1
|
Hajba L, Guttman A. Ionic liquids in capillary electrophoresis analysis of proteins and carbohydrates. J Chromatogr A 2024; 1716:464642. [PMID: 38237290 DOI: 10.1016/j.chroma.2024.464642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/10/2024] [Indexed: 02/04/2024]
Abstract
Ionic liquids (ILs), as non-molecular type solvents, possess excellent physical-chemical properties, which make them useful in important separation applications in gas chromatography, liquid chromatography, and capillary electrophoresis. Among a plethora of potential uses of ionic liquids in separation science, capillary electrophoresis can utilize its resolution-enhancing effect in the analysis of proteins and carbohydrates, via the formation of intermolecular interactions, e.g., hydrophobic, hydrogen bonding, or electrostatic. ILs and polymeric ionic liquids (PIL) also represent an excellent choice as background electrolyte (BGE) additives for capillary coatings in CE, which is especially important in protein analysis. Another interesting utilization of ILs is the fabrication of monoliths for capillary electrochromatography in which instance the mechanism of retention is based on ion exclusion interactions. Carbohydrates can also be readily analyzed by CE with the help of ionic liquids without the need for an extra derivatization step. One of the future perspectives on the use of ILs is their utilization in the recently emerging biopharmaceutical industry exploiting the increased resolution of proteins and carbohydrates, two of the important components of glycoprotein therapeutics. In this paper, we address the so-far not-reviewed ionic liquid-mediated analysis of proteins and carbohydrates by capillary electrophoresis-based techniques also addressing their impact on the separation mechanism.
Collapse
Affiliation(s)
- László Hajba
- Translational Glycomics Research Group, Research Institute of Biomolecular and Chemical Engineering, University of Pannonia, Veszprem, Hungary
| | - András Guttman
- Translational Glycomics Research Group, Research Institute of Biomolecular and Chemical Engineering, University of Pannonia, Veszprem, Hungary; Horváth Csaba Memorial Laboratory for Bioseparation Sciences, Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
2
|
Bessonova EA, Kartsova LA, Moskvichev DO. Ionic Liquids in Electrophoretic Separation and Preconcentration Processes. JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1134/s1061934821100038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Yu RB, Quirino JP. Ionic liquids in electrokinetic chromatography. J Chromatogr A 2020; 1637:461801. [PMID: 33385743 DOI: 10.1016/j.chroma.2020.461801] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/11/2020] [Accepted: 12/12/2020] [Indexed: 01/22/2023]
Abstract
There is an interest in the application of ionic liquids as additives into the separation media to improve achiral and chiral separations in electrokinetic chromatography (EKC). This review will critically discuss the developments on the use of ionic liquids in the different modes of EKC during the last five years (2015-mid 2020). A healthy number of 48 research articles searched through Scopus were categorised into two: ionic liquids as sole pseudophase (micelles, microemulsions, ligand exchange pseudophase or molecular pseudophase) and ionic liquids with pseudophase (achiral or chiral). More than half of the papers dealt with chiral separations that were mostly facilitated by another additive or pseudophase. The role of ionic liquids for improvement of separations were analysed, and we provided some recommendations for further investigations. Finally, the use of ionic liquids in different on-line sample concentration or stacking methods (i.e., field enhancement and sweeping) was briefly discussed.
Collapse
Affiliation(s)
- Raymond B Yu
- Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences-Chemistry, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Joselito P Quirino
- Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences-Chemistry, University of Tasmania, Hobart, Tasmania 7001, Australia.
| |
Collapse
|
4
|
Investigating the binding measurements of human α-acid glycoprotein with chlorambucil and dacarbazine in the presence of imidazolium based -ionic liquid by affinity capillary electrophoresis. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
5
|
Chau MK, Arega NG, Nhung Tran NA, Song J, Lee S, Kim J, Chung M, Kim D. Capacitively coupled contactless conductivity detection for microfluidic capillary isoelectric focusing. Anal Chim Acta 2020; 1124:60-70. [PMID: 32534676 DOI: 10.1016/j.aca.2020.05.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/25/2020] [Accepted: 05/09/2020] [Indexed: 12/30/2022]
Abstract
We report capacitively coupled contactless conductivity detection (C4D) of proteins separated by microfluidic capillary isoelectric focusing (μCIEF). To elucidate the evolution of negative conductivity peaks during focusing and seek IEF conditions for sensitive conductivity detection, numerical simulation was performed using a model protein GFP (green fluorescence protein) and hypothetical carrier ampholytes (CAs). C4D was successfully applied to the μCIEF by optimizing assay conditions using a simple and effective pressure-mobilization approach. The conductivity and fluorescence signals of a focused GFP band were co-detected, confirming that the obtained negative C4D peak could be attributed to the actual protein, not the non-uniform background conductivity profile of the focused CAs. GFP concentrations of 10 nM-30 μM was quantified with a detection limit of 10 nM. Finally, the resolving power was analyzed by separating a mixture of R-phycoerythrin (pI 5.01), GFP-F64L (pI 5.48), and RK-GFP (pI 6.02). The conductivities of the three separated fluorescence proteins were measured with average separation resolution of 2.06. We expect the newly developed label-free μCIEF-C4D technique to be widely adopted as a portable, electronics-only protein-analysis tool.
Collapse
Affiliation(s)
- Minh Khang Chau
- Department of Mechanical Engineering, Myongji University, Yongin-si, Gyeonggi-do, 17508, South Korea
| | - Nebiyu Getachew Arega
- Department of Mechanical Engineering, Myongji University, Yongin-si, Gyeonggi-do, 17508, South Korea
| | - Nguyen Anh Nhung Tran
- Department of Chemical Engineering, Hongik University, Mapo-gu, Seoul, 04066, South Korea
| | - Jin Song
- Department of Mechanical Engineering, Myongji University, Yongin-si, Gyeonggi-do, 17508, South Korea
| | - Sangmin Lee
- Department of Chemical Engineering, Hongik University, Mapo-gu, Seoul, 04066, South Korea
| | - Jintae Kim
- Department of Electrical Engineering, Konkuk University, Gwangjin-gu, Seoul, 05029, South Korea
| | - Minsub Chung
- Department of Chemical Engineering, Hongik University, Mapo-gu, Seoul, 04066, South Korea
| | - Dohyun Kim
- Department of Mechanical Engineering, Myongji University, Yongin-si, Gyeonggi-do, 17508, South Korea; Natural Science Research Institute, Myongji University, Yongin-si, Gyeonggi-do, 17508, South Korea.
| |
Collapse
|
6
|
Temperature controlled ionic liquid aqueous two phase system combined with affinity capillary electrophoresis for rapid and precise pharmaceutical-protein binding measurements. Methods 2018; 146:120-125. [DOI: 10.1016/j.ymeth.2018.02.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 01/07/2018] [Accepted: 02/05/2018] [Indexed: 11/24/2022] Open
|
7
|
El-Hady DA, Albishri HM, Rengarajan R, Deeb SE, Wätzig H. Stabilizing proteins for affinity capillary electrophoresis using ionic liquid aqueous two phase systems: Pharmaceuticals and human serum albumin. Electrophoresis 2015; 36:3080-7. [DOI: 10.1002/elps.201500199] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 08/31/2015] [Accepted: 09/16/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Deia Abd El-Hady
- Chemistry Department, Faculty of Science; University of Jeddah; Jeddah Saudi Arabia
- Chemistry Department, Faculty of Science; Assiut University; Assiut Egypt
| | - Hassan M. Albishri
- Chemistry Department, Faculty of Science; King Abdulaziz University; Jeddah Saudi Arabia
| | - Rajesh Rengarajan
- Chemistry Department, Faculty of Science; King Abdulaziz University; Jeddah Saudi Arabia
| | - Sami El Deeb
- Institute of Medicinal and Pharmaceutical Chemistry; TU Braunschweig; Braunschweig Germany
| | - Hermann Wätzig
- Institute of Medicinal and Pharmaceutical Chemistry; TU Braunschweig; Braunschweig Germany
| |
Collapse
|
8
|
Kubáň P, Hauser PC. Contactless conductivity detection for analytical techniques: Developments from 2010 to 2012. Electrophoresis 2012; 34:55-69. [DOI: 10.1002/elps.201200358] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 08/08/2012] [Accepted: 08/09/2012] [Indexed: 11/08/2022]
Affiliation(s)
- Pavel Kubáň
- Institute of Analytical Chemistry of the Academy of Sciences of the Czech Republic; Brno; Czech Republic
| | - Peter C. Hauser
- Department of Chemistry; University of Basel; Basel; Switzerland
| |
Collapse
|
9
|
Elbashir AA, Aboul-Enein HY. Recent advances in applications of capillary electrophoresis with capacitively coupled contactless conductivity detection (CE-C⁴D): an update. Biomed Chromatogr 2012; 26:990-1000. [PMID: 22430262 DOI: 10.1002/bmc.2729] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 02/12/2012] [Indexed: 11/06/2022]
Abstract
Capillary electrophoresis with a capacitively contactless conductivity detector (CE-C⁴D) is becoming a significant useful technique for the analysis of analytes in various fields such as pharmaceutical, biomedical, food and environmental. This review is an update describing the recent developments in the application of CE with a C⁴D detector.
Collapse
|