1
|
Kara N, Ayoub N, Ilgu H, Fotiadis D, Ilgu M. Aptamers Targeting Membrane Proteins for Sensor and Diagnostic Applications. Molecules 2023; 28:molecules28093728. [PMID: 37175137 PMCID: PMC10180177 DOI: 10.3390/molecules28093728] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/07/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
Many biological processes (physiological or pathological) are relevant to membrane proteins (MPs), which account for almost 30% of the total of human proteins. As such, MPs can serve as predictive molecular biomarkers for disease diagnosis and prognosis. Indeed, cell surface MPs are an important class of attractive targets of the currently prescribed therapeutic drugs and diagnostic molecules used in disease detection. The oligonucleotides known as aptamers can be selected against a particular target with high affinity and selectivity by iterative rounds of in vitro library evolution, known as Systematic Evolution of Ligands by EXponential Enrichment (SELEX). As an alternative to antibodies, aptamers offer unique features like thermal stability, low-cost, reuse, ease of chemical modification, and compatibility with various detection techniques. Particularly, immobilized-aptamer sensing platforms have been under investigation for diagnostics and have demonstrated significant value compared to other analytical techniques. These "aptasensors" can be classified into several types based on their working principle, which are commonly electrochemical, optical, or mass-sensitive. In this review, we review the studies on aptamer-based MP-sensing technologies for diagnostic applications and have included new methodological variations undertaken in recent years.
Collapse
Affiliation(s)
- Nilufer Kara
- Department of Biological Sciences, Middle East Technical University, Ankara 06800, Turkey
| | - Nooraldeen Ayoub
- Department of Biological Sciences, Middle East Technical University, Ankara 06800, Turkey
- Institute of Biochemistry and Molecular Medicine, University of Bern, CH-3012 Bern, Switzerland
| | - Huseyin Ilgu
- Institute of Biochemistry and Molecular Medicine, University of Bern, CH-3012 Bern, Switzerland
| | - Dimitrios Fotiadis
- Institute of Biochemistry and Molecular Medicine, University of Bern, CH-3012 Bern, Switzerland
| | - Muslum Ilgu
- Department of Biological Sciences, Middle East Technical University, Ankara 06800, Turkey
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA 50011, USA
- Aptalogic Inc., Ames, IA 50014, USA
| |
Collapse
|
2
|
Mikuła E, Katrlík J, Rodrigues LR. Electrochemical Aptasensors for Parkinson's Disease Biomarkers Detection. Curr Med Chem 2022; 29:5795-5814. [PMID: 35619313 DOI: 10.2174/0929867329666220520123337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 02/07/2022] [Accepted: 03/10/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Biomarkers are characteristic molecules that can be measured as indicators of biological process status or condition, exhibiting special relevance in Parkinson's Disease (PD). This disease is a chronic neurodegenerative disorder very difficult to study given the site of pathology and due to a clinical phenotype that fluctuates over time. Currently there is no definitive diagnostic test, thus clinicians hope that the detection of crucial biomarkers will help to the symptomatic and presymptomatic diagnostics and providing surrogate endpoints to demonstrate the clinical efficacy of new treatments. METHODS Electrochemical aptasensors are excellent analytical tools that are used in the detection of PD biomarkers, as they are portable, easy to use, and perform real-time analysis. RESULTS In this review, we discuss the most important clinical biomarkers for PD, highlighting their physiological role and function in the disease. Herein, we review for the first time innovative aptasensors for the detection of current potential PD biomarkers based on electrochemical techniques and discuss future alternatives, including ideal analytical platforms for point-of-care diagnostics. CONCLUSION These new tools will be critical not only in the discovery of sensitive, specific, and reliable biomarkers of preclinical PD, but also in the development of tests that can assist in the early detection and differential diagnosis of parkinsonian disorders and in monitoring disease progression. Various methods for fixing aptamers onto the sensor surfaces, enabling quantitative and specific PD biomarker detection present in synthetic and clinical samples, will also be discussed.
Collapse
Affiliation(s)
- Edyta Mikuła
- Department of Biosensors, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
| | - Jaroslav Katrlík
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 84538 Bratislava, Slovakia
| | - Ligia R Rodrigues
- Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| |
Collapse
|
3
|
Baharfar M, Mayyas M, Rahbar M, Allioux FM, Tang J, Wang Y, Cao Z, Centurion F, Jalili R, Liu G, Kalantar-Zadeh K. Exploring Interfacial Graphene Oxide Reduction by Liquid Metals: Application in Selective Biosensing. ACS NANO 2021; 15:19661-19671. [PMID: 34783540 DOI: 10.1021/acsnano.1c06973] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Liquid metals (LMs) are electronic liquid with enigmatic interfacial chemistry and physics. These features make them promising materials for driving chemical reactions on their surfaces for designing nanoarchitectonic systems. Herein, we showed the interfacial interaction between eutectic gallium-indium (EGaIn) liquid metal and graphene oxide (GO) for the reduction of both substrate-based and free-standing GO. NanoIR surface mapping indicated the successful removal of carbonyl groups. Based on the gained knowledge, a composite consisting of assembled reduced GO sheets on LM microdroplets (LM-rGO) was developed. The LM enforced Ga3+ coordination within the rGO assembly found to modify the electrochemical interface for selective dopamine sensing by separating the peaks of interfering biologicals. Subsequently, paper-based electrodes were developed and modified with the LM-rGO that presented the compatibility of the assembly with low-cost commercial technologies. The observed interfacial interaction, imparted by LM's interfaces, and electrochemical performance observed for LM-rGO will lead to effective functional materials and electrode modifiers.
Collapse
Affiliation(s)
- Mahroo Baharfar
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
| | - Mohannad Mayyas
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
| | - Mohammad Rahbar
- Graduate School of Biomedical Engineering, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
| | - Francois-Marie Allioux
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
| | - Jianbo Tang
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
| | - Yifang Wang
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
| | - Zhenbang Cao
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
| | - Franco Centurion
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
| | - Rouhollah Jalili
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
| | - Guozhen Liu
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen 518172, P. R. China
| | - Kourosh Kalantar-Zadeh
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
| |
Collapse
|
4
|
Affiliation(s)
- Xixia Liu
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization Hubei Normal University Huangshi China
- Department of Chemistry and Waterloo Institute for Nanotechnology University of Waterloo Waterloo Canada
| | - Juewen Liu
- Department of Chemistry and Waterloo Institute for Nanotechnology University of Waterloo Waterloo Canada
| |
Collapse
|
5
|
Label-free liquid crystal-based biosensor for detection of dopamine using DNA aptamer as a recognition probe. Anal Biochem 2020; 605:113807. [PMID: 32526198 DOI: 10.1016/j.ab.2020.113807] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/25/2020] [Accepted: 05/27/2020] [Indexed: 12/30/2022]
Abstract
We present a label-free liquid crystal-based biosensor for the detection of dopamine (DA) in aqueous solutions using dopamine-binding aptamers (DBA) as recognition elements. In this system, the dimethyloctadecyl [3-(trimethoxysilyl) propyl] ammonium chloride (DMOAP) self-assembled monolayers immobilized on glass slides support the long alkyl chains that keep the liquid crystal (LC) molecules in a homeotropic orientation. Glutaraldehyde (GA) is used as a cross-linker to immobilize DBA onto the surface of glass slides. The specific binding of DA and DBA disrupts the homeotropic orientation of LCs, thereby inducing a change in the orientation from homeotropic to a random alignment. This orientation change can be converted and visualized simply as a transition from a dark optical LC image to a brighter image under a polarized optical microscope (POM), enabling the detection of DA. The developed LC-based aptasensor shows a good linear optical response towards DA in the very wide range of 1 pM-10 μM (0.19 pg/mL to 1.9 μg/mL) and has a very low detection limit of 10 pM (∼1.9 pg/mL). The biosensor also exhibited satisfactory selectivity and could be successfully applied to detect DA in human urine. The proposed LC-based aptamer sensing method offers a simple, rapid, highly sensitive and selective, and a label-free method for the analysis of DA in real clinical samples.
Collapse
|
6
|
Abstract
This work presents a proof of concept of a novel, simple, and sensitive method of detection of dopamine, a neurotransmitter within the human brain. We propose a simple electrochemical method for the detection of dopamine using a dopamine-specific aptamer labeled with an electrochemically active ferrocene tag. Aptamers immobilized on the surface of gold screen-printed gold electrodes via thiol groups can change their secondary structure by wrapping around the target molecule. As a result, the ferrocene labels move closer to the electrode surface and subsequently increase the electron transfer. The cyclic voltammograms and impedance spectra recorded on electrodes in buffer solutions containing different concentration of dopamine showed, respectively, the increase in both the anodic and cathodic currents and decrease in the double layer resistance upon increasing the concentration of dopamine from 0.1 to 10 nM L−1. The high affinity of aptamer-dopamine binding (KD ≈ 5 nM) was found by the analysis of the binding kinetics. The occurrence of aptamer-dopamine binding was directly confirmed with spectroscopic ellipsometry measurements.
Collapse
|
7
|
Aydoğdu Tığ G, Pekyardımcı Ş. An electrochemical sandwich-type aptasensor for determination of lipocalin-2 based on graphene oxide/polymer composite and gold nanoparticles. Talanta 2019; 210:120666. [PMID: 31987191 DOI: 10.1016/j.talanta.2019.120666] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/16/2019] [Accepted: 12/20/2019] [Indexed: 01/05/2023]
Abstract
In this work, we reported an electrochemical aptasensor based on the poly-3-amino-1,2,4-triazole-5-thiol/graphene oxide composite (P(ATT)-GO) and gold nanoparticles (AuNPs) modified graphite screen-printed electrode (GSPE) (GSPE/P(ATT)-GO/AuNPs) for determination of lipocalin-2 (LCN2) (neutrophil gelatinase-associated lipocalin). A sandwich based strategy was utilized to enhance the electrochemical signal. First, a thiol tethered DNA aptamer was immobilized onto the composite electrode. Then, the LCN2 solution was incubated with the aptamer modified GSPE/P(ATT)-GO/AuNPs. Secondary aptamer (Apt2) peculiar to the LCN2 and labeled with biotin was interacted with the LCN2. A streptavidin-alkaline phosphatase conjugate was then applied to the surface. The determination of LCN2 was performed by using the electroactive property of α-naphthol which is acquired the product from the interaction between alkaline phosphatase and α-naphthyl phosphate. The constructed electrode was characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The aptamer modified GSPE/P(ATT)-GO/AuNPs showed the superior electrocatalytic performance towards the voltammetric determination of LCN2 with a wide linear range (1.0-1000.0 ng/mL) and a low limit of detection (LOD) (0.3 ng/mL). The proposed aptasensor revealed the excellent sensitivity, anti-interference ability and reproducibility which approved that the GSPE/P (ATT)-GO/AuNPs is a promising composite for the sensitive detection of LCN2. The fabricated aptasensor was applied for the determination of LCN2 in fetal bovine serum samples using the standard addition method and the recovery values were in the range of 99.2% and 103.22%.
Collapse
Affiliation(s)
- Gözde Aydoğdu Tığ
- Ankara University, Faculty of Science, Department of Chemistry, Ankara, 06100, Turkey.
| | - Şule Pekyardımcı
- Ankara University, Faculty of Science, Department of Chemistry, Ankara, 06100, Turkey
| |
Collapse
|
8
|
In-situ growth of NiWO4 saw-blade-like nanostructures and their application in photo-electrochemical (PEC) immunosensor system designed for the detection of neuron-specific enolase. Biosens Bioelectron 2019; 141:111331. [DOI: 10.1016/j.bios.2019.111331] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 05/14/2019] [Accepted: 05/15/2019] [Indexed: 11/21/2022]
|
9
|
Wei B, Zhong H, Wang L, Liu Y, Xu Y, Zhang J, Xu C, He L, Wang H. Facile preparation of a collagen-graphene oxide composite: A sensitive and robust electrochemical aptasensor for determining dopamine in biological samples. Int J Biol Macromol 2019; 135:400-406. [PMID: 31129206 DOI: 10.1016/j.ijbiomac.2019.05.176] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 12/19/2022]
Abstract
A sensitive and robust electrochemical aptasensor for determining dopamine (DA) was developed using a grass carp skin collagen-graphene oxide (GCSC-GO) composite as a transducer and a label-free aptamer as a biological recognition element for the first time. In order to fabricate this sensor, the GCSC-GO composite was firstly prepared by ultra-sonication method and characterized by atomic force microscope, infrared spectroscopy, Raman spectroscopy, and electrochemical impedance spectroscopy. Subsequently, a label-free DA-binding aptamer was immobilized through strong interaction between collagen and aptamer. The fabricated electrochemical aptasensor was used to determine DA by differential pulse voltammetry. The results indicated that the peak current changes of the developed aptasensor was linear relationship with the DA concentrations from 1 to 1000 nM, and the detection limit was 0.75 nM (S/N = 3). Moreover, the fabricated aptasensor showed high selectivity for DA. More importantly, the obtained aptasensor exhibited satisfactory recovery toward DA in human serum specimens with excellent stability.
Collapse
Affiliation(s)
- Benmei Wei
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Huaying Zhong
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Linjie Wang
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Yong Liu
- School of Environmental and Biological Engineering, Wuhan Technology and Business University, Wuhan 430065, PR China
| | - Yuling Xu
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Juntao Zhang
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Chengzhi Xu
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Lang He
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Haibo Wang
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China.
| |
Collapse
|
10
|
Esfahani SL, Rouhani S, Ranjbar Z. Electrochemical solid-state nanosensor based on a dual amplification strategy for sensitive detection of (FeIII-dopamine). Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.01.065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
11
|
Silver nanoflowers-enhanced Tb(III)/La(III) co-luminescence for the sensitive detection of dopamine. Anal Bioanal Chem 2019; 411:1375-1381. [DOI: 10.1007/s00216-018-01568-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 11/19/2018] [Accepted: 12/27/2018] [Indexed: 01/06/2023]
|
12
|
Taheri RA, Eskandari K, Negahdary M. An electrochemical dopamine aptasensor using the modified Au electrode with spindle-shaped gold nanostructure. Microchem J 2018. [DOI: 10.1016/j.microc.2018.08.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
13
|
Kang YJ, Cutler EG, Cho H. Therapeutic nanoplatforms and delivery strategies for neurological disorders. NANO CONVERGENCE 2018; 5:35. [PMID: 30499047 PMCID: PMC6265354 DOI: 10.1186/s40580-018-0168-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 11/20/2018] [Indexed: 05/26/2023]
Abstract
The major neurological disorders found in a central nervous system (CNS), such as brain tumors, Alzheimer's diseases, Parkinson's diseases, and Huntington's disease, have led to devastating outcomes on the human public health. Of these disorders, early diagnostics remains poor, and no treatment has been successfully discovered; therefore, they become the most life-threatening medical burdens worldwide compared to other major diseases. The major obstacles for the drug discovery are the presence of a restrictive blood-brain barrier (BBB), limiting drug entry into brains and undesired neuroimmune activities caused by untargeted drugs, leading to irreversible neuronal damages. Recent advances in nanotechnology have contributed to the development of novel nanoplatforms and effective delivering strategies to improve the CNS disorder treatment while less disturbing brain systems. The nanoscale drug carriers, including liposomes, dendrimers, viral capsids, polymeric nanoparticles, silicon nanoparticles, and magnetic/metallic nanoparticles, enable the effective drug delivery penetrating across the BBB, the aforementioned challenges in the CNS. Moreover, drugs encapsulated by the nanocarriers can reach further deeper into targeting regions while preventing the degradation. In this review, we classify novel disease hallmarks incorporated with emerging nanoplatforms, describe promising approaches for improving drug delivery to the disordered CNS, and discuss their implications for clinical practice.
Collapse
Affiliation(s)
- You Jung Kang
- Department of Mechanical Engineering and Engineering Science, Center for Biomedical Engineering and Science, Department of Biological Sciences, The Nanoscale Science Program, University of North Carolina at Charlotte, Charlotte, NC USA
| | - Eric Gerard Cutler
- Department of Mechanical Engineering and Engineering Science, Center for Biomedical Engineering and Science, Department of Biological Sciences, The Nanoscale Science Program, University of North Carolina at Charlotte, Charlotte, NC USA
| | - Hansang Cho
- Department of Mechanical Engineering and Engineering Science, Center for Biomedical Engineering and Science, Department of Biological Sciences, The Nanoscale Science Program, University of North Carolina at Charlotte, Charlotte, NC USA
| |
Collapse
|
14
|
Rahmani H, Sajedi RH. Aequorin as a sensitive and selective reporter for detection of dopamine: A photoprotein inhibition assay approach. Int J Biol Macromol 2018; 122:677-683. [PMID: 30391428 DOI: 10.1016/j.ijbiomac.2018.10.221] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/23/2018] [Accepted: 10/30/2018] [Indexed: 01/03/2023]
Abstract
Dopamine is a metabolite that plays a key role in the human body and in biomedical and diagnostic applications. Thus, the concentration of this analyte has been considered in various diseases in therapeutic drug monitoring (TDM). In the present study, for the first time, a photoprotein inhibition assay strategy was developed by utilizing aequorin for the direct detection of dopamine as a receptor and reporter simultaneously. The results showed that bioluminescence emission of aequorin was effectively quenched by increasing concentration of dopamine at the range of 1 nM to 100 μM with a detection limit of 53 nM. The viability of this method for the monitoring of dopamine in spiked biological fluids was also established and it was successfully applied for the direct determination of dopamine in a blood serum and urine without preliminary treatment with satisfactory quantitative recovery 90-95% and 82-93%, respectively. The structural investigation using circular dichroism, fluorescence spectroscopy, and docking simulation indicated that, changes in the microenvironment of aromatic residues were significant, while minor conformational alterations of the protein were observed. It seems dopamine inhibits bioluminescence activity with specific binding to the residues involved in the light production.
Collapse
Affiliation(s)
- Hossein Rahmani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 14115-154, Iran
| | - Reza H Sajedi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 14115-154, Iran.
| |
Collapse
|
15
|
A specific fluorescent nanoprobe for dopamine based on the synergistic action of citrate and gold nanoparticles on Tb(III) luminescence. Mikrochim Acta 2018; 185:317. [PMID: 29876884 DOI: 10.1007/s00604-018-2844-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 05/14/2018] [Indexed: 12/19/2022]
Abstract
A nanoprobe was developed for the fluorometric determination of the neurotransmitter dopamine (DA). It is based on the synergistic enhancement action of citrate and gold nanoparticles (AuNPs) on the luminescence of Tb(III). AuNPs serve as substrates of surface enhanced fluorescence (SEF). Citrate, in turn, acts as a spacer for the SEF effect, a co-ligand of Tb(III) complex, and a recognizing component for DA. The synergistic action of citrate and AuNPs significantly increases the intrinsic green fluorescence of Tb(III) (best measured at excitation/emission peaks of 300/547 nm). Under the optimum conditions, the fluorescence intensity increases linearly in the 3.0 to 200 nM DA concentration ranging (with an R2 value of 0.9959), and the limit of detection (at S/N = 3) is 0.84 nM. The nanoprobe shows good selectivity for DA among other interfering neurotransmitters, some amino acids and ions. The method was applied to the detection of DA in human serum samples where it gave recoveries ranging from 100.5 to 102.9%. Graphical abstract Schematic of a Tb(III) composite fluorescent nanoprobe for the sensitive determination of dopamine (DA). Citrate and gold nanoparticles (AuNPs) synergistically enhance the fluorescence of Tb(III)-DA.
Collapse
|
16
|
Jin H, Zhao C, Gui R, Gao X, Wang Z. Reduced graphene oxide/nile blue/gold nanoparticles complex-modified glassy carbon electrode used as a sensitive and label-free aptasensor for ratiometric electrochemical sensing of dopamine. Anal Chim Acta 2018; 1025:154-162. [PMID: 29801604 DOI: 10.1016/j.aca.2018.03.036] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 02/25/2018] [Accepted: 03/12/2018] [Indexed: 12/26/2022]
Abstract
In this work, glassy carbon electrode (GCE) surface was modified by drop-coating graphene oxide (GO) and nile blue (NB) to form GO/NB/GCE. By using a one-step coreduction treatment under cyclic voltammetry (CV) scanning, gold nanoparticles (AuNPs) were electrodeposited onto GO/NB/GCE surface, simultaneously generating reduced GO (rGO). AuNPs from the prepared rGO/NB/AuNPs/GCE was combined with 5'-SH-terminated aptamer of dopamine (DA) via Au-S coupling to fabricate aptamer-rGO/NB/AuNPs/GCE system. DA specifically combined with its aptamer modified on rGO/NB/AuNPs/GCE surface. CV, electrochemical impedance spectroscopy, square wave voltammetry responses of this system as the working electrode were measured. With the addition of DA, the peak current intensities located at -0.45 V (INB) and 0.15 V (IDA) showed gradually decreased and increased changes, respectively. There was a good linear (R2 = 0.9922) relationship between lg(IDA/INB) and the logarithm of DA concentration (lgCDA) in the CDA range from 10 nM to 0.2 mM, showing a low detection limit of 1 nM. This system as a novel, sensitive and label-free aptasensor was used for ratiometric electrochemical sensing of DA. Experimental results verified that this aptasensor possessed high stability, selectivity and sensitivity towards DA detection, over potential interferents. This aptasensor efficiently determined DA in real biological samples, together with high detection recoveries of 97.0-104.0%.
Collapse
Affiliation(s)
- Hui Jin
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Laboratory of Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, Shandong, 266071, PR China
| | - Chunqin Zhao
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Laboratory of Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, Shandong, 266071, PR China
| | - Rijun Gui
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Laboratory of Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, Shandong, 266071, PR China.
| | - Xiaohui Gao
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Laboratory of Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, Shandong, 266071, PR China
| | - Zonghua Wang
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Laboratory of Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, Shandong, 266071, PR China.
| |
Collapse
|
17
|
Abstract
Neurotransmitters are chemicals that act as messengers in the synaptic transmission process. They are essential for human health and any imbalance in their activities can cause serious mental disorders such as Parkinson’s disease, schizophrenia, and Alzheimer’s disease. Hence, monitoring the concentrations of various neurotransmitters is of great importance in studying and diagnosing such mental illnesses. Recently, many researchers have explored the use of unique materials for developing biosensors for both in vivo and ex vivo neurotransmitter detection. A combination of nanomaterials, polymers, and biomolecules were incorporated to implement such sensor devices. For in vivo detection, electrochemical sensing has been commonly applied, with fast-scan cyclic voltammetry being the most promising technique to date, due to the advantages such as easy miniaturization, simple device architecture, and high sensitivity. However, the main challenges for in vivo electrochemical neurotransmitter sensors are limited target selectivity, large background signal and noise, and device fouling and degradation over time. Therefore, achieving simultaneous detection of multiple neurotransmitters in real time with long-term stability remains the focus of research. The purpose of this review paper is to summarize the recently developed sensing techniques with the focus on neurotransmitters as the target analyte, and to discuss the outlook of simultaneous detection of multiple neurotransmitter species. This paper is organized as follows: firstly, the common materials used for developing neurotransmitter sensors are discussed. Secondly, several sensor surface modification approaches to enhance sensing performance are reviewed. Finally, we discuss recent developments in the simultaneous detection capability of multiple neurotransmitters.
Collapse
|
18
|
Dhanjai, Sinha A, Lu X, Wu L, Tan D, Li Y, Chen J, Jain R. Voltammetric sensing of biomolecules at carbon based electrode interfaces: A review. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2017.11.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
19
|
Boronic acid functionalized nitrogen doped carbon dots for fluorescent turn-on detection of dopamine. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2433-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Lu L, Guo L, Kang T, Cheng S. A gold electrode modified with a three-dimensional graphene-DNA composite for sensitive voltammetric determination of dopamine. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2267-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Voltammetric dopamine sensor based on a gold electrode modified with reduced graphene oxide and Mn3O4 on gold nanoparticles. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2210-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
22
|
Lavaee P, Danesh NM, Ramezani M, Abnous K, Taghdisi SM. Colorimetric aptamer based assay for the determination of fluoroquinolones by triggering the reduction-catalyzing activity of gold nanoparticles. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2213-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
23
|
Li S, Liu C, Han B, Luo J, Yin G. An electrochemiluminescence aptasensor switch for aldicarb recognition via ruthenium complex-modified dendrimers on multiwalled carbon nanotubes. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2177-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
24
|
Amperometric aptasensor for ochratoxin A based on the use of a gold electrode modified with aptamer, complementary DNA, SWCNTs and the redox marker Methylene Blue. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2113-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
25
|
|
26
|
Differential pulse voltammetric assay for the carcinoembryonic antigen using a glassy carbon electrode modified with layered molybdenum selenide, graphene, and gold nanoparticles. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-2006-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
27
|
Liu L, Xia N, Meng JJ, Zhou BB, Li SJ. An electrochemical aptasensor for sensitive and selective detection of dopamine based on signal amplification of electrochemical-chemical redox cycling. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.05.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
28
|
Chen T, Tang L, Yang F, Zhao Q, Jin X, Ning Y, Zhang GJ. Electrochemical Determination of Dopamine by a Reduced Graphene Oxide–Gold Nanoparticle-Modified Glassy Carbon Electrode. ANAL LETT 2016. [DOI: 10.1080/00032719.2016.1142558] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
29
|
Cai S, Chen M, Liu M, He W, Liu Z, Wu D, Xia Y, Yang H, Chen J. A signal amplification electrochemical aptasensor for the detection of breast cancer cell via free-running DNA walker. Biosens Bioelectron 2016; 85:184-189. [PMID: 27176917 DOI: 10.1016/j.bios.2016.05.003] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 04/16/2016] [Accepted: 05/02/2016] [Indexed: 12/24/2022]
Abstract
Herein, a signal magnification electrochemical aptasensor for the detection of breast cancer cell via free-running DNA walker is constructed. Theoretically, just one DNA walker, released by target cell-responsive reaction, can automatically cleave all D-RNA (a chimeric DNA/RNA oligonucleotide with a cleavage point rArU) anchored on electrode into shorter produces, giving rise to considerably detectable signal finally. Under the optimal conditions, the electrochemical signal decreased linearly with the concentration of MCF-7 cell. The linear range is from 0 to 500 cells mL(-1) with a detection limit of 47 cellsmL(-1). In a word, this approach may have advantages over traditional reported DNA machines for bioassay, particularly in terms of ease of operation, cost efficiency, free of labeling and of complex track design, which may hold great potential for wide application.
Collapse
Affiliation(s)
- Shuxian Cai
- Department of Pharmaceutical Analysis, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province 350108, PR China
| | - Mei Chen
- Department of Pharmaceutical Analysis, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province 350108, PR China
| | - Mengmeng Liu
- Department of Pharmaceutical Analysis, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province 350108, PR China
| | - Wenhui He
- Department of Pharmaceutical Analysis, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province 350108, PR China
| | - Zhijing Liu
- Department of Pharmaceutical Analysis, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province 350108, PR China
| | - Dongzhi Wu
- Department of Pharmaceutical Analysis, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province 350108, PR China
| | - Yaokun Xia
- Department of Pharmaceutical Analysis, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province 350108, PR China
| | - Huanghao Yang
- The Key Lab of Analysis and Detection Technology for Food Safety of the MOE, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian Province 350002, PR China
| | - Jinghua Chen
- Department of Pharmaceutical Analysis, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province 350108, PR China.
| |
Collapse
|