHODS The electronic bibliographic databases Medline, Embase, CENTRAL, and Web of Science were systematically searched for randomized controlled trials (RCT) evaluating perioperative drug treatments in pancreatic surgery. The investigated drugs were somatostatin analogues, steroids, pancreatic enzyme replacement therapy (PERT), prokinetic therapy, antidiabetic drugs, and proton pump inhibitors (PPI). Targeted outcomes in each drug category were meta-analyzed. RESULTS A total of 49 RCT were included. The analysis of somatostatin analogues showed a significantly lower incidence of postoperative pancreatic fistula (POPF) in the somatostatin group compared to the control group (OR 0.58, 95% CI: 0.45 to 0.74). The comparison of glucocorticoids versus placebo showed significantly less POPF in the glucocorticoid group (OR 0.22, 95% CI: 0.07 to 0.77). There was no significant difference in DGE when erythromycin was compared to placebo (OR 0.33, 95% CI: 0.08 to 1.30). The other investigated drug regimens could only be analyzed qualitatively. CONCLUSION This systematic review provides a comprehensive overview on perioperative drug treatment in pancreatic surgery. Some often-prescribed perioperative drug treatments lack high quality evidence and further research is needed.
Collapse
|
3
|
Kawamoto K, Ohashi T, Konno M, Nishida N, Koseki J, Matsui H, Sakai D, Kudo T, Eguchi H, Satoh T, Doki Y, Mori M, Ishii H. Cell-free culture conditioned medium elicits pancreatic β cell lineage-specific epigenetic reprogramming in mice. Oncol Lett 2018; 16:3255-3259. [PMID: 30127922 DOI: 10.3892/ol.2018.9008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 03/09/2017] [Indexed: 12/19/2022] Open
Abstract
There are several obstacles to overcome prior to achieving cellular reprogramming of pancreatic β cells in vitro and in vivo. The present study demonstrated that the transfer of epigenetic phenotypes was achieved in the cell-free conditioned medium (CM) of pancreatic insulinoma MIN6 cell cultures. The comparison of a subpopulation of MIN6, m14 and m9 cells indicated that MIN6-m14 cells were more prone to cellular reprogramming. Epigenetic profiling revealed that the transcription factor pancreas/duodenum homeobox protein 1 (Pdx1) was differentially associated among the clones. The culture of differentiated adipocytes in the CM of MIN6-m14 cells resulted in the induction of insulin mRNA expression, and was accompanied by epigenetic events of Pdx1 binding. The epigenetic profiling indicated that Pdx1 is preferentially associated with a previously uncharacterized region of the endoplasmic reticulum (ER) disulfide oxidase, ER oxidoreductin 1 gene. Therefore, the results of the present study indicated that the CM of MIN6 cells was able to induce a pancreatic β cell-like phenotype in differentiated adipocytes. These data provide additional support for the utility of cell-free CM for cellular reprogramming.
Collapse
Affiliation(s)
- Koichi Kawamoto
- Department of Gastroenterological Surgery, Osaka University School of Medicine, Suita, Osaka 565-0871, Japan.,Department of Cancer Frontier Science, Osaka University School of Medicine, Suita, Osaka 565-0871, Japan
| | - Tomofumi Ohashi
- Department of Gastroenterological Surgery, Osaka University School of Medicine, Suita, Osaka 565-0871, Japan
| | - Masamitsu Konno
- Department of Cancer Frontier Science, Osaka University School of Medicine, Suita, Osaka 565-0871, Japan
| | - Naohiro Nishida
- Department of Gastroenterological Surgery, Osaka University School of Medicine, Suita, Osaka 565-0871, Japan.,Department of Cancer Frontier Science, Osaka University School of Medicine, Suita, Osaka 565-0871, Japan
| | - Jun Koseki
- Department of Cancer Profiling Discovery, Osaka University School of Medicine, Suita, Osaka 565-0871, Japan
| | - Hidetoshi Matsui
- Department of Mathematical Sciences, Faculty of Mathematics, Kyushu University, Fukuoka 819-0395, Japan
| | - Daisuke Sakai
- Department of Cancer Frontier Science, Osaka University School of Medicine, Suita, Osaka 565-0871, Japan
| | - Toshihiro Kudo
- Department of Cancer Frontier Science, Osaka University School of Medicine, Suita, Osaka 565-0871, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Osaka University School of Medicine, Suita, Osaka 565-0871, Japan
| | - Taroh Satoh
- Department of Cancer Frontier Science, Osaka University School of Medicine, Suita, Osaka 565-0871, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Osaka University School of Medicine, Suita, Osaka 565-0871, Japan.,Department of Cancer Frontier Science, Osaka University School of Medicine, Suita, Osaka 565-0871, Japan.,Department of Cancer Profiling Discovery, Osaka University School of Medicine, Suita, Osaka 565-0871, Japan
| | - Masaki Mori
- Department of Gastroenterological Surgery, Osaka University School of Medicine, Suita, Osaka 565-0871, Japan.,Department of Cancer Frontier Science, Osaka University School of Medicine, Suita, Osaka 565-0871, Japan.,Department of Cancer Profiling Discovery, Osaka University School of Medicine, Suita, Osaka 565-0871, Japan
| | - Hideshi Ishii
- Department of Cancer Frontier Science, Osaka University School of Medicine, Suita, Osaka 565-0871, Japan.,Department of Cancer Profiling Discovery, Osaka University School of Medicine, Suita, Osaka 565-0871, Japan
| |
Collapse
|
4
|
Pereira LX, Viana CTR, Orellano LAA, de Almeida SA, de Lazari MGT, Couto LC, Vasconcelos AC, Andrade SP, Campos PP. Kinetics of pancreatic tissue proliferation in a polymeric platform in mice. Pancreatology 2018; 18:221-229. [PMID: 29289464 DOI: 10.1016/j.pan.2017.12.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 12/19/2017] [Accepted: 12/20/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND/OBJECTIVES Pancreas regenerative capacity after injury is not always sufficient to comply with the body's requirement of digestive enzymes and hormones. We present an alternative system to induce pancreas parenchyma proliferation (exocrine and endocrine components), rather than regeneration or remodeling in normoglycemic mice. METHODS Porous discs of polyether-polyurethane were surgically placed adjacent to the native pancreas and removed at days 15, 30 and 45 after implantation. No exogenous growth factors or extracellular matrix components were added to the platform. The synthetic matrix provided a platform that was filled with parenchymal and non-parenchymal pancreas tissue as detected by histological analysis. Immunohistochemistry analysis were performed to identify insulin positive cells in the newly formed tissue. In addition, angiogenic, inflammatory and metabolic parameters were carried out in those mice. RESULTS At day 15, the pores of the platform were filled with inflammatory cells, spindled-shaped like fibroblasts, extracellular matrix components, blood vessels and clusters of pancreatic parenchyma (acini, ducts and islet-like structures). At days 30 and 45 the pancreas features remained well organized; its organization resembled that of a native pancreas. Interestingly, besides islet-like structures that showed positive cells to insulin, some ductal cells were also positive for insulin immunostaining. No significant differences in serum glucose and c-peptide concentrations during the experimental period were detected. CONCLUSIONS The plain synthetic porous platform (without addition of exogenous molecules) placed adjacent to the native organ exhibits potential to restore and/or expand exocrine (acini, ducts) and endocrine (β-cell mass) components in pancreatic injuries and in high metabolic demand.
Collapse
Affiliation(s)
- Luciana Xavier Pereira
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Celso Tarso Rodrigues Viana
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Laura Alejandra Ariza Orellano
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Simone Aparecida de Almeida
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Letícia Chinait Couto
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Anilton Cesar Vasconcelos
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Silvia Passos Andrade
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Paula Peixoto Campos
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
5
|
Qian D, Wei G, Xu C, He Z, Hua J, Li J, Hu Q, Lin S, Gong J, Meng H, Zhou B, Teng H, Song Z. Bone marrow-derived mesenchymal stem cells (BMSCs) repair acute necrotized pancreatitis by secreting microRNA-9 to target the NF-κB1/p50 gene in rats. Sci Rep 2017; 7:581. [PMID: 28373667 PMCID: PMC5428835 DOI: 10.1038/s41598-017-00629-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 03/08/2017] [Indexed: 02/07/2023] Open
Abstract
Acute pancreatitis (AP) is a common acute abdominal disease, 10-20% of which can evolve into severe AP (SAP) causing significant morbidity and mortality. Bone marrow-derived mesenchymal stem cells (BMSCs) have the potential of repairing SAP, but the detailed mechanism remains unknown. We demonstrate here that microRNA-9 (miR-9) modified BMSCs (pri-miR-9-BMSCs) can significantly reduce the pancreatic edema, infiltration, hemorrhage, necrosis, the release of amylase and lipase. Meanwhile, decreased local/systemic inflammatory response (TNF-α↓, IL-1β↓, IL-6↓, HMGB1↓, MPO↓, CD68↓, IL-4↑, IL-10↑, and TGF-β↑) and enhanced regeneration of damaged pancreas (Reg4↑, PTF1↑, and PDX1↑) are also promoted. But these effects diminish or disappear after antagonizing miR-9 (TuD). Besides, we find that miR-9 is negatively correlated with AP and miR-9 agomir which can mimic the effects of pri-miR-9-BMSCs and protect injured pancreas. Furthermore, we investigate that BMSCs deliver miR-9 to the injured pancreas or peripheral blood mononuclear cell (PBMC), which can target the NF-κB1/p50 gene and inhibit the NF-κB signaling pathway (p-P65↓, NF-κB1/p50↓, IκBα↑, IκBβ↑). Taken together, these results show that miR-9 is a key paracrine factor of BMSCs attenuating SAP targeting the NF-κB1/p50 gene and suppressing the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Daohai Qian
- Department of General Surgery, Yijishan Hospital, Wannan Medical College, Wuhu, Anhui, 241001, China.,Department of General Surgery, Shanghai Tenth People's Hospital, Affiliated to Tongji University School of Medicine, Shanghai, 200072, China.,Department of Pharmacology and Pharmaceutical Sciences, USC School of Pharmacy, Los Angeles, California, 90089, USA
| | - Ge Wei
- Department of General Surgery, Shanghai Tenth People's Hospital, Affiliated to Tongji University School of Medicine, Shanghai, 200072, China
| | - Chenglei Xu
- Department of General Surgery, Shanghai Tenth People's Hospital, Affiliated to Tongji University School of Medicine, Shanghai, 200072, China
| | - Zhigang He
- Department of General Surgery, Shanghai Tenth People's Hospital, Affiliated to Tongji University School of Medicine, Shanghai, 200072, China
| | - Jie Hua
- Department of General Surgery, Shanghai Tenth People's Hospital, Affiliated to Tongji University School of Medicine, Shanghai, 200072, China
| | - Jian Li
- Department of General Surgery, Shanghai Tenth People's Hospital, Affiliated to Tongji University School of Medicine, Shanghai, 200072, China
| | - Qili Hu
- Department of General Surgery, Shanghai Tenth People's Hospital, Affiliated to Tongji University School of Medicine, Shanghai, 200072, China
| | - Shengping Lin
- Intensive Care Unit, Sir Run Run Shaw Hospital, Affiliated to Zhejiang University of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Jian Gong
- Department of General Surgery, Shanghai Tenth People's Hospital, Affiliated to Tongji University School of Medicine, Shanghai, 200072, China
| | - Hongbo Meng
- Department of General Surgery, Shanghai Tenth People's Hospital, Affiliated to Tongji University School of Medicine, Shanghai, 200072, China
| | - Bo Zhou
- Department of General Surgery, Shanghai Tenth People's Hospital, Affiliated to Tongji University School of Medicine, Shanghai, 200072, China
| | - Hongfei Teng
- Department of General Surgery, Shanghai Tenth People's Hospital, Affiliated to Tongji University School of Medicine, Shanghai, 200072, China
| | - Zhenshun Song
- Department of General Surgery, Shanghai Tenth People's Hospital, Affiliated to Tongji University School of Medicine, Shanghai, 200072, China.
| |
Collapse
|
6
|
Hanazaki K, Munekage M, Kitagawa H, Yatabe T, Munekage E, Shiga M, Maeda H, Namikawa T. Current topics in glycemic control by wearable artificial pancreas or bedside artificial pancreas with closed-loop system. J Artif Organs 2016; 19:209-18. [PMID: 27142278 DOI: 10.1007/s10047-016-0904-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 04/17/2016] [Indexed: 02/05/2023]
Affiliation(s)
- Kazuhiro Hanazaki
- Department of Surgery, Kochi Medical School, Kochi University, Kohasu, Okocho, Nankoku, Kochi, 783-8505, Japan
| | - Masaya Munekage
- Department of Surgery, Kochi Medical School, Kochi University, Kohasu, Okocho, Nankoku, Kochi, 783-8505, Japan
| | - Hiroyuki Kitagawa
- Department of Surgery, Kochi Medical School, Kochi University, Kohasu, Okocho, Nankoku, Kochi, 783-8505, Japan
| | - Tomoaki Yatabe
- Department of Anesthesiology, Kochi Medical School, Kochi University, Kohasu, Okocho, Nankoku, Kochi, Japan
| | - Eri Munekage
- Department of Surgery, Kochi Medical School, Kochi University, Kohasu, Okocho, Nankoku, Kochi, 783-8505, Japan
| | - Mai Shiga
- Department of Surgery, Kochi Medical School, Kochi University, Kohasu, Okocho, Nankoku, Kochi, 783-8505, Japan
| | - Hiromichi Maeda
- Department of Surgery, Kochi Medical School, Kochi University, Kohasu, Okocho, Nankoku, Kochi, 783-8505, Japan
| | - Tsutomu Namikawa
- Department of Surgery, Kochi Medical School, Kochi University, Kohasu, Okocho, Nankoku, Kochi, 783-8505, Japan.
| |
Collapse
|
7
|
The effects of roflumilast on the pancreas and remote organs in a cerulein-induced experimental acute pancreatitis model in rats. Surg Today 2016; 46:1435-1442. [DOI: 10.1007/s00595-016-1329-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 02/25/2016] [Indexed: 01/20/2023]
|