1
|
Que H, Mai E, Hu Y, Li H, Zheng W, Jiang Y, Han F, Li X, Gong P, Gu J. Multilineage-differentiating stress-enduring cells: a powerful tool for tissue damage repair. Front Cell Dev Biol 2024; 12:1380785. [PMID: 38872932 PMCID: PMC11169632 DOI: 10.3389/fcell.2024.1380785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/08/2024] [Indexed: 06/15/2024] Open
Abstract
Multilineage-differentiating stress-enduring (Muse) cells are a type of pluripotent cell with unique characteristics such as non-tumorigenic and pluripotent differentiation ability. After homing, Muse cells spontaneously differentiate into tissue component cells and supplement damaged/lost cells to participate in tissue repair. Importantly, Muse cells can survive in injured tissue for an extended period, stabilizing and promoting tissue repair. In addition, it has been confirmed that injection of exogenous Muse cells exerts anti-inflammatory, anti-apoptosis, anti-fibrosis, immunomodulatory, and paracrine protective effects in vivo. The discovery of Muse cells is an important breakthrough in the field of regenerative medicine. The article provides a comprehensive review of the characteristics, sources, and potential mechanisms of Muse cells for tissue repair and regeneration. This review serves as a foundation for the further utilization of Muse cells as a key clinical tool in regenerative medicine.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Puyang Gong
- College of Pharmacy, Southwest Minzu University, Chengdu, China
| | - Jian Gu
- College of Pharmacy, Southwest Minzu University, Chengdu, China
| |
Collapse
|
2
|
Alanazi RF, Alhwity BS, Almahlawi RM, Alatawi BD, Albalawi SA, Albalawi RA, Albalawi AA, Abdel-Maksoud MS, Elsherbiny N. Multilineage Differentiating Stress Enduring (Muse) Cells: A New Era of Stem Cell-Based Therapy. Cells 2023; 12:1676. [PMID: 37443710 PMCID: PMC10340735 DOI: 10.3390/cells12131676] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/03/2023] [Accepted: 06/17/2023] [Indexed: 07/15/2023] Open
Abstract
Stem cell transplantation has recently demonstrated a significant therapeutic efficacy in various diseases. Multilineage-differentiating stress-enduring (Muse) cells are stress-tolerant endogenous pluripotent stem cells that were first reported in 2010. Muse cells can be found in the peripheral blood, bone marrow and connective tissue of nearly all body organs. Under basal conditions, they constantly move from the bone marrow to peripheral blood to supply various body organs. However, this rate greatly changes even within the same individual based on physical status and the presence of injury or illness. Muse cells can differentiate into all three-germ-layers, producing tissue-compatible cells with few errors, minimal immune rejection and without forming teratomas. They can also endure hostile environments, supporting their survival in damaged/injured tissues. Additionally, Muse cells express receptors for sphingosine-1-phosphate (S1P), which is a protein produced by damaged/injured tissues. Through the S1P-S1PR2 axis, circulating Muse cells can preferentially migrate to damaged sites following transplantation. In addition, Muse cells possess a unique immune privilege system, facilitating their use without the need for long-term immunosuppressant treatment or human leucocyte antigen matching. Moreover, they exhibit anti-inflammatory, anti-apoptotic and tissue-protective effects. These characteristics circumvent all challenges experienced with mesenchymal stem cells and induced pluripotent stem cells and encourage the wide application of Muse cells in clinical practice. Indeed, Muse cells have the potential to break through the limitations of current cell-based therapies, and many clinical trials have been conducted, applying intravenously administered Muse cells in stroke, myocardial infarction, neurological disorders and acute respiratory distress syndrome (ARDS) related to novel coronavirus (SARS-CoV-2) infection. Herein, we aim to highlight the unique biological properties of Muse cells and to elucidate the advantageous difference between Muse cells and other types of stem cells. Finally, we shed light on their current therapeutic applications and the major obstacles to their clinical implementation from laboratory to clinic.
Collapse
Affiliation(s)
- Raghad F. Alanazi
- Pharm D Program, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (R.F.A.); (B.S.A.); (R.M.A.); (B.D.A.); (S.A.A.); (R.A.A.); (A.A.A.)
| | - Basma S. Alhwity
- Pharm D Program, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (R.F.A.); (B.S.A.); (R.M.A.); (B.D.A.); (S.A.A.); (R.A.A.); (A.A.A.)
| | - Raghad M. Almahlawi
- Pharm D Program, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (R.F.A.); (B.S.A.); (R.M.A.); (B.D.A.); (S.A.A.); (R.A.A.); (A.A.A.)
| | - Bashayer D. Alatawi
- Pharm D Program, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (R.F.A.); (B.S.A.); (R.M.A.); (B.D.A.); (S.A.A.); (R.A.A.); (A.A.A.)
| | - Shatha A. Albalawi
- Pharm D Program, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (R.F.A.); (B.S.A.); (R.M.A.); (B.D.A.); (S.A.A.); (R.A.A.); (A.A.A.)
| | - Raneem A. Albalawi
- Pharm D Program, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (R.F.A.); (B.S.A.); (R.M.A.); (B.D.A.); (S.A.A.); (R.A.A.); (A.A.A.)
| | - Amaal A. Albalawi
- Pharm D Program, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (R.F.A.); (B.S.A.); (R.M.A.); (B.D.A.); (S.A.A.); (R.A.A.); (A.A.A.)
| | - Mohamed S. Abdel-Maksoud
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Nehal Elsherbiny
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
3
|
Ossanna R, Veronese S, Quintero Sierra LA, Conti A, Conti G, Sbarbati A. Multilineage-Differentiating Stress-Enduring Cells (Muse Cells): An Easily Accessible, Pluripotent Stem Cell Niche with Unique and Powerful Properties for Multiple Regenerative Medicine Applications. Biomedicines 2023; 11:1587. [PMID: 37371682 DOI: 10.3390/biomedicines11061587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Cell-based therapy in regenerative medicine is a powerful tool that can be used both to restore various cells lost in a wide range of human disorders and in renewal processes. Stem cells show promise for universal use in clinical medicine, potentially enabling the regeneration of numerous organs and tissues in the human body. This is possible due to their self-renewal, mature cell differentiation, and factors release. To date, pluripotent stem cells seem to be the most promising. Recently, a novel stem cell niche, called multilineage-differentiating stress-enduring (Muse) cells, is emerging. These cells are of particular interest because they are pluripotent and are found in adult human mesenchymal tissues. Thanks to this, they can produce cells representative of all three germ layers. Furthermore, they can be easily harvested from fat and isolated from the mesenchymal stem cells. This makes them very promising, allowing autologous treatments and avoiding the problems of rejection typical of transplants. Muse cells have recently been employed, with encouraging results, in numerous preclinical studies performed to test their efficacy in the treatment of various pathologies. This review aimed to (1) highlight the specific potential of Muse cells and provide a better understanding of this niche and (2) originate the first organized review of already tested applications of Muse cells in regenerative medicine. The obtained results could be useful to extend the possible therapeutic applications of disease healing.
Collapse
Affiliation(s)
- Riccardo Ossanna
- Department of Neuroscience, Biomedicine, and Movement Sciences, University of Verona, 37124 Verona, Italy
| | - Sheila Veronese
- Department of Neuroscience, Biomedicine, and Movement Sciences, University of Verona, 37124 Verona, Italy
| | | | - Anita Conti
- Department of Neuroscience, Biomedicine, and Movement Sciences, University of Verona, 37124 Verona, Italy
| | - Giamaica Conti
- Department of Neuroscience, Biomedicine, and Movement Sciences, University of Verona, 37124 Verona, Italy
| | - Andrea Sbarbati
- Department of Neuroscience, Biomedicine, and Movement Sciences, University of Verona, 37124 Verona, Italy
| |
Collapse
|
4
|
Velasco MG, Satué K, Chicharro D, Martins E, Torres-Torrillas M, Peláez P, Miguel-Pastor L, Del Romero A, Damiá E, Cuervo B, Carrillo JM, Cugat R, Sopena JJ, Rubio M. Multilineage-Differentiating Stress-Enduring Cells (Muse Cells): The Future of Human and Veterinary Regenerative Medicine. Biomedicines 2023; 11:biomedicines11020636. [PMID: 36831171 PMCID: PMC9953712 DOI: 10.3390/biomedicines11020636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/13/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
In recent years, several studies have been conducted on Muse cells mainly due to their pluripotency, high tolerance to stress, self-renewal capacity, ability to repair DNA damage and not being tumoral. Additionally, since these stem cells can be isolated from different tissues in the adult organism, obtaining them is not considered an ethical problem, providing an advantage over embryonic stem cells. Regarding their therapeutic potential, few studies have reported clinical applications in the treatment of different diseases, such as aortic aneurysm and chondral injuries in the mouse or acute myocardial infarction in the swine, rabbit, sheep and in humans. This review aims to describe the characterization of Muse cells, show their biological characteristics, explain the differences between Muse cells and mesenchymal stem cells, and present their contribution to the treatment of some diseases.
Collapse
Affiliation(s)
- María Gemma Velasco
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain
| | - Katy Satué
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain
| | - Deborah Chicharro
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain
| | - Emma Martins
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain
| | - Marta Torres-Torrillas
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain
| | - Pau Peláez
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain
| | - Laura Miguel-Pastor
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain
| | - Ayla Del Romero
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain
| | - Elena Damiá
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain
| | - Belén Cuervo
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain
| | - José María Carrillo
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain
- Garcia Cugat Foundation CEU-UCH Chair of Medicine and Regenerative Surgery, 08006 Barcelona, Spain
| | - Ramón Cugat
- Garcia Cugat Foundation CEU-UCH Chair of Medicine and Regenerative Surgery, 08006 Barcelona, Spain
| | - Joaquín Jesús Sopena
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain
- Garcia Cugat Foundation CEU-UCH Chair of Medicine and Regenerative Surgery, 08006 Barcelona, Spain
- Correspondence:
| | - Mónica Rubio
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain
- Garcia Cugat Foundation CEU-UCH Chair of Medicine and Regenerative Surgery, 08006 Barcelona, Spain
| |
Collapse
|
5
|
Sparrelid E, Olthof PB, Dasari BVM, Erdmann JI, Santol J, Starlinger P, Gilg S. Current evidence on posthepatectomy liver failure: comprehensive review. BJS Open 2022; 6:6840812. [PMID: 36415029 PMCID: PMC9681670 DOI: 10.1093/bjsopen/zrac142] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/21/2022] [Accepted: 10/03/2022] [Indexed: 11/24/2022] Open
Abstract
INTRODUCTION Despite important advances in many areas of hepatobiliary surgical practice during the past decades, posthepatectomy liver failure (PHLF) still represents an important clinical challenge for the hepatobiliary surgeon. The aim of this review is to present the current body of evidence regarding different aspects of PHLF. METHODS A literature review was conducted to identify relevant articles for each topic of PHLF covered in this review. The literature search was performed using Medical Subject Heading terms on PubMed for articles on PHLF in English until May 2022. RESULTS Uniform reporting on PHLF is lacking due to the use of various definitions in the literature. There is no consensus on optimal preoperative assessment before major hepatectomy to avoid PHLF, although many try to estimate future liver remnant function. Once PHLF occurs, there is still no effective treatment, except liver transplantation, where the reported experience is limited. DISCUSSION Strict adherence to one definition is advised when reporting data on PHLF. The use of the International Study Group of Liver Surgery criteria of PHLF is recommended. There is still no widespread established method for future liver remnant function assessment. Liver transplantation is currently the only effective way to treat severe, intractable PHLF, but for many indications, this treatment is not available in most countries.
Collapse
Affiliation(s)
- Ernesto Sparrelid
- Department of Clinical Science, Intervention and Technology, Division of Surgery, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Pim B Olthof
- Department of Surgery, Erasmus MC, Rotterdam, The Netherlands.,Department of Surgery, Amsterdam UMC, Amsterdam, The Netherlands
| | - Bobby V M Dasari
- Department of HPB Surgery and Liver Transplantation, Queen Elizabeth Hospital, Birmingham, UK.,University of Birmingham, Birmingham, UK
| | - Joris I Erdmann
- Department of Surgery, Amsterdam UMC, Amsterdam, The Netherlands
| | - Jonas Santol
- Department of Surgery, HPB Center, Viennese Health Network, Clinic Favoriten and Sigmund Freud Private University, Vienna, Austria.,Department of Vascular Biology and Thrombosis Research, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Patrick Starlinger
- Division of General Surgery, Department of Surgery, Medical University of Vienna, General Hospital of Vienna, Vienna, Austria.,Department of Surgery, Division of Hepatobiliary and Pancreas Surgery, Mayo Clinic, Rochester, New York, USA
| | - Stefan Gilg
- Department of Clinical Science, Intervention and Technology, Division of Surgery, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
6
|
Kuroda Y, Oguma Y, Hall K, Dezawa M. Endogenous reparative pluripotent Muse cells with a unique immune privilege system: Hint at a new strategy for controlling acute and chronic inflammation. Front Pharmacol 2022; 13:1027961. [PMID: 36339573 PMCID: PMC9627303 DOI: 10.3389/fphar.2022.1027961] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/05/2022] [Indexed: 11/21/2022] Open
Abstract
Multilineage-differentiating stress enduring (Muse) cells, non-tumorigenic endogenous pluripotent stem cells, reside in the bone marrow (BM), peripheral blood, and connective tissue as pluripotent surface marker SSEA-3(+) cells. They express other pluripotent markers, including Nanog, Oct3/4, and Sox2 at moderate levels, differentiate into triploblastic lineages, self-renew at a single cell level, and exhibit anti-inflammatory effects. Cultured mesenchymal stromal cells (MSCs) and fibroblasts contain several percent of SSEA-3(+)-Muse cells. Circulating Muse cells, either endogenous or administered exogenously, selectively accumulate at the damaged site by sensing sphingosine-1-phosphate (S1P), a key mediator of inflammation, produced by damaged cells and replace apoptotic and damaged cells by spontaneously differentiating into multiple cells types that comprise the tissue and repair the tissue. Thus, intravenous injection is the main route for Muse cell treatment, and surgical operation is not necessary. Furthermore, gene introduction or cytokine induction are not required for generating pluripotent or differentiated states prior to treatment. Notably, allogenic and xenogenic Muse cells escape host immune rejection after intravenous injection and survive in the tissue as functioning cells over 6 and ∼2 months, respectively, without immunosuppressant treatment. Since Muse cells survive in the host tissue for extended periods of time, therefore their anti-inflammatory, anti-fibrotic, and trophic effects are long-lasting. These unique characteristics have led to the administration of Muse cells via intravenous drip in clinical trials for stroke, acute myocardial infarction, epidermolysis bullosa, spinal cord injury, neonatal hypoxic ischemic encephalopathy, amyotrophic lateral sclerosis, and COVID-19 acute respiratory distress syndrome without HLA-matching or immunosuppressive treatment.
Collapse
Affiliation(s)
| | | | | | - Mari Dezawa
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
7
|
Wakao S, Oguma Y, Kushida Y, Kuroda Y, Tatsumi K, Dezawa M. Phagocytosing differentiated cell-fragments is a novel mechanism for controlling somatic stem cell differentiation within a short time frame. Cell Mol Life Sci 2022; 79:542. [PMID: 36203068 PMCID: PMC9537123 DOI: 10.1007/s00018-022-04555-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 09/09/2022] [Accepted: 09/10/2022] [Indexed: 11/29/2022]
Abstract
Stem cells undergo cytokine-driven differentiation, but this process often takes longer than several weeks to complete. A novel mechanism for somatic stem cell differentiation via phagocytosing ‘model cells’ (apoptotic differentiated cells) was found to require only a short time frame. Pluripotent-like Muse cells, multipotent mesenchymal stem cells (MSCs), and neural stem cells (NSCs) phagocytosed apoptotic differentiated cells via different phagocytic receptor subsets than macrophages. The phagocytosed-differentiated cell-derived contents (e.g., transcription factors) were quickly released into the cytoplasm, translocated into the nucleus, and bound to promoter regions of the stem cell genomes. Within 24 ~ 36 h, the cells expressed lineage-specific markers corresponding to the phagocytosed-differentiated cells, both in vitro and in vivo. At 1 week, the gene expression profiles were similar to those of the authentic differentiated cells and expressed functional markers. Differentiation was limited to the inherent potential of each cell line: triploblastic-, adipogenic-/chondrogenic-, and neural-lineages in Muse cells, MSCs, and NSCs, respectively. Disruption of phagocytosis, either by phagocytic receptor inhibition via small interfering RNA or annexin V treatment, impeded differentiation in vitro and in vivo. Together, our findings uncovered a simple mechanism by which differentiation-directing factors are directly transferred to somatic stem cells by phagocytosing apoptotic differentiated cells to trigger their rapid differentiation into the target cell lineage.
Collapse
Affiliation(s)
- Shohei Wakao
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, 2-1, Seiryo-Machi, Aoba-Ku, Sendai, 980-8575, Japan.
| | - Yo Oguma
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, 2-1, Seiryo-Machi, Aoba-Ku, Sendai, 980-8575, Japan
| | - Yoshihiro Kushida
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, 2-1, Seiryo-Machi, Aoba-Ku, Sendai, 980-8575, Japan
| | - Yasumasa Kuroda
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, 2-1, Seiryo-Machi, Aoba-Ku, Sendai, 980-8575, Japan
| | - Kazuki Tatsumi
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, 2-1, Seiryo-Machi, Aoba-Ku, Sendai, 980-8575, Japan.,Regenerative Medicine Division, Analytical Research Department, Technology Development Unit, Life Science Institute, Inc., Tokyo, Japan
| | - Mari Dezawa
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, 2-1, Seiryo-Machi, Aoba-Ku, Sendai, 980-8575, Japan.
| |
Collapse
|
8
|
Kikuchi K, Katagiri H, Suzuki Y, Nitta H, Sasaki A. Mobilization of multilineage-differentiating stress-enduring cells into the peripheral blood in liver surgery. PLoS One 2022; 17:e0271698. [PMID: 35862404 PMCID: PMC9302816 DOI: 10.1371/journal.pone.0271698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 07/05/2022] [Indexed: 11/24/2022] Open
Abstract
Purpose This study investigated whether liver damage severity relates to the mobilization of multilineage-differentiating stress-enduring (Muse) cells, which are endogenous reparative pluripotent stem cells, into the peripheral blood (PB) and whether the degree of mobilization relates to the recovery of liver volume following human liver surgery. Methods Forty-seven patients who underwent liver surgery were included in the present study. PB-Muse cells were counted before surgery, on postoperative days (PODs) 3 and on POD 7. Liver volume was measured using computed tomography before and after surgery. Results The PB-Muse cell count increased after surgery. The number of PB-Muse cells before surgery was higher, but without statistical significance in the group with neoplasms than in the healthy group that included liver donors (p = 0.065). Forty-seven patients who underwent liver surgery were divided into major hepatic resection (MHR; hepatectomy of three or more segments according to the Couinaud classification, n = 22) and minor hepatic resection (mhr; hepatectomy of two segments or less according to the Couinaud classification, n = 25) groups. PB-Muse cells increased at high rates among MHR patients (p = 0.033). Except for complication cases, PB-Muse cells increased at higher rates in the group with advanced liver volume recovery (p = 0.043). The predictive impact of the rate of increase in PB-Muse cells on the recovery of liver volume was demonstrated by multivariate analysis (OR 11.0, p = 0.014). Conclusions PB-Muse cell mobilization correlated with the volume of liver resection, suggesting that the PB-Muse cell number reflects the degree of liver injury. Given that the degree of PB-Muse cell mobilization was related to liver volume recovery, PB-Muse cells were suggested to contribute to liver regeneration, although this mechanism remains unclear.
Collapse
Affiliation(s)
- Koji Kikuchi
- Department of Surgery, Iwate Medical University School of Medicine, Yahaba, Iwate, Japan
- * E-mail:
| | - Hirokatsu Katagiri
- Department of Surgery, Iwate Medical University School of Medicine, Yahaba, Iwate, Japan
| | - Yuji Suzuki
- Division of Hepatology, Department of Internal Medicine, Iwate Medical University School of Medicine, Yahaba, Iwate, Japan
- Institute for Biomedical Sciences Molecular Pathophysiology, Iwate Medical University, Yahaba, Iwate, Japan
- Division of Allergy and Rheumatology, Department of Internal Medicine, Iwate Medical University School of Medicine, Yahaba, Iwate, Japan
| | - Hiroyuki Nitta
- Department of Surgery, Iwate Medical University School of Medicine, Yahaba, Iwate, Japan
| | - Akira Sasaki
- Department of Surgery, Iwate Medical University School of Medicine, Yahaba, Iwate, Japan
| |
Collapse
|
9
|
Fukase M, Sakata N, Kushida Y, Wakao S, Unno M, Dezawa M. Intravenous injection of human multilineage-differentiating stress-enduring cells alleviates mouse severe acute pancreatitis without immunosuppressants. Surg Today 2022; 52:603-615. [PMID: 34687364 DOI: 10.1007/s00595-021-02382-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/16/2021] [Indexed: 10/20/2022]
Abstract
INTRODUCTION We examined the effect of intravenously injected human multilineage-differentiating stress-enduring (Muse) cells, non-tumorigenic endogenous reparative stem cells already used in clinical trials, on a severe acute pancreatitis (SAP) mouse model without immunosuppressants. METHODS Human Muse cells (1.0 × 105 cells) collected from mesenchymal stem cells (MSCs) as SSEA-3(+) were injected into a C57BL/6 mouse model via the jugular vein 6 h after SAP-induction with taurocholate. The control group received saline or the same number of SSEA-3(-)-non-Muse MSCs. RESULTS Edematous parameters, F4/80(+) macrophage infiltration and terminal deoxynucleotidyl transferase dUTP nick-end labeling positivity was the lowest and the number of proliferating endogenous pancreatic progenitors (CK18(+)/Ki67(+) cells) the highest in the Muse group among the three groups, with statistical significance, at 72 h. An enzyme-linked immunosorbent assay and quantitative polymerase chain reaction demonstrated that in vitro production of VEGF, HGF, IGF-1, and MMP-2, which are relevant to tissue protection, anti-inflammation, and anti-fibrosis, were higher in Muse cells than in non-Muse MSCs, particularly when cells were cultured in SAP mouse serum. Consistently, the pancreas of animals in the Muse group contained higher amounts of those factors according to Western blotting at 18 h than that in the non-Muse MSCs and control groups. CONCLUSIONS Intravenous injection of human Muse cells was suggested to be effective for attenuating edema, inflammation and apoptosis in the acute phase of SAP.
Collapse
Affiliation(s)
- Masahiko Fukase
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, 2-1 Seiryomachi, Aobaku, Sendai, Miyagi, 980-8575, Japan.
- Department of Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryomachi, Aobaku, Sendai, Miyagi, 980-8574, Japan.
| | - Naoaki Sakata
- Department of Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryomachi, Aobaku, Sendai, Miyagi, 980-8574, Japan
| | - Yoshihiro Kushida
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, 2-1 Seiryomachi, Aobaku, Sendai, Miyagi, 980-8575, Japan
| | - Shohei Wakao
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, 2-1 Seiryomachi, Aobaku, Sendai, Miyagi, 980-8575, Japan
| | - Michiaki Unno
- Department of Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryomachi, Aobaku, Sendai, Miyagi, 980-8574, Japan
| | - Mari Dezawa
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, 2-1 Seiryomachi, Aobaku, Sendai, Miyagi, 980-8575, Japan.
| |
Collapse
|
10
|
Yamashita T, Kushida Y, Abe K, Dezawa M. Non-Tumorigenic Pluripotent Reparative Muse Cells Provide a New Therapeutic Approach for Neurologic Diseases. Cells 2021; 10:cells10040961. [PMID: 33924240 PMCID: PMC8074773 DOI: 10.3390/cells10040961] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/15/2021] [Accepted: 04/17/2021] [Indexed: 02/06/2023] Open
Abstract
Muse cells are non-tumorigenic endogenous reparative pluripotent cells with high therapeutic potential. They are identified as cells positive for the pluripotent surface marker SSEA-3 in the bone marrow, peripheral blood, and connective tissue. Muse cells also express other pluripotent stem cell markers, are able to differentiate into cells representative of all three germ layers, self-renew from a single cell, and are stress tolerant. They express receptors for sphingosine-1-phosphate (S1P), which is actively produced by damaged cells, allowing circulating cells to selectively home to damaged tissue. Muse cells spontaneously differentiate on-site into multiple tissue-constituent cells with few errors and replace damaged/apoptotic cells with functional cells, thereby contributing to tissue repair. Intravenous injection of exogenous Muse cells to increase the number of circulating Muse cells enhances their reparative activity. Muse cells also have a specific immunomodulatory system, represented by HLA-G expression, allowing them to be directly administered without HLA-matching or immunosuppressant treatment. Owing to these unique characteristics, clinical trials using intravenously administered donor-Muse cells have been conducted for myocardial infarction, stroke, epidermolysis bullosa, spinal cord injury, perinatal hypoxic ischemic encephalopathy, and amyotrophic lateral sclerosis. Muse cells have the potential to break through the limitations of current cell therapies for neurologic diseases, including amyotrophic lateral sclerosis. Muse cells provide a new therapeutic strategy that requires no HLA-matching or immunosuppressant treatment for administering donor-derived cells, no gene introduction or differentiation induction for cell preparation, and no surgery for delivering the cells to patients.
Collapse
Affiliation(s)
- Toru Yamashita
- Department of Neurology, School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan; (T.Y.); (K.A.)
| | - Yoshihiro Kushida
- Department of Stem Cell Biology and Histology, School of Medicine, Tohoku University, Sendai 980-8575, Japan;
| | - Koji Abe
- Department of Neurology, School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan; (T.Y.); (K.A.)
| | - Mari Dezawa
- Department of Stem Cell Biology and Histology, School of Medicine, Tohoku University, Sendai 980-8575, Japan;
- Correspondence: ; Tel.: +81-22-717-8025; Fax: +81-22-717-8030
| |
Collapse
|
11
|
Kakeji Y, Yamamoto H, Ueno H, Eguchi S, Endo I, Sasaki A, Takiguchi S, Takeuchi H, Hashimoto M, Horiguchi A, Masaki T, Marubashi S, Yoshida K, Miyata H, Konno H, Gotoh M, Kitagawa Y, Mori M, Seto Y. Development of gastroenterological surgery over the last decade in Japan: analysis of the National Clinical Database. Surg Today 2020; 51:187-193. [PMID: 32681353 DOI: 10.1007/s00595-020-02075-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/05/2020] [Indexed: 12/19/2022]
Abstract
The National Clinical Database (NCD) of Japan was established in 2010 with the board certification system. A joint committee of 16 gastroenterological surgery database-affiliated organizations has been nurturing this nationwide database and utilizing its data for various analyses. Stepwise board certification systems have been validated by the NCD and are used to improve the surgical outcomes of patients. The use of risk calculators based on risk models can be particularly helpful for establishing appropriate and less invasive surgical treatments for individual patients. Data obtained from the NCD reflect current developments in the surgical approaches used in hospitals, which have progressed from open surgery to endoscopic and robot-assisted procedures. An investigation of the data acquired by the NCD could answer some relevant clinical questions and lead to better surgical management of patients. Furthermore, excellent surgical outcomes can be achieved through international comparisons of the national databases worldwide. This review examines what we have learned from the NCD of gastroenterological surgery and discusses what future developments we can expect.
Collapse
Affiliation(s)
- Yoshihiro Kakeji
- Database Committee, The Japanese Society of Gastroenterological Surgery, 3-1-17 Mita, Minato-ku, Tokyo, Japan.
- National Clinical Database, Tokyo, Japan.
| | - Hiroyuki Yamamoto
- Database Committee, The Japanese Society of Gastroenterological Surgery, 3-1-17 Mita, Minato-ku, Tokyo, Japan
- National Clinical Database, Tokyo, Japan
| | - Hideki Ueno
- Database Committee, The Japanese Society of Gastroenterological Surgery, 3-1-17 Mita, Minato-ku, Tokyo, Japan
| | - Susumu Eguchi
- Database Committee, The Japanese Society of Gastroenterological Surgery, 3-1-17 Mita, Minato-ku, Tokyo, Japan
| | - Itaru Endo
- Database Committee, The Japanese Society of Gastroenterological Surgery, 3-1-17 Mita, Minato-ku, Tokyo, Japan
| | - Akira Sasaki
- Database Committee, The Japanese Society of Gastroenterological Surgery, 3-1-17 Mita, Minato-ku, Tokyo, Japan
| | - Shuji Takiguchi
- Database Committee, The Japanese Society of Gastroenterological Surgery, 3-1-17 Mita, Minato-ku, Tokyo, Japan
| | - Hiroya Takeuchi
- Database Committee, The Japanese Society of Gastroenterological Surgery, 3-1-17 Mita, Minato-ku, Tokyo, Japan
| | - Masaji Hashimoto
- Database Committee, The Japanese Society of Gastroenterological Surgery, 3-1-17 Mita, Minato-ku, Tokyo, Japan
| | - Akihiko Horiguchi
- Database Committee, The Japanese Society of Gastroenterological Surgery, 3-1-17 Mita, Minato-ku, Tokyo, Japan
| | - Tadahiko Masaki
- Database Committee, The Japanese Society of Gastroenterological Surgery, 3-1-17 Mita, Minato-ku, Tokyo, Japan
| | - Shigeru Marubashi
- Database Committee, The Japanese Society of Gastroenterological Surgery, 3-1-17 Mita, Minato-ku, Tokyo, Japan
| | - Kazuhiro Yoshida
- Database Committee, The Japanese Society of Gastroenterological Surgery, 3-1-17 Mita, Minato-ku, Tokyo, Japan
| | - Hiroaki Miyata
- Database Committee, The Japanese Society of Gastroenterological Surgery, 3-1-17 Mita, Minato-ku, Tokyo, Japan
- National Clinical Database, Tokyo, Japan
| | - Hiroyuki Konno
- Database Committee, The Japanese Society of Gastroenterological Surgery, 3-1-17 Mita, Minato-ku, Tokyo, Japan
| | - Mitsukazu Gotoh
- Database Committee, The Japanese Society of Gastroenterological Surgery, 3-1-17 Mita, Minato-ku, Tokyo, Japan
- National Clinical Database, Tokyo, Japan
| | - Yuko Kitagawa
- Database Committee, The Japanese Society of Gastroenterological Surgery, 3-1-17 Mita, Minato-ku, Tokyo, Japan
- National Clinical Database, Tokyo, Japan
| | | | | |
Collapse
|