1
|
Baniahmad B, Hassani Nadiki H, Jahani S, Nezamabadi-Pour N, Toolabi A, Foroughi MM. Simultaneous Electrochemical Determination of Chlorzoxazone and Diclofenac on an Efficient Modified Glassy Carbon Electrode by Lanthanum Oxide@ Copper(I) Sulfide Composite. Front Chem 2022; 10:889590. [PMID: 35783211 PMCID: PMC9247392 DOI: 10.3389/fchem.2022.889590] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/27/2022] [Indexed: 11/13/2022] Open
Abstract
This study synthesized a La2O3@snowflake-like Cu2S composite to fabricate an electrochemical sensor for sensitively simultaneous detection of diclofenac and chlorzoxazone exploiting an easy hydrothermal approach, followed by analysis with XRD, FE-SEM, and EDX methods. According to voltammetric studies, the electrocatalytic diclofenac and chlorzoxazone oxidations on the electrode modified with La2O3@SF-L Cu2S composites were increased, with greater oxidation currents, as well as the oxidation potential was significantly decreased due to synergetic impact of La2O3@SF-L Cu2S composites when compared with the pure SF-L Cu2S NS-modified electrode. The differential pulse voltammetry findings showed wide straight lines (0.01–900.0 μM) for La2O3 NP@SF-L Cu2S NS-modified electrode with a limit of detection (LOD) of 1.7 and 2.3 nM for the detection of diclofenac and chlorzoxazone, respectively. In addition, the limit of quantification was calculated to be 5.7 and 7.6 nM for diclofenac and chlorzoxazone, respectively. The diffusion coefficient was calculated to be 1.16 × 10−5and 8.4 × 10−6 cm2/s for diclofenac and chlorzoxazone oxidation on the modified electrode, respectively. Our proposed electrode was examined for applicability by detecting diclofenac and chlorzoxazone in real specimens.
Collapse
Affiliation(s)
- Bahar Baniahmad
- Department of Pharmacology and Toxicology, Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hadi Hassani Nadiki
- Department of Chemistry, Kerman Branch, Islamic Azad University, Kerman, Iran
| | - Shohreh Jahani
- Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran
- *Correspondence: Shohreh Jahani, ; Mohammad Mehdi Foroughi,
| | | | - Ali Toolabi
- Department of Environmental Health Engineering, School of Public Health, Bam University of Medical Sciences, Bam, Iran
| | - Mohammad Mehdi Foroughi
- Department of Chemistry, Kerman Branch, Islamic Azad University, Kerman, Iran
- *Correspondence: Shohreh Jahani, ; Mohammad Mehdi Foroughi,
| |
Collapse
|
2
|
Development and characterization of La2O3 nanoparticles@snowflake-like Cu2S nanostructure composite modified electrode and application for simultaneous detection of catechol, hydroquinone and resorcinol as an electrochemical sensor. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140261] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
3
|
Sensitivity Control of Hydroquinone and Catechol at Poly(Brilliant Cresyl Blue)-Modified GCE by Varying Activation Conditions of the GCE: An Experimental and Computational Study. CHEMENGINEERING 2022. [DOI: 10.3390/chemengineering6020027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The poly(brilliant cresyl blue) (PBCB)-modified activated glassy carbon electrode (AGCE) shows the catalytic activity toward the oxidation of hydroquinone (HQ) and catechol (CT). The modified electrode can also separate the oxidation peaks of HQ and CT in their mixture, which is not possible with bare GCE. These properties of the modified electrode can be utilized to fabricate an electrochemical sensor for sensitive and simultaneous detection of HQ and CT. In this study, an attempt is made to control the sensitivity of the modified electrodes. This can be accomplished by simply changing the activation condition of the GCE during electropolymerization. GCE can be activated via one-step (applying only oxidation potential) and two-step (applying both oxidation and reduction potential) processes. When we change the activation condition from onestep to twosteps, a clear enhancement inpeak currents of HQ and CT is observed. This helps us to fabricate a highly sensitive electrochemical sensor for the simultaneous detection of HQ and CT. The molecular dynamics (MD) simulation is carried out to explain the experimental data. The MD simulations provide the insight adsorption phenomena to clarify the reasons for higher signals of CT over HQ due to having meta-position –OH group in its structure.
Collapse
|
4
|
Rao Q, Hu FX, Gan LY, Guo C, Liu Y, Zhang C, Chen C, Yang HB, Li CM. Boron-Nitrogen-Co-Doping Nanocarbons to Create Rich Electroactive Defects toward Simultaneous Sensing Hydroquinone and Catechol. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139427] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
5
|
Xu Y, Yu Y, Xue S, Ma X, Tao H. Innovative electrochemical sensor based on graphene oxide aerogel wrapped copper centered metal-organic framework to detect catechol. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115686] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
6
|
Nemakal M, Giddaerappa, Shantharaja, Sajjan VA, Koodlur Sannegowda L. Novel amide coupled phthalocyanines: Synthesis and structure-property relationship for electrocatalysis and sensing of hydroquinone. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115657] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
7
|
Bonet-San-Emeterio M, Felipe Montiel N, del Valle M. Graphene for the Building of Electroanalytical Enzyme-Based Biosensors. Application to the Inhibitory Detection of Emerging Pollutants. NANOMATERIALS 2021; 11:nano11082094. [PMID: 34443924 PMCID: PMC8400611 DOI: 10.3390/nano11082094] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/13/2021] [Accepted: 08/13/2021] [Indexed: 12/21/2022]
Abstract
Graphene and its derivates offer a wide range of possibilities in the electroanalysis field, mainly owing to their biocompatibility, low-cost, and easy tuning. This work reports the development of an enzymatic biosensor using reduced graphene oxide (RGO) as a key nanomaterial for the detection of contaminants of emerging concern (CECs). RGO was obtained from the electrochemical reduction of graphene oxide (GO), an intermediate previously synthesized in the laboratory by a wet chemistry top-down approach. The extensive characterization of this material was carried out to evaluate its proper inclusion in the biosensor arrangement. The results demonstrated the presence of GO or RGO and their correct integration on the sensor surface. The detection of CECs was carried out by modifying the graphene platform with a laccase enzyme, turning the sensor into a more selective and sensitive device. Laccase was linked covalently to RGO using the remaining carboxylic groups of the reduction step and the carbodiimide reaction. After the calibration and characterization of the biosensor versus catechol, a standard laccase substrate, EDTA and benzoic acid were detected satisfactorily as inhibiting agents of the enzyme catalysis obtaining inhibition constants for EDTA and benzoic acid of 25 and 17 mmol·L−1, respectively, and a maximum inhibition percentage of the 25% for the EDTA and 60% for the benzoic acid.
Collapse
|
8
|
One-pot hydrothermal synthesis of nitrogen-doped reduced graphene oxide for the highly sensitive and simultaneous determination of dihydroxy benzene isomers. J APPL ELECTROCHEM 2021. [DOI: 10.1007/s10800-021-01563-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
9
|
Wang X, Cheng Z, Zhou Y, Tammina SK, Yang Y. A double carbon dot system composed of N, Cl-doped carbon dots and N, Cu-doped carbon dots as peroxidase mimics and as fluorescent probes for the determination of hydroquinone by fluorescence. Mikrochim Acta 2020; 187:350. [PMID: 32462301 DOI: 10.1007/s00604-020-04322-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 05/14/2020] [Indexed: 01/14/2023]
Abstract
A fluorescence method is described for the determination of hydroquinone based on the double carbon dot system as peroxide mimic enzymes and fluorescent probes. Deep eutectic solvent (DES)-based fluorescent carbon dots (N/Cl-CDs) and copper-doped carbon dots (N/Cu-CDs) were prepared by the hydrothermal method. Both carbon dots were characterized with transmission electron microscopy (TEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), ultraviolet-visible (UV-Vis) spectroscopy, X-ray photoelectron spectrometry (XPS), Fourier transform infrared (FT-IR) spectroscopy, and fluorescence spectroscopy. N/Cl-CDs displayed intrinsic peroxidase-like activity and were able to catalyze the oxidation of hydroquinone (H2Q) to p-benzoquinone (BQ) along with an intermediate. The intermediate (BQ) did quench the N/Cu-CD photoluminescence (PL) at 450 nm using an excitation wavelength of 347 nm. Based on the results, a fluorescent platform is proposed for the determination of hydroquinone with a promising determination limit of 0.04 μM (linear range, 1.0-75 μM). The recoveries of spiked water samples were in the range 89.5-105.1%, with relative standard deviations (RSDs) of 1.5-2.9%. This method was applied to determination of H2Q in environmental water samples. Graphical abstract A fluorescence method was established for the determination of hydroquinone based on the double carbon dot system as peroxide-mimic enzymes and fluorescent probes. Chlorine-doped carbon dots (N/Cl-CDs) derived from deep eutectic solvent (DES) displayed intrinsic peroxidase-like activity, and were able to catalyze the oxidation of hydroquinone (H2Q) to p-benzoquinone (BQ) along with an intermediate. The intermediate (BQ) did quench the N/Cu-CD photoluminescence (PL). This method was applied to H2Q in environmental water samples.
Collapse
Affiliation(s)
- Xiuli Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan Province, China
| | - Zhili Cheng
- Technology Centre of China Tobacco Guangxi Industrial Co., Ltd., Nanning, 530001, China
| | - Yun Zhou
- Technology Centre of China Tobacco Guangxi Industrial Co., Ltd., Nanning, 530001, China
| | - Sai Kumar Tammina
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan Province, China
| | - Yaling Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan Province, China.
| |
Collapse
|
10
|
Zhang M, Li M, Wu W, Chen J, Ma X, Zhang Z, Xiang S. MOF/PAN nanofiber-derived N-doped porous carbon materials with excellent electrochemical activity for the simultaneous determination of catechol and hydroquinone. NEW J CHEM 2019. [DOI: 10.1039/c9nj00417c] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, the obtained C-ZIF-67/PAN via one-step pyrolysis of hybrid ZIF-67/PAN nanofibers were used to fabricate electrochemical sensor for the determination of benzenediol isomer.
Collapse
Affiliation(s)
- Mengxin Zhang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science
- Fujian Normal University
- 32 Shangsan Road
- Fuzhou 350007
- P. R. China
| | - Meishan Li
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science
- Fujian Normal University
- 32 Shangsan Road
- Fuzhou 350007
- P. R. China
| | - Wangui Wu
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science
- Fujian Normal University
- 32 Shangsan Road
- Fuzhou 350007
- P. R. China
| | - Junkun Chen
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science
- Fujian Normal University
- 32 Shangsan Road
- Fuzhou 350007
- P. R. China
| | - Xiuling Ma
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science
- Fujian Normal University
- 32 Shangsan Road
- Fuzhou 350007
- P. R. China
| | - Zhangjing Zhang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science
- Fujian Normal University
- 32 Shangsan Road
- Fuzhou 350007
- P. R. China
| | - Shengchang Xiang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science
- Fujian Normal University
- 32 Shangsan Road
- Fuzhou 350007
- P. R. China
| |
Collapse
|
11
|
Lin ZY, Kuo YC, Chang CJ, Lin YS, Chiu TC, Hu CC. Highly sensitive sensing of hydroquinone and catechol based on β-cyclodextrin-modified carbon dots. RSC Adv 2018; 8:19381-19388. [PMID: 35540991 PMCID: PMC9080653 DOI: 10.1039/c8ra02813c] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 05/10/2018] [Indexed: 11/21/2022] Open
Abstract
In the proposed study, an efficient method for a carbon dot@β-cyclodextrin (C-dot@β-CD)-based fluorescent probe was developed for the analyses of catechol (CC) and hydroquinone (HQ) at trace levels in water samples. The properties of C-dot@β-CD nanocomposites were characterized by Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The sensing behaviors of C-dot@β-CD toward CC and HQ were investigated by fluorescence spectroscopy. Based on the host–guest chemistry between C-dot@β-CD and phenolic compounds, which can quench C-dot@β-CD fluorescence, the prepared C-dot@β-CD nanocomposites could be used for the sensitive and selective detection of CC or HQ across a wide linear range (0.1 to 10 μM) with detection limits of 47.9 and 20.2 nM, respectively. These results showed that the synthesized C-dot@β-CD nanocomposite exhibited strong fluorescence and high degree of water solubility and thus, it is suitable for use as a nanoprobe for detecting CC or HQ in real water samples. In the proposed study, an efficient method for a carbon dot@β-cyclodextrin (C-dot@β-CD)-based fluorescent probe was developed for the analyses of catechol (CC) and hydroquinone (HQ) at trace levels in water samples.![]()
Collapse
Affiliation(s)
- Zhong-Yi Lin
- Department of Applied Science
- National Taitung University
- Taitung
- Taiwan
| | - Yuan-Chieh Kuo
- Department of Applied Science
- National Taitung University
- Taitung
- Taiwan
| | - Chih-Jui Chang
- Department of Molecular Biology and Human Genetics
- Tzu Chi University
- Hualien 97004
- Taiwan
| | - Yu-Syuan Lin
- Department of Applied Science
- National Taitung University
- Taitung
- Taiwan
| | - Tai-Chia Chiu
- Department of Applied Science
- National Taitung University
- Taitung
- Taiwan
- Agriculture Products Inspection Center
| | - Cho-Chun Hu
- Department of Applied Science
- National Taitung University
- Taitung
- Taiwan
- Agriculture Products Inspection Center
| |
Collapse
|
12
|
Zhu G, Sun H, Qian J, Wu X, Yi Y. Sensitive and Simultaneous Electrochemical Sensing for Three Dihydroxybenzene Isomers Based on Poly(L-arginine) Modified Glassy Carbon Electrode. ANAL SCI 2017; 33:917-923. [PMID: 28794328 DOI: 10.2116/analsci.33.917] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The simultaneous and sensitive electrochemical detection of dihydroxybenzene isomers (hydroquinone, HQ; catechol, CC; resorcinol, RS) is of great significance because such isomers can be awfully harmful to the environment and human health. In this paper, by preparing poly(L-arginine) modified glassy carbon electrode (P-L-Arg/GCE) with a simple method, a highly sensitive electrochemical sensor for simultaneously detecting HQ, CC and RS was constructed successfully due to the large surface area, good electronic properties and catalytic ability of P-L-Arg/GCE and the electrostatic action between P-L-Arg (positive) and targets (negative). Under the optimized conditions, the results show that the P-L-Arg/GCE has a wide linear range from 0.1 to 110.0 μM for HQ ,CC and RS. The detection limits for HQ, CC and RS are 0.01, 0.03 and 0.1 μM, respectively. Finally, the proposed sensor was successfully applied in real sample analysis.
Collapse
Affiliation(s)
- Gangbing Zhu
- School of the Environment and Safety Engineering, Jiangsu University.,State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University.,Department of Applied Biology and Chemical Technology, and the State Key Laboratory of Chirosciences, The Hong Kong Polytechnic University
| | - Heng Sun
- School of the Environment and Safety Engineering, Jiangsu University
| | - Junjuan Qian
- School of the Environment and Safety Engineering, Jiangsu University
| | - Xiangyang Wu
- School of the Environment and Safety Engineering, Jiangsu University
| | - Yinhui Yi
- School of the Environment and Safety Engineering, Jiangsu University
| |
Collapse
|
13
|
SAVAN EKUYUMCU, ERDOĞDU G. Simultaneous determination of levodopa and benserazide using poly(3-methylthiophene) and a multi-walled carbon nanotube sensor. J Solid State Electrochem 2017. [DOI: 10.1007/s10008-017-3549-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Mesoporous cobalto-cobaltic oxide modified glassy carbon electrode for simultaneous detection of hydroquinone and catechol. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.10.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
15
|
Tashkhourian J, Daneshi M, Nami-Ana F, Behbahani M, Bagheri A. Simultaneous determination of hydroquinone and catechol at gold nanoparticles mesoporous silica modified carbon paste electrode. JOURNAL OF HAZARDOUS MATERIALS 2016; 318:117-124. [PMID: 27420383 DOI: 10.1016/j.jhazmat.2016.06.049] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 06/23/2016] [Accepted: 06/24/2016] [Indexed: 05/27/2023]
Abstract
A new electrochemical sensor based on gold nanoparticles mesoporous silica modified carbon paste electrode (AuNPs-MPS) was developed for simultaneous determination of hydroquinone and catechol. Morphology and structure of the AuNPs-MPS were characterized by transmission electron microscopy, X-ray diffraction and Fourier transform infrared spectroscopy. The electrochemical behavior of hydroquinone and catechol were investigated using square wave voltammetry and the results indicate that the electrochemical responses are improved significantly at the modified electrode. The observed oxidative peaks separation of about 120mV made possible the simultaneous determination of hydroquinone and catechol in their binary-mixture. Under the optimized condition, a linear dynamic range of 10.0μM-1.0mM range for hydroquinone with the detection limit of 1.2μM and from 30.0μM-1.0mM for catechol with the detection limit of 1.1μM were obtained. The applicability of the method was demonstrated by the recovery studies of hydroquinone and catechol in spiked tap water samples.
Collapse
Affiliation(s)
- J Tashkhourian
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71456, Iran.
| | - M Daneshi
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71456, Iran
| | - F Nami-Ana
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71456, Iran
| | - M Behbahani
- Department of Chemistry, Shahid Beheshti University, G.C., Evin, Tehran, Iran
| | - A Bagheri
- Department of Chemistry, Shahid Beheshti University, G.C., Evin, Tehran, Iran
| |
Collapse
|
16
|
Disposable graphite paper based sensor for sensitive simultaneous determination of hydroquinone and catechol. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.06.096] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
17
|
Guo Q, Zhang M, Zhou G, Zhu L, Feng Y, Wang H, Zhong B, Hou H. Highly sensitive simultaneous electrochemical detection of hydroquinone and catechol with three-dimensional N-doping carbon nanotube film electrode. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2015.11.034] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Fu J, Tan X, Shi Z, Song X, Zhang S. Highly Sensitive and Simultaneous Detection of Hydroquinone and Catechol Using Poly(mercaptoacetic acid)/Exfoliated Graphene Composite Film-modified Electrode. ELECTROANAL 2015. [DOI: 10.1002/elan.201500535] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
19
|
Sethuraman V, Muthuraja P, Sethupathy M, Manisankar P. Development of Biosensor for Catechol Using Electrosynthesized Poly(3-methylthiophene) and Incorporation of LAC Simultaneously. ELECTROANAL 2014. [DOI: 10.1002/elan.201400236] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
20
|
Development of a poly(alizarin red S)/ionic liquid film modified electrode for voltammetric determination of catechol. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2014.03.189] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
21
|
Discrimination and simultaneous determination of hydroquinone and catechol by tunable polymerization of imidazolium-based ionic liquid on multi-walled carbon nanotube surfaces. Anal Chim Acta 2013; 805:36-44. [DOI: 10.1016/j.aca.2013.10.044] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 10/21/2013] [Accepted: 10/26/2013] [Indexed: 02/08/2023]
|
22
|
Magarelli G, da Silva JG, Sousa Filho IAD, Lopes ISD, SouzaDe JR, Hoffmann LV, de Castro CSP. Development and validation of a voltammetric method for determination of total phenolic acids in cotton cultivars. Microchem J 2013. [DOI: 10.1016/j.microc.2012.05.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
23
|
Simultaneous determination of hydroquinone and catechol based on glassy carbon electrode modified with gold-graphene nanocomposite. Mikrochim Acta 2013. [DOI: 10.1007/s00604-013-0949-z] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Zapp E, Souza FD, Souza BS, Nome F, Neves A, Vieira IC. A bio-inspired sensor based on surfactant film and Pd nanoparticles. Analyst 2013; 138:509-17. [DOI: 10.1039/c2an36264c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
25
|
Si W, Lei W, Zhang Y, Xia M, Wang F, Hao Q. Electrodeposition of graphene oxide doped poly(3,4-ethylenedioxythiophene) film and its electrochemical sensing of catechol and hydroquinone. Electrochim Acta 2012. [DOI: 10.1016/j.electacta.2012.08.099] [Citation(s) in RCA: 161] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
26
|
Zhou Y, Ren X, Sheng C, Chen X, Kong Y, Tao Y, Chen Z. Selective determination of hydroquinone in the presence of catechol based on over-oxidized poly(hydroquinone). J Solid State Electrochem 2012. [DOI: 10.1007/s10008-012-1761-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
Pre-concentration and in situ electrochemical sensing of 1-hydroxypyrene on an electrodeposited poly(3-methylthiophene) film modified electrode. J Electroanal Chem (Lausanne) 2012. [DOI: 10.1016/j.jelechem.2011.12.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
28
|
Naranchimeg O, Kim SK, Jeon SW. The Modified Electrode by PEDOP with MWCNTs-Palladium Nanoparticles for the Determination of hydroquinone and Catechol. B KOREAN CHEM SOC 2011. [DOI: 10.5012/bkcs.2011.32.8.2771] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
29
|
Biosensor based on a glassy carbon electrode modified with tyrosinase immmobilized on multiwalled carbon nanotubes. Mikrochim Acta 2011. [DOI: 10.1007/s00604-011-0616-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
30
|
Zhang Q, Qu Y, Zhang X, Zhou J, Wang H. Extradiol dioxygenase-SiO₂ sol-gel modified electrode for catechol and its derivatives detection. Biosens Bioelectron 2011; 26:4362-7. [PMID: 21592766 DOI: 10.1016/j.bios.2011.04.042] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 04/06/2011] [Accepted: 04/21/2011] [Indexed: 11/26/2022]
Abstract
A feasible and sensitive biosensor for catechol and its derivatives using 2,3-dihydroxybiphenyl 1,2-dioxygenase (BphC)-modified glassy carbon electrode was successfully constructed by polyvinyl alcohol-modified SiO₂ sol-gel method. The as-prepared biosensor was characterized by electrochemical impedance spectroscopy, and the surface topography of the film was imaged by atomic force microscope. Liquid chromatography-tandem mass spectrometry was applied to reveal the catalytic mechanism. BphC embedded in SiO₂ gel maintained its bioactivity well and exhibited excellent eletrocatalytical response to both catechol and some of its derivatives (such as 3-methylcatechol and 4-methylcatechol). The biosensor showed a linear amperometric response range between 0.002 mM and 0.8 mM catechol. And the sensitivity was 1.268 mA/(mM cm²) with a detection limit of 0.428 μM for catechol (S/N = 3). Furthermore, the BphC biosensor exhibited perfect selectivity for catechol in the mixtures of catechol and phenol. It was suggested that this flexible protocol would open up a new avenue for designing other ring-cleavage enzyme biosensors, which could be widely used for monitoring various kinds of environmental pollutants.
Collapse
Affiliation(s)
- Qiang Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, PR China
| | | | | | | | | |
Collapse
|
31
|
Huo Z, Zhou Y, Liu Q, He X, Liang Y, Xu M. Sensitive simultaneous determination of catechol and hydroquinone using a gold electrode modified with carbon nanofibers and gold nanoparticles. Mikrochim Acta 2011. [DOI: 10.1007/s00604-010-0530-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
32
|
Alessio P, Pavinatto FJ, Oliveira Jr ON, De Saja Saez JA, Constantino CJL, Rodríguez-Méndez ML. Detection of catechol using mixed Langmuir–Blodgett films of a phospholipid and phthalocyanines as voltammetric sensors. Analyst 2010; 135:2591-9. [DOI: 10.1039/c0an00159g] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|