1
|
Liu R, Li J, Salena BJ, Li Y. Aptamer and DNAzyme Based Colorimetric Biosensors for Pathogen Detection. Angew Chem Int Ed Engl 2025; 64:e202418725. [PMID: 39551709 PMCID: PMC11753613 DOI: 10.1002/anie.202418725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/01/2024] [Accepted: 11/15/2024] [Indexed: 11/19/2024]
Abstract
The detection of pathogens is critical for preventing and controlling health hazards across clinical, environmental, and food safety sectors. Functional nucleic acids (FNAs), such as aptamers and DNAzymes, have emerged as versatile molecular tools for pathogen detection due to their high specificity and affinity. This review focuses on the in vitro selection of FNAs for pathogens, with emphasis on the selection of aptamers for specific biomarkers and intact pathogens, including bacteria and viruses. Additionally, the selection of DNAzymes for bacterial detection is discussed. The integration of these FNAs into colorimetric biosensors has enabled the development of simple, cost-effective diagnostic platforms. Both non-catalytic and catalytic colorimetric biosensors are explored, including those based on gold nanoparticles, polydiacetylenes, protein enzymes, G-quadruplexes, and nanozymes. These biosensors offer visible detection through color changes, making them ideal for point-of-care diagnostics. The review concludes by highlighting current challenges and future perspectives for advancing FNA-based colorimetric biosensing technologies for pathogen detection.
Collapse
Affiliation(s)
- Rudi Liu
- Department of Biochemistry and Biomedical SciencesMichael G. DeGroote Institute of Infectious Disease ResearchSchool of Biomedical EngineeringBiointerfaces InstituteMcMaster University1280 Main Street WestHamiltonOntarioL8S 4K1Canada
| | - Jiuxing Li
- Department of Biochemistry and Biomedical SciencesMichael G. DeGroote Institute of Infectious Disease ResearchSchool of Biomedical EngineeringBiointerfaces InstituteMcMaster University1280 Main Street WestHamiltonOntarioL8S 4K1Canada
| | - Bruno J. Salena
- Department of MedicineMcMaster University1280 Main Street WestHamiltonOntarioL8S 4K1Canada
| | - Yingfu Li
- Department of Biochemistry and Biomedical SciencesMichael G. DeGroote Institute of Infectious Disease ResearchSchool of Biomedical EngineeringBiointerfaces InstituteMcMaster University1280 Main Street WestHamiltonOntarioL8S 4K1Canada
| |
Collapse
|
2
|
Liu M, Dou S, Vriesekoop F, Geng L, Zhou S, Huang J, Sun J, Sun X, Guo Y. Advances in signal amplification strategies applied in pathogenic bacteria apta-sensing analysis-A review. Anal Chim Acta 2024; 1287:341938. [PMID: 38182333 DOI: 10.1016/j.aca.2023.341938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 01/07/2024]
Abstract
Pathogenic bacteria are primarily kinds of food hazards that provoke serious harm to human health via contaminated or spoiled food. Given that pathogenic bacteria continue to reproduce and expand once they contaminate food, pathogenic bacteria of high concentration triggers more serious losses and detriments. Hence, it is essential to detect low-dose pollution at an early stage with high sensitivity. Aptamers, also known as "chemical antibodies", are oligonucleotide sequences that have attracted much attention owing to their merits of non-toxicity, small size, variable structure as well as easy modification of functional group. Aptamer-based bioanalysis has occupied a critical position in the field of rapid detection of pathogenic bacteria. This is attributed to the unique advantage of using aptamers as recognition elements in signal amplification strategies. The signal amplification strategy is an effective means to improve the detection sensitivity. Some diverse signal amplification strategies emphasize the synthesis and assembly of nanomaterials with signal amplification capabilities, while others introduce various nucleic acid amplification techniques into the detection system. This review focuses on a variety of signal amplification strategies employed in aptamer-based detection approaches to pathogenic bacteria. Meanwhile, we provided a detailed introduction to the design principles and characteristics of signal amplification strategies, as well as the improvement of sensor sensitivity. Ultimately, the existing issues and development trends of applying signal amplification strategies in apta-sensing analysis of pathogenic bacteria are critically proposed and prospected. Overall, this review discusses from a new perspective and is expected to contribute to the further development of this field.
Collapse
Affiliation(s)
- Mengyue Liu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China
| | - Shouyi Dou
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China
| | - Frank Vriesekoop
- Department of Food, Land and Agribusiness Management, Harper Adams University, Newport, United Kingdom
| | - Lingjun Geng
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China
| | - Shuxian Zhou
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China
| | - Jingcheng Huang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China
| | - Jiashuai Sun
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China
| | - Xia Sun
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China.
| | - Yemin Guo
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China.
| |
Collapse
|
3
|
Nguyen TTQ, Gu MB. An ultrasensitive electrochemical aptasensor using Tyramide-assisted enzyme multiplication for the detection of Staphylococcus aureus. Biosens Bioelectron 2023; 228:115199. [PMID: 36906992 DOI: 10.1016/j.bios.2023.115199] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 02/25/2023] [Accepted: 03/04/2023] [Indexed: 03/12/2023]
Abstract
In this study, we aimed to introduce a new electrochemical aptasensor based on the tyramide signal amplification (TSA) technology for a highly-sensitive detection of the pathogenic bacterium, Staphylococcus aureus, as a model of foodborne pathogens. In this aptasensor, the primary aptamer, SA37, was used to specifically capture bacterial cells; the secondary aptamer, SA81@HRP, was used as the catalytic probe; and a TSA-based signal enhancement system comprising of biotinyl-tyramide and streptavidin-HRP as electrocatalytic signal tags was adopted to fabricate the sensor and improve the detection sensitivity. S. aureus cells were selected as the pathogenic bacteria to verify the analytical performance of this TSA-based signal-enhancement electrochemical aptasensor platform. After the simultaneous binding of SA37-S. aureus-SA81@HRP formed on the gold electrode, thousands of @HRP molecules could be bound onto the biotynyl tyramide (TB) displayed on the bacterial cell surface through a catalytic reaction between HRP and H2O2, resulting in the generation of the highly amplified signals mediated by HRP reactions. This developed aptasensor could detect S. aureus bacterial cells at an ultra-low concentration, with a limit of detection (LOD) of 3 CFU/mL in buffer. Furthermore, this chronoamperometry aptasensor successfully detected target cells in both tap water and beef broth with LOD to be 8 CFU/mL, which are very high sensitivity and specificity. Overall, this electrochemical aptasensor using TSA-based signal-enhancement could be a very useful tool for the ultrasensitive detection of foodborne pathogens in food and water safety and environmental monitoring.
Collapse
Affiliation(s)
- Thi Thanh-Qui Nguyen
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Man Bock Gu
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Chen W, Lai Q, Zhang Y, Liu Z. Recent Advances in Aptasensors For Rapid and Sensitive Detection of Staphylococcus Aureus. Front Bioeng Biotechnol 2022; 10:889431. [PMID: 35677308 PMCID: PMC9169243 DOI: 10.3389/fbioe.2022.889431] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/12/2022] [Indexed: 12/30/2022] Open
Abstract
The infection of Staphylococcus aureus (S.aureus) and the spread of drug-resistant bacteria pose a serious threat to global public health. Therefore, timely, rapid and accurate detection of S. aureus is of great significance for food safety, environmental monitoring, clinical diagnosis and treatment, and prevention of drug-resistant bacteria dissemination. Traditional S. aureus detection methods such as culture identification, ELISA, PCR, MALDI-TOF-MS and sequencing, etc., have good sensitivity and specificity, but they are complex to operate, requiring professionals and expensive and complex machines. Therefore, it is still challenging to develop a fast, simple, low-cost, specific and sensitive S. aureus detection method. Recent studies have demonstrated that fast, specific, low-cost, low sample volume, automated, and portable aptasensors have been widely used for S. aureus detection and have been proposed as the most attractive alternatives to their traditional detection methods. In this review, recent advances of aptasensors based on different transducer (optical and electrochemical) for S. aureus detection have been discussed in details. Furthermore, the applications of aptasensors in point-of-care testing (POCT) have also been discussed. More and more aptasensors are combined with nanomaterials as efficient transducers and amplifiers, which appears to be the development trend in aptasensors. Finally, some significant challenges for the development and application of aptasensors are outlined.
Collapse
Affiliation(s)
- Wei Chen
- Department of Clinical Laboratory, Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory for Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, China
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China
- *Correspondence: Wei Chen, ; Zhengchun Liu,
| | - Qingteng Lai
- Hunan Key Laboratory for Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, China
| | - Yanke Zhang
- Hunan Key Laboratory for Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, China
| | - Zhengchun Liu
- Hunan Key Laboratory for Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, China
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China
- *Correspondence: Wei Chen, ; Zhengchun Liu,
| |
Collapse
|
5
|
Wu Y, Jiang S, Fu Z. Employment of teicoplanin-coated magnetic particles for quantifying gram-positive bacteria via catalase-catalyzed hydrolysis reaction of H2O2. Talanta 2020; 211:120728. [DOI: 10.1016/j.talanta.2020.120728] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 12/31/2019] [Accepted: 01/07/2020] [Indexed: 11/24/2022]
|
6
|
Zheng Y, Zhao Y, Di Y, Xiu C, He L, Liao S, Li D, Huang B. DNA aptamers from whole-serum SELEX as new diagnostic agents against gastric cancer. RSC Adv 2019; 9:950-957. [PMID: 35517584 PMCID: PMC9059574 DOI: 10.1039/c8ra08642g] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 12/10/2018] [Indexed: 12/20/2022] Open
Abstract
Gastric cancer is still among the leading causes of cancer deaths worldwide. Despite the improvements in diagnostic methods, the status of early detection has not been achieved so far. Early diagnosis of gastric cancer may significantly improve the cure rate of patients. Therefore, a new diagnostic method is needed. In this study, subtractive SELEX was performed to screen gastric cancer serum-specific DNA aptamers by using gastric cancer serum and normal serum as the target and negative serum, respectively. Four highly specific aptamers generated for gastric cancer serum, Seq-3, Seq-6, Seq-19 and Seq-54, were developed using whole-serum subtractive SELEX technology with K d of 128 ± 26.3 nM, 149 ± 23.6 nM, 232 ± 44.2 nM, 202 ± 25.6 nM, respectively. These generated aptamers showed higher specificities toward their target serum by differentiating normal serum but closely related other cancer serums. The selected four high affinity DNA aptamers were further applied to the development based on qPCR method for the early detection of gastric cancer. In addition, we performed MALDI-TOF MS followed by secondary peptide sequencing MS analysis for the identification of the aptamer binding proteins. Among these potential biomarkers, APOA1, APOA4, PARD3, Importin subunit alpha-1 showed a relatively high score probability. Therefore, these four ssDNA aptamers generated in our study could be a promising molecular probe for gastric cancer diagnosis.
Collapse
Affiliation(s)
- Yue Zheng
- The First Hospital of Qinhuangdao Qinhuangdao 066000 China +86-0335-590-8121
| | - Yunwang Zhao
- The First Hospital of Qinhuangdao Qinhuangdao 066000 China +86-0335-590-8121
| | - Ya Di
- The First Hospital of Qinhuangdao Qinhuangdao 066000 China +86-0335-590-8121
| | - Chenlin Xiu
- Central Pharmaceutical Research Institute, Shijiazhuang Pharmaceutical Group Shijiazhuang 050041 China
| | - Lei He
- College of Environment &Chemical Engineering, Yanshan University Qinhuangdao 066004 China
| | - Shiqi Liao
- College of Life Sciences, Lanzhou University Lanzhou 730000 China
| | - Dongdong Li
- College of Life Sciences, Lanzhou University Lanzhou 730000 China
| | - Baihai Huang
- College of Environment &Chemical Engineering, Yanshan University Qinhuangdao 066004 China
| |
Collapse
|
7
|
Aptamer-based fluorometric assay for direct identification of methicillin-resistant Staphylococcus aureus from clinical samples. J Microbiol Methods 2018; 153:92-98. [PMID: 30243766 DOI: 10.1016/j.mimet.2018.09.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/17/2018] [Accepted: 09/18/2018] [Indexed: 12/11/2022]
Abstract
Accurate and rapid identification of methicillin-resistant Staphylococcus aureus (MRSA) is of important clinical significance. In this study, a novel aptamer-based fluorometric assay was developed for detection of MRSA in clinical samples by coupling with immunomagnetic separation. The S. aureus cells in clinical specimens were enriched by magnetic separation. Following lysis by staphylococcal lysin, the PBP2a proteins were released from S. aureus cells and detected by the aptamer-based fluorometric assay. Without lengthy period of bacteria cultivation in the traditional susceptibility testing, this test has an overall testing time of only 2 h with the detection limit of 2.63 × 103 and 1.38 × 103 CFU/mL in PBS and spiked nasal swab, respectively. Since it is simple, rapid and sensitive, this method could be used for the detection of MRSA in various clinical samples.
Collapse
|
8
|
Duan N, Wu S, Dai S, Gu H, Hao L, Ye H, Wang Z. Advances in aptasensors for the detection of food contaminants. Analyst 2018; 141:3942-61. [PMID: 27265444 DOI: 10.1039/c6an00952b] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Food safety is a global health objective, and foodborne diseases represent a major crisis in health. Techniques that are simple and suitable for fast screening to detect and identify pathogenic factors in the food chain are vital to ensure food safety. At present, a variety of analytical methods have been reported for the detection of pathogenic agents. Whereas the sensitivity of detection and quantification are still important challenges, we expect major advances from new assay formats and synthetic bio-recognition elements, such as aptamers. Owing to the specific folding capability of aptamers in the presence of an analyte, aptasensors have substantially and successfully been exploited for the detection of a wide range of small and large molecules (e.g., toxins, antibiotics, heavy metals, bacteria, viruses) at very low concentrations. Here, we review the use of aptasensors for the development of highly sensitive and affordable detection tools for food analysis.
Collapse
Affiliation(s)
- Nuo Duan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Shijia Wu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Shaoliang Dai
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Huajie Gu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Liling Hao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Hua Ye
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
9
|
Determination of bacterial DNA based on catalytic oxidation of cysteine by G-quadruplex DNAzyme generated from asymmetric PCR: Application to the colorimetric detection of Staphylococcus aureus. Mikrochim Acta 2018; 185:410. [DOI: 10.1007/s00604-018-2935-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 07/23/2018] [Indexed: 02/01/2023]
|
10
|
Park KS. Nucleic acid aptamer-based methods for diagnosis of infections. Biosens Bioelectron 2018; 102:179-188. [PMID: 29136589 PMCID: PMC7125563 DOI: 10.1016/j.bios.2017.11.028] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 10/20/2017] [Accepted: 11/06/2017] [Indexed: 02/07/2023]
Abstract
Infectious diseases are a serious global problem, which not only take an enormous human toll but also incur tremendous economic losses. In combating infectious diseases, rapid and accurate diagnostic tests are required for pathogen identification at the point of care (POC). In this review, investigations of diagnostic strategies for infectious diseases that are based on aptamers, especially nucleic acid aptamers, oligonucleotides that have high affinities and specificities toward their targets, are described. Owing to their unique features including low cost of production, easy chemical modification, high chemical stability, reproducibility, and low levels of immunogenicity and toxicity, aptamers have been widely utilized as bio-recognition elements (bio-receptors) for the development of infection diagnostic systems. We discuss nucleic acid aptamer-based methods that have been developed for diagnosis of infections using a format that organizes discussion according to the target pathogenic analytes including toxins or proteins, whole cells and nucleic acids. Also included is, a summary of recent advances made in the sensitive detection of pathogenic bacteria utilizing the isothermal nucleic acid amplification method. Lastly, a nucleic acid aptamer-based POC system is described and future directions of studies in this area are discussed.
Collapse
Affiliation(s)
- Ki Soo Park
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
11
|
Graphene oxide-based fluorometric determination of methicillin-resistant Staphylococcus aureus by using target-triggered chain reaction and deoxyribonuclease-assisted recycling. Mikrochim Acta 2018; 185:183. [PMID: 29594725 DOI: 10.1007/s00604-018-2702-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 01/21/2018] [Indexed: 12/22/2022]
Abstract
The authors describe a method for the fluorometric determination of methicillin-resistant Staphylococcus aureus (MRSA) by exploiting target-triggered chain reactions and deoxyribonuclease I (DNase I)-aided target recycling. It is making use of a carboxy-fluorescein (FAM)-labeled single-stranded probe containing two sections. One is complementary to the 5' terminus of the target, while the 3' terminus of the other target is adsorbed on the surface of graphene oxide (GO) via π-stacking interactions without the target (16S rRNA). This adsorption results in quenching of the fluorescence of the label and protects it from being cleaved by DNase I. However, upon addition of the target, DNA/RNA hybrids are repelled by GO. This leads to fluorescence recovery as measured at excitation/emission wavelengths of 480/514 nm due to a chain reaction that is triggered by the target. The signal is strongly amplified by using DNase I-mediated target recycling. The 16S rRNA of MRSA can be detected by this method in the 1 to 30 nM concentration range, and the detection limit is 0.02 nM. The method was applied to analyze bacterial samples, and the detection limit is as low as 30 CFU . mL-1. The assay is highly sensitive and selective and in our percpetion has a large potential in diagnosis of drug-resistant bacteria. Graphical abstract Schematic of the graphene oxide-based fluorescent bioassay for Methicillin-resistant Staphylococcus aureus detection by using target-triggered chain reaction and deoxyribonuclease I-aided signal amplification.
Collapse
|
12
|
Muñoz J, Montes R, Baeza M. Trends in electrochemical impedance spectroscopy involving nanocomposite transducers: Characterization, architecture surface and bio-sensing. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.08.012] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
13
|
G-quadruplex aptamer targeting Protein A and its capability to detect Staphylococcus aureus demonstrated by ELONA. Sci Rep 2016; 6:33812. [PMID: 27650576 PMCID: PMC5030626 DOI: 10.1038/srep33812] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 08/24/2016] [Indexed: 01/15/2023] Open
Abstract
Aptamers for whole cell detection are selected mostly by the Cell-SELEX procedure. Alternatively, the use of specific cell surface epitopes as target during aptamer selections allows the development of aptamers with ability to bind whole cells. In this study, we integrated a formerly selected Protein A-binding aptamer PA#2/8 in an assay format called ELONA (Enzyme-Linked OligoNucleotide Assay) and evaluated the ability of the aptamer to recognise and bind to Staphylococcus aureus presenting Protein A on the cell surface. The full-length aptamer and one of its truncated variants could be demonstrated to specifically bind to Protein A-expressing intact cells of S. aureus, and thus have the potential to expand the portfolio of aptamers that can act as an analytical agent for the specific recognition and rapid detection of the bacterial pathogen. The functionality of the aptamer was found to be based on a very complex, but also highly variable structure. Two structural key elements were identified. The aptamer sequence contains several G-clusters allowing folding into a G-quadruplex structure with the potential of dimeric and multimeric assembly. An inverted repeat able to form an imperfect stem-loop at the 5'-end also contributes essentially to the aptameric function.
Collapse
|
14
|
Ultra-sensitive chemiluminescent detection of Staphylococcus aureus based on competitive binding of Staphylococcus protein A-modified magnetic beads to immunoglobulin G. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-1769-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
15
|
Shangguan J, Li Y, He D, He X, Wang K, Zou Z, Shi H. A combination of positive dielectrophoresis driven on-line enrichment and aptamer-fluorescent silica nanoparticle label for rapid and sensitive detection of Staphylococcus aureus. Analyst 2016; 140:4489-97. [PMID: 25963028 DOI: 10.1039/c5an00535c] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Staphylococcus aureus (S. aureus) is an important human pathogen that causes several diseases ranging from superficial skin infections to life-threatening diseases. Here, a method combining positive dielectrophoresis (pDEP) driven on-line enrichment and aptamer-fluorescent silica nanoparticle label has been developed for the rapid and sensitive detection of S. aureus in microfluidic channels. An aptamer, having high affinity to S. aureus, is used as the molecular recognition tool and immobilized onto chloropropyl functionalized fluorescent silica nanoparticles through a click chemistry approach to obtain S. aureus aptamer-nanoparticle bioconjugates (Apt(S.aureus)/FNPs). The pDEP driven on-line enrichment technology was used for accumulating the Apt(S.aureus)/FNP labeled S. aureus. After incubating with S. aureus, the mixture of Apt(S.aureus)/FNP labeled S. aureus and Apt(S.aureus)/FNPs was directly introduced into the pDEP-based microfluidic system. By applying an AC voltage in a pDEP frequency region, the Apt(S.aureus)/FNP labelled S. aureus moved to the electrodes and accumulated in the electrode gap, while the free Apt(S.aureus)/FNPs flowed away. The signal that came from the Apt(S.aureus)/FNP labelled S. aureus in the focused detection areas was then detected. Profiting from the specificity of aptamer, signal amplification of FNP label and pDEP on-line enrichment, this assay can detect as low as 93 and 270 cfu mL(-1)S. aureus in deionized water and spiked water samples, respectively, with higher sensitivities than our previously reported Apt(S.aureus)/FNP based flow cytometry. Moreover, without the need for separation and washing steps usually required for FNP label involved bioassays, the total assay time including sample pretreatment was within 2 h.
Collapse
Affiliation(s)
- Jingfang Shangguan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha 410082, China.
| | | | | | | | | | | | | |
Collapse
|
16
|
Zeng Y, Wan Y, Zhang D. Lysozyme as sensitive reporter for fluorometric and PCR based detection of E. coli and S. aureus using magnetic microbeads. Mikrochim Acta 2015. [DOI: 10.1007/s00604-015-1715-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
17
|
Yan M, Bai W, Zhu C, Huang Y, Yan J, Chen A. Design of nuclease-based target recycling signal amplification in aptasensors. Biosens Bioelectron 2015; 77:613-23. [PMID: 26485175 DOI: 10.1016/j.bios.2015.10.015] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 09/21/2015] [Accepted: 10/05/2015] [Indexed: 10/22/2022]
Abstract
Compared with conventional antibody-based immunoassay methods, aptasensors based on nucleic acid aptamer have made at least two significant breakthroughs. One is that aptamers are more easily used for developing various simple and rapid homogeneous detection methods by "sample in signal out" without multi-step washing. The other is that aptamers are more easily employed for developing highly sensitive detection methods by using various nucleic acid-based signal amplification approaches. As many substances playing regulatory roles in physiology or pathology exist at an extremely low concentration and many chemical contaminants occur in trace amounts in food or environment, aptasensors for signal amplification contribute greatly to detection of such targets. Among the signal amplification approaches in highly sensitive aptasensors, the nuclease-based target recycling signal amplification has recently become a research focus because it shows easy design, simple operation, and rapid reaction and can be easily developed for homogenous assay. In this review, we summarized recent advances in the development of various nuclease-based target recycling signal amplification with the aim to provide a general guide for the design of aptamer-based ultrasensitive biosensing assays.
Collapse
Affiliation(s)
- Mengmeng Yan
- Institute of Quality Standards and Testing Technology for Agro-products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Science, Beijing 100081, China; Key Laboratory of Agri-Food Quality and Safety, Ministry of Agriculture, Beijing 100081, China
| | - Wenhui Bai
- Institute of Quality Standards and Testing Technology for Agro-products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Science, Beijing 100081, China; Key Laboratory of Agri-Food Quality and Safety, Ministry of Agriculture, Beijing 100081, China
| | - Chao Zhu
- Institute of Quality Standards and Testing Technology for Agro-products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Science, Beijing 100081, China; Key Laboratory of Agri-Food Quality and Safety, Ministry of Agriculture, Beijing 100081, China
| | - Yafei Huang
- Institute of Quality Standards and Testing Technology for Agro-products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Science, Beijing 100081, China; Key Laboratory of Agri-Food Quality and Safety, Ministry of Agriculture, Beijing 100081, China; College of Food Science and Technology, Hainan University, Haikou 570228, China
| | - Jiao Yan
- Institute of Quality Standards and Testing Technology for Agro-products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Science, Beijing 100081, China; Key Laboratory of Agri-Food Quality and Safety, Ministry of Agriculture, Beijing 100081, China; College of Food Science and Technology, Hainan University, Haikou 570228, China
| | - Ailiang Chen
- Institute of Quality Standards and Testing Technology for Agro-products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Science, Beijing 100081, China; Key Laboratory of Agri-Food Quality and Safety, Ministry of Agriculture, Beijing 100081, China.
| |
Collapse
|
18
|
Wang J, Wu X, Wang C, Shao N, Dong P, Xiao R, Wang S. Magnetically Assisted Surface-Enhanced Raman Spectroscopy for the Detection of Staphylococcus aureus Based on Aptamer Recognition. ACS APPLIED MATERIALS & INTERFACES 2015; 7:20919-29. [PMID: 26322791 DOI: 10.1021/acsami.5b06446] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
A magnetically assisted surface-enhanced Raman scattering (SERS) biosensor for single-cell detection of S. aureus on the basis of aptamer recognition is reported for the first time. The biosensor consists of two basic elements including a SERS substrate (Ag-coated magnetic nanoparticles, AgMNPs) and a novel SERS tag (AuNR-DTNB@Ag-DTNB core-shell plasmonic NPs or DTNB-labeled inside-and-outside plasmonic NPs, DioPNPs). Uniform, monodisperse, and superparamagnetic AgMNPs with favorable SERS activity and magnetic responsiveness are synthesized by using polymer polyethylenimine. AgMNPs use magnetic enrichment instead of repeated centrifugation to prevent sample sedimentation. DioPNPs are designed and synthesized as a novel SERS tag. The Raman signal of DioPNPs is 10 times stronger than that of the commonly used SERS tag AuNR-DTNB because of the double-layer DTNB and the LSPR position adjustment to match the given laser excitation wavelength. Consequently, a strong SERS enhancement is achieved. Under the optimized aptamer density and linker length, capture by aptamer-modified AgMNPs can achieve favorable bacteria arrest (up to 75%). With the conventional Raman spectroscopy, the limit of detection (LOD) is 10 cells/mL for S. aureus detection, and a good linear relationship is also observed between the SERS intensity at Raman peak 1331 cm(-1) and the logarithm of bacteria concentrations ranging from 10(1) to 10(5) cells/mL. With the help of the newly developed SERS mapping technique, single-cell detection of S. aureus is easily achieved.
Collapse
Affiliation(s)
- Junfeng Wang
- Beijing Institute of Radiation Medicine , Beijing 100850, PR China
- State Key Laboratory of Transducer Technology, Chinese Academy of Science , Shanghai 200050, PR China
| | | | - Chongwen Wang
- Beijing Institute of Radiation Medicine , Beijing 100850, PR China
- College of Life Sciences & Bio-Engineering, Beijing University of Technology , Beijing 100124, PR China
| | - Ningsheng Shao
- Beijing Institute of Basic Medical Sciences , Beijing 100850, PR China
| | - Peitao Dong
- State Key Laboratory of Transducer Technology, Chinese Academy of Science , Shanghai 200050, PR China
| | - Rui Xiao
- Beijing Institute of Radiation Medicine , Beijing 100850, PR China
| | - Shengqi Wang
- Beijing Institute of Radiation Medicine , Beijing 100850, PR China
| |
Collapse
|
19
|
Liu Y, Yu J. Oriented immobilization of proteins on solid supports for use in biosensors and biochips: a review. Mikrochim Acta 2015. [DOI: 10.1007/s00604-015-1623-4] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
20
|
Shen B, Li J, Cheng W, Yan Y, Tang R, Li Y, Ju H, Ding S. Electrochemical aptasensor for highly sensitive determination of cocaine using a supramolecular aptamer and rolling circle amplification. Mikrochim Acta 2014. [DOI: 10.1007/s00604-014-1333-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
21
|
Seok Y, Byun JY, Mun H, Kim MG. Colorimetric detection of PCR products of DNA from pathogenic bacterial targets based on a simultaneously amplified DNAzyme. Mikrochim Acta 2014. [DOI: 10.1007/s00604-014-1297-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
22
|
Chen X, Huang Y, Duan N, Wu S, Xia Y, Ma X, Zhu C, Jiang Y, Ding Z, Wang Z. Selection and characterization of single stranded DNA aptamers recognizing fumonisin B1. Mikrochim Acta 2014. [DOI: 10.1007/s00604-014-1260-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Yuan J, Wu S, Duan N, Ma X, Xia Y, Chen J, Ding Z, Wang Z. A sensitive gold nanoparticle-based colorimetric aptasensor for Staphylococcus aureus. Talanta 2014; 127:163-8. [PMID: 24913871 DOI: 10.1016/j.talanta.2014.04.013] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 03/29/2014] [Accepted: 04/04/2014] [Indexed: 10/25/2022]
Abstract
In this study, a gold nanoparticle-based colorimetric aptasensor for Staphylococcus aureus (S. aureus) using tyramine signal amplification (TSA) technology has been developed. First, the biotinylated aptamer specific for S. aureus was immobilized on the surface of the wells of the microtiter plate via biotin-avidin binding. Then, the target bacteria (S. aureus), biotinylated-aptamer-streptavidin-HRP conjugates, biotinylated tyramine, hydrogen peroxide and avidin-catalase were successively introduced into the wells of the microtiter plate. After that, the existing catalase consumed the hydrogen peroxide. Finally, the freshly prepared gold (III) chloride trihydrate was added, the color of the reaction production would be changed and the absorbance at 550 nm could be measured with a plate reader. Under optimized conditions, there was a linear relationship between the absorbance at 550 nm and the concentration of S. aureus over the range from 10 to 10(6) cfu mL(-1) (with an R² of 0.9947). The limit of the developed method was determined to be 9 cfu mL(-1).
Collapse
Affiliation(s)
- Jinglei Yuan
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shijia Wu
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Nuo Duan
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiaoyuan Ma
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yu Xia
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jie Chen
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhansheng Ding
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
24
|
Impedimetric aptasensor for Staphylococcus aureus based on nanocomposite prepared from reduced graphene oxide and gold nanoparticles. Mikrochim Acta 2014. [DOI: 10.1007/s00604-014-1195-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|