1
|
Liu C, Li Y, Chen T, Meng S, Liu D, Dong D, You T. Electric Field-Induced Specific Preconcentration to Enhance DNA-Based Electrochemical Sensing of Hg 2+ via the Synergy of Enrichment and Self-Cleaning. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:7412-7419. [PMID: 35671382 DOI: 10.1021/acs.jafc.2c02416] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Efficient preconcentration is critical for sensitive and selective electrochemical detection of metal ions, but rapid specific enrichment with depressed absorption of interfering ions at the electrode is challenging. Here, we proposed an electric field-induced specific preconcentration to boost the analytical performance of DNA-based electrochemical sensors for Hg2+ detection. As for such preconcentration, a positive external electric field was first used to enrich Hg2+ at an electrode assembled with T-rich DNA, thus boosting T-Hg2+-T recognitions. The following applied inverse electric field strips the nonspecifically absorbed Hg2+ and other interfering ions, thus depressing matrix interferences via self-cleaning. Based on this principle, we designed a portable device to realize programmable control of electric fields; a T-Hg2+-T recognition-based electrochemical sensor was thus fabricated as a model platform to assess the feasibility of electric field-induced preconcentration. The experimental results revealed that such a strategy decreased the time of T-Hg2+-T-based recognition from 60 to 20 min and led to detection with better reproducibility by depressing the influence of free Hg2+ as well as interfering ions. This strategy offered Hg2+ detection limits of 0.01 pM─three-fold better than that without preconcentration─within 22 min. The proposed preconcentration strategy offers a new way to enhance the analytical performance of sensing at the solid-liquid interface.
Collapse
Affiliation(s)
- Chang Liu
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yuye Li
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Ting Chen
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Shuyun Meng
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Dong Liu
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Daming Dong
- National Engineering Research Center of Intelligent Equipment for Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Tianyan You
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
2
|
Abolghasemi-Fakhri Z, Hallaj T, Amjadi M. A sensitive turn-off-on fluorometric sensor based on S,N co-doped carbon dots for environmental analysis of Hg(II) ion. LUMINESCENCE 2021; 36:1151-1158. [PMID: 33686780 DOI: 10.1002/bio.4040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/03/2021] [Accepted: 03/03/2021] [Indexed: 11/07/2022]
Abstract
A simple and sensitive fluorescence turn-off-on sensor was established by means of S,N co-doped carbon dots (S,N-CDs) and Ag nanoparticles (AgNPs) for the determination of Hg2+ . For this purpose, blue emissive S,N-CDs were hydrothermally synthesized and characterized using transmission electron microscopy, Fourier transform infrared spectroscopy, and energy dispersive X-ray spectroscopy. We observed that the fluorescence intensity of the as-prepared S,N-CDs was impressively quenched by AgNPs. The quenching mechanism was studied and attributed to nanosurface energy transfer and the inner filter effect between S,N-CDs and AgNPs. Furthermore, by adding Hg2+ , the fluorescence intensity of S,N-CDs/AgNPs was restored as a result of aggregation of AgNPs in the presence of Hg2+ . Based on these facts, S,N-CDs and AgNPs were exploited to design a sensitive turn-off-on sensor for analysis of Hg2+ . The recovered fluorescence signal was proportional to the concentration of Hg2+ in the range 1.5-2000 nM with a detection limit of 0.51 nM. The established sensor was used with satisfactory results for measurement of Hg2+ in environmental water samples.
Collapse
Affiliation(s)
| | - Tooba Hallaj
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | | |
Collapse
|
3
|
Loredo A, Wang L, Wang S, Xiao H. Single-Atom Switching as a General Approach to Designing Colorimetric and Fluorogenic Probes for Mercury Ions. DYES AND PIGMENTS : AN INTERNATIONAL JOURNAL 2021; 186:109014. [PMID: 33867600 PMCID: PMC8045779 DOI: 10.1016/j.dyepig.2020.109014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
By performing a single-atom replacement within common fluorophores, we have developed a facile and general strategy to prepare a broad-spectrum class of colorimetric and fluorogenic probes for the selective detection of mercury ions in aqueous environments. Thionation of carbonyl groups from existing fluorophore cores results in a great reduction of fluorescence quantum yield and loss of fluorescence emission. The resulting thiocaged probes are efficiently desulfurized to their oxo derivatives in the presence of mercury ions, leading to pronounced changes in chromogenic and fluorogenic signals. Because these probes exhibit high selectivity, excellent sensitivity, good membrane-permeability, and rapid responses towards mercury ions, they are suitable for visualization of mercury in both aqueous and intracellular environments.
Collapse
Affiliation(s)
- Axel Loredo
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas, 77005
| | - Lushun Wang
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas, 77005
| | - Shichao Wang
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas, 77005
| | - Han Xiao
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas, 77005
- Department of Biosciences, Rice University, 6100 Main Street, Houston, Texas, 77005
- Department of Bioengineering, Rice University, 6100 Main Street, Houston, Texas, 77005 *
| |
Collapse
|
4
|
Fluorometric determination of mercury(II) by using thymine-thymine mismatches as recognition elements, toehold binding, and enzyme-assisted signal amplification. Mikrochim Acta 2019; 186:551. [PMID: 31324987 DOI: 10.1007/s00604-019-3683-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 07/07/2019] [Indexed: 10/26/2022]
Abstract
A highly sensitive fluorometric method is described for the determination of mercury(II) ions. It is based on (a) the use of a DNA probe containing thymine-thymine mismatches that are employed as Hg(II) recognition elements, (b) subsequent toehold binding, and (c) endocuclease-assisted signal amplification. Target recycling is triggered by exonuclease III. This produces a large amount of ssDNA (defined as primer). Then, the generated primer-initiated strand displacement reaction with the help of polymerase and nicking endonuclease releases the free fluorophore-labelled probe. Under excitation at 532 nm, the fluorescent probe displays emission with a peak at 582 nm. The sensitivity of this method is improved by introduction of nicking endonuclease. The working range of the assay extends from 20 pM to 10 nM, and the detection limit is as low as 6 pM of Hg(II). Graphical abstract Schematic presentation of the fluorometric method for determination of mercury(II). By using a special structure of thymine-thymine mismatches, target-induced toehold binding and enzyme-assisted signal amplification strategy were employed. This method is selective and good performance in real sample application.
Collapse
|
5
|
Zhang L, Gu C, Ma H, Zhu L, Wen J, Xu H, Liu H, Li L. Portable glucose meter: trends in techniques and its potential application in analysis. Anal Bioanal Chem 2018; 411:21-36. [DOI: 10.1007/s00216-018-1361-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/07/2018] [Accepted: 09/04/2018] [Indexed: 12/18/2022]
|
6
|
Achadu OJ, Revaprasadu N. Microwave-assisted synthesis of thymine-functionalized graphitic carbon nitride quantum dots as a fluorescent nanoprobe for mercury(II). Mikrochim Acta 2018; 185:461. [PMID: 30219975 DOI: 10.1007/s00604-018-3004-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 09/09/2018] [Indexed: 12/16/2022]
Abstract
A microwave-assisted hydrothermal method was employed to prepare thymine-modified graphitic carbon nitride quantum dots (T-gCNQDs) which are shown to be a novel fluorescent nanoprobe for Hg(II). They exhibit excellent optical properties (blue emission with a fluorescence quantum yield of 46%) and water solubility. The incorporation of thymine into the gCNQDs results in an enhancement in photoluminescence properties. It is found that fluorescence, best measured at excitation/emission wavelengths of 350/445 nm, is much more strongly quenched by Hg(II) compared to the thymine-free nanoprobe. The quenching is highly selective even in the presence other metal ions. This is ascribed to the formation of T-Hg(II)-T base complexes. Fluorescence drops linearly in the 1.0 to 500 nM Hg(II) concentration range, and the limit of detection is 0.15 nM. The method was applied to the determination of Hg(II) in spiked samples of tap and pond water. Recoveries were found to be >95%, thus demonstrating the practical applicability of the assay. Graphical abstract A microwave-assisted hydrothermal route was employed to prepare thymine-functionalized graphitic carbon nitride QDs (T-gCNQDs). A selective fluorescence quenching mechanism occurred between T-gCNQDs and Hg(II) due to thymine functionalization. T-gCNQDs was utilized to detect Hg(II) in real samples.
Collapse
Affiliation(s)
- Ojodomo J Achadu
- Department of Chemistry, University of Zululand, Private Bag X1001, KwaDlangezwa, 3886, South Africa.
| | - Neerish Revaprasadu
- Department of Chemistry, University of Zululand, Private Bag X1001, KwaDlangezwa, 3886, South Africa
| |
Collapse
|
7
|
Xiong X, Lai X, Liu J. Mercaptosuccinic acid-coated NIR-emitting gold nanoparticles for the sensitive and selective detection of Hg 2. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 188:483-487. [PMID: 28759849 DOI: 10.1016/j.saa.2017.07.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 07/07/2017] [Accepted: 07/20/2017] [Indexed: 06/07/2023]
Abstract
A sensitive fluorescent detection platform for Hg2+ was constructed based on mercaptosuccinic acid (MSA) coated near-infrared (NIR)-emitting gold nanoparticles (AuNPs). The thiolated mercaptosuccinic acid was employed as both reducing agent and surface coating ligand in a one-step synthesis of NIR-emitting AuNPs (MSA-AuNPs), which exhibited stable fluorescence with the maximum wavelength at 800nm and a wide range of excitation (220-650nm) with the maxima at 413nm. The MSA coated NIR-emitting AuNPs showed a rapid fluorescence quenching toward Hg2+ over other metal ions with a limit of detection (LOD, 3δ) as low as 4.8nM. The sensing mechanism investigation revealed that the AuNPs formed aggregation due to the "recognition" of Hg2+ from the MSA, and the resultant strong coupling interaction between Hg2+ and Au (I) to further quench the fluorescence of the AuNPs, which synergistically resulted in a highly sensitive and selective fluorescence response toward Hg2+. This proposed strategy was also demonstrated the possibility to be used for Hg2+ detection in water samples.
Collapse
Affiliation(s)
- Xiaodong Xiong
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China; School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China
| | - Xiaoqi Lai
- School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China.
| | - Jinbin Liu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
8
|
Hong M, Zeng B, Li M, Xu X, Chen G. An ultrasensitive conformation-dependent colorimetric probe for the detection of mercury(II) using exonuclease III-assisted target recycling and gold nanoparticles. Mikrochim Acta 2017; 185:72. [PMID: 29594628 DOI: 10.1007/s00604-017-2536-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 11/09/2017] [Indexed: 10/18/2022]
Abstract
An ultrasensitive conformation-dependent colorimetric assay has been developed for the detection of mercury(II) ions. It is based on the use of exonuclease III (Exo III)-assisted target recycling and gold nanoparticles (AuNPs). In the absence of Hg(II), the hairpin-shaped DNA probe (H-DNA) binds to AuNPs and stabilizes them in solutions of high ionic strength. In the presence of Hg(II), on the other hand, the sticky termini of the H-DNA form a rigid DNA duplex stem with a blunt 3'-terminus. Thus, Exo III is activated as a biocatalyst for selective and stepwise removal of mononucleotides from the 3'-terminus of the H-DNA. As a result, Hg(II) is released from the T-Hg(II)-T complexes. The guanine-rich sequences released from the H-DNA are then self-assembled with potassium ion to form a stable G-quadruplex conformation. In solutions of high ionic strength, this results in aggregation of AuNPs and a color change from red to blue which can be seen with bare eyes. The method is highly sensitive and selective. It has a linear response in the 10 pM to 100 nM Hg(II) concentration range, and the detection limit is as low as 3.2 pM (at an S/N ratio of 3). The relative standard deviation at a level of 0.5 nM of Hg(II) is 4.9% (for n = 10). The method was applied to the detection of Hg(II) in spiked environment water samples, with recoveries ranging from 92% to 106%. Graphical abstract A conformation-dependent colorimetric system was fabricated for label-free detection of mercury(II) by utilizing exonuclease III(Exo III)-assisted target recycling and gold nanoparticles (AuNPs).
Collapse
Affiliation(s)
- Minqiang Hong
- Key Laboratory for Analytical Science of Food Safety and Biology, MOE, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Bihua Zeng
- Key Laboratory for Analytical Science of Food Safety and Biology, MOE, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Mingyu Li
- Key Laboratory for Analytical Science of Food Safety and Biology, MOE, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Xueqin Xu
- Key Laboratory for Analytical Science of Food Safety and Biology, MOE, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China.
| | - Guonan Chen
- Key Laboratory for Analytical Science of Food Safety and Biology, MOE, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| |
Collapse
|
9
|
Liu S, Leng X, Wang X, Pei Q, Cui X, Wang Y, Huang J. Enzyme-free colorimetric assay for mercury(II) using DNA conjugated to gold nanoparticles and strand displacement amplification. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2182-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
10
|
Thymine chitosan nanomagnets for specific preconcentration of mercury(II) prior to analysis using SELDI-MS. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2125-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
Photoelectrochemical determination of Hg(II) via dual signal amplification involving SPR enhancement and a folding-based DNA probe. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2141-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
12
|
Cai L, Guo Z, Zheng X. Electrochemiluminescent detection of Hg(II) by exploiting the differences in the adsorption of free T-rich oligomers and Hg(II) loaded T-rich oligomers on silica nanoparticles doped with Ru(bpy)3 2+. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-1875-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
13
|
Wang Y, Wang L, Wang S, Yang M, Cai J, Liu F. ‘Green’ immunochromatographic electrochemical biosensor for mercury(II). Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-1866-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|