1
|
Johnston LJ. Cellulose nanomaterial metrology: microscopy measurements. NANOSCALE 2024; 16:18767-18787. [PMID: 39315456 DOI: 10.1039/d4nr02276a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Cellulose nanomaterials are increasingly used for a wide variety of applications. Adequate characterization of these materials is required for quality control during production, to distinguish between materials synthesized by different methods, by different suppliers or from difference cellulose biomass sources, to facilitate development of applications and for regulatory purposes. Here we review recent microscopy measurements for the three main types of cellulose nanomaterials: cellulose nanocrystals, individual cellulose nanofibrils and cellulose nanofibrils. Atomic force microscopy and both scanning and transmission electron microscopy are covered with a focus on recent studies that have metrological rigor, rather than qualitative investigations. In some cases results are compared to those obtained by other methods that are more likely to see widespread use for routine quality control measurements. Detailed studies that use microscopy to provide insight on fundamental material properties (e.g., chiral properties) are also included. Particle size and morphology are important properties but are challenging to measure for cellulose nanomaterials due to the rod or fibril shaped particles, their propensity to agglomerate and aggregate, their low contrast for electron microscopy and, for cellulose nanofibrils, the complex branched and interconnected structures. Overall, the results show that there are now a number of studies in which attention to metrological detail has resulted in measurements that allow one to compare and distinguish between different materials, although there are still examples for which it is not possible to draw conclusions on size differences. The use of detailed microscopy protocols that yield accurate and reliable results will be beneficial in material production and addressing regulatory requirements and will allow the validation of other methods that are more amenable to routine measurements.
Collapse
Affiliation(s)
- Linda J Johnston
- Metrology Research Center, National Research Council Canada, Ottawa, ON, Canada K1A 0R6.
| |
Collapse
|
2
|
Gericke M, Schulze P, Heinze T. Nanoparticles Based on Hydrophobic Polysaccharide Derivatives-Formation Principles, Characterization Techniques, and Biomedical Applications. Macromol Biosci 2020; 20:e1900415. [PMID: 32090505 DOI: 10.1002/mabi.201900415] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/09/2020] [Indexed: 12/13/2022]
Abstract
Polysaccharide (PS) nanoparticles (NP) are fascinating materials that combine huge application potential with the unique beneficial features of natural biopolymers. Different types of PS-NP can be distinguished depending on the basic preparation principles (top-down vs bottom-up vs coating of nanomaterials) and the material from which they are obtained (native PS vs chemically modified PS derivatives vs nanocomposites). This review provides a comprehensive overview of an approach towards PS-NP that has gained rapidly increasing interest within the last decade; the nanoself-assembling of hydrophobic PS derivatives. This facile process is easy to perform and offers a broad structural diversity in terms of the PS backbone and the additional functionalities that can be introduced. Fundamental principles of different NP preparation techniques along with useful characterization methods are presented in this work. A comprehensive summary of PS-NP prepared by different techniques and with various PS backbones and types/amounts of hydrophobic substituents is given. The intention is to demonstrate how different parameters determine the size, size distribution, and zeta-potential of the particles. Moreover, application trends in biomedical areas are highlighted in which tailored functional PS-NP are evaluated and constantly developed further.
Collapse
Affiliation(s)
- Martin Gericke
- Centre of Excellence for Polysaccharide Research, Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University of Jena, Humboldtstraße 10, D-07743, Jena, Germany
| | - Peter Schulze
- Centre of Excellence for Polysaccharide Research, Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University of Jena, Humboldtstraße 10, D-07743, Jena, Germany
| | - Thomas Heinze
- Centre of Excellence for Polysaccharide Research, Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University of Jena, Humboldtstraße 10, D-07743, Jena, Germany
| |
Collapse
|
3
|
Amaro-Gahete J, Benítez A, Otero R, Esquivel D, Jiménez-Sanchidrián C, Morales J, Caballero Á, Romero-Salguero FJ. A Comparative Study of Particle Size Distribution of Graphene Nanosheets Synthesized by an Ultrasound-Assisted Method. NANOMATERIALS 2019; 9:nano9020152. [PMID: 30691102 PMCID: PMC6409618 DOI: 10.3390/nano9020152] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 01/20/2019] [Accepted: 01/23/2019] [Indexed: 12/12/2022]
Abstract
Graphene-based materials are highly interesting in virtue of their excellent chemical, physical and mechanical properties that make them extremely useful as privileged materials in different industrial applications. Sonochemical methods allow the production of low-defect graphene materials, which are preferred for certain uses. Graphene nanosheets (GNS) have been prepared by exfoliation of a commercial micrographite (MG) using an ultrasound probe. Both materials were characterized by common techniques such as X-ray diffraction (XRD), Transmission Electronic Microscopy (TEM), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). All of them revealed the formation of exfoliated graphene nanosheets with similar surface characteristics to the pristine graphite but with a decreased crystallite size and number of layers. An exhaustive study of the particle size distribution was carried out by different analytical techniques such as dynamic light scattering (DLS), nanoparticle tracking analysis (NTA) and asymmetric flow field flow fractionation (AF4). The results provided by these techniques have been compared. NTA and AF4 gave higher resolution than DLS. AF4 has shown to be a precise analytical technique for the separation of GNS of different sizes.
Collapse
Affiliation(s)
- Juan Amaro-Gahete
- Departamento de Química Orgánica, Instituto Universitario de Investigación en Química Fina y Nanoquímica, Facultad de Ciencias, Universidad de Córdoba, 14071 Córdoba, Spain.
| | - Almudena Benítez
- Departamento de Química Inorgánica e Ingeniería Química, Instituto Universitario de Investigación en Química Fina y Nanoquímica, Facultad de Ciencias, Universidad de Córdoba, 14071 Córdoba, Spain.
| | - Rocío Otero
- Departamento de Química Inorgánica e Ingeniería Química, Instituto Universitario de Investigación en Química Fina y Nanoquímica, Facultad de Ciencias, Universidad de Córdoba, 14071 Córdoba, Spain.
| | - Dolores Esquivel
- Departamento de Química Orgánica, Instituto Universitario de Investigación en Química Fina y Nanoquímica, Facultad de Ciencias, Universidad de Córdoba, 14071 Córdoba, Spain.
| | - César Jiménez-Sanchidrián
- Departamento de Química Orgánica, Instituto Universitario de Investigación en Química Fina y Nanoquímica, Facultad de Ciencias, Universidad de Córdoba, 14071 Córdoba, Spain.
| | - Julián Morales
- Departamento de Química Inorgánica e Ingeniería Química, Instituto Universitario de Investigación en Química Fina y Nanoquímica, Facultad de Ciencias, Universidad de Córdoba, 14071 Córdoba, Spain.
| | - Álvaro Caballero
- Departamento de Química Inorgánica e Ingeniería Química, Instituto Universitario de Investigación en Química Fina y Nanoquímica, Facultad de Ciencias, Universidad de Córdoba, 14071 Córdoba, Spain.
| | - Francisco J Romero-Salguero
- Departamento de Química Orgánica, Instituto Universitario de Investigación en Química Fina y Nanoquímica, Facultad de Ciencias, Universidad de Córdoba, 14071 Córdoba, Spain.
| |
Collapse
|
4
|
Chen M, Parot J, Mukherjee A, Couillard M, Zou S, Hackley VA, Johnston LJ. Characterization of Size and Aggregation for Cellulose Nanocrystal Dispersions Separated by Asymmetrical-Flow Field-Flow Fractionation. CELLULOSE (LONDON, ENGLAND) 2019; 27:https://doi.org/10.1007/s10570-019-02909-9. [PMID: 33223627 DOI: 10.1007/s10570-019-02909-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 12/02/2019] [Indexed: 05/24/2023]
Abstract
Cellulose nanocrystals (CNCs) derived from various types of cellulose biomass have significant potential for applications that take advantage of their availability from renewable natural resources and their high mechanical strength, biocompatibility and ease of modification. However, their high polydispersity and irregular rod-like shape present challenges for the quantitative dimensional determinations that are required for quality control of CNC production processes. Here we have fractionated a CNC certified reference material using a previously reported asymmetrical-flow field-flow fractionation (AF4) method and characterized selected fractions by atomic force microscopy (AFM) and transmission electron microscopy. This work was aimed at addressing discrepancies in length between fractionated and unfractionated CNC and obtaining less polydisperse samples with fewer aggregates to facilitate microscopy dimensional measurements. The results demonstrate that early fractions obtained from an analytical scale AF4 separation contain predominantly individual CNCs. The number of laterally aggregated "dimers" and clusters containing 3 or more particles increases with increasing fraction number. Size analysis of individual particles by AFM for the early fractions demonstrates that the measured CNC length increases with increasing fraction number, in good agreement with the rod length calculated from the AF4 multi-angle light scattering data. The ability to minimize aggregation and polydispersity for CNC samples has important implications for correlating data from different sizing methods.
Collapse
Affiliation(s)
- Maohui Chen
- National Research Council Canada, Ottawa, ON, K1A 0R6, Canada
| | - Jeremie Parot
- National Institute of Standards and Technology, Gaithersburg, Maryland, 20899-8520, USA
| | - Arnab Mukherjee
- National Institute of Standards and Technology, Gaithersburg, Maryland, 20899-8520, USA
| | | | - Shan Zou
- National Research Council Canada, Ottawa, ON, K1A 0R6, Canada
| | - Vincent A Hackley
- National Institute of Standards and Technology, Gaithersburg, Maryland, 20899-8520, USA
| | | |
Collapse
|
5
|
Mukherjee A, Hackley VA. Separation and characterization of cellulose nanocrystals by multi-detector asymmetrical-flow field-flow fractionation. Analyst 2018; 143:731-740. [PMID: 29322138 PMCID: PMC6057617 DOI: 10.1039/c7an01739a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Cellulose nanocrystals (CNCs) are renewable, naturally derived polymeric nanomaterials receiving substantial attention for a wide range of potential applications. The recent availability of high quality reference materials will facilitate the development and validation of measurement methods needed to advance the scientific and commercial use of CNCs. In the present study, we demonstrate an optimized method to fractionate CNCs with narrow size dispersion based on asymmetrical-flow field-flow fractionation (AF4) coupled with on-line multi-angle light scattering (MALS), dynamic light scattering (DLS), and differential refractometry (dRI). A stable suspension of CNC (Certified Reference Material CNCD-1, National Research Council-Canada) in deionized water was prepared using a dispersion method provided by NRC and adopted from a protocol originally developed at the National Institute of Standards and Technology. The as-prepared material was initially characterized in batch mode to validate the NRC dispersion method. AF4 was then optimized for channel and cross flow, mobile phase composition, and injection volume, among other parameters. Additionally, suspensions containing (1.25-10) mg mL-1 CNC were injected directly into the dRI detector (off-line), yielding a dn/dc value of 0.148 ± 0.003 mL g-1. dRI was then used as an on-line mass sensitive detector to quantify recovery. Results show that maximum recovery (≈ 99%) was achieved under optimized conditions. The weight-averaged molar mass (Mw) was estimated at roughly 107 Da from a partial Zimm analysis. The optical radius of gyration, Rg, and the hydrodynamic radius, Rh, were measured during elution. The shape factor (Rg/Rh) ranged from 1.5 to 1.9 for the fractionated material, supporting an elongated or rod-like structure. To our knowledge, this is the first time that both the morphology and molar mass of CNCs have been directly measured for the full distribution of species. Finally, we developed and demonstrated a semi-preparatory fractionation method to separate CNCs at the milligram scale for off-line research and analysis.
Collapse
Affiliation(s)
- Arnab Mukherjee
- Materials Measurement Science Division, National Institute of Standards and Technology, 100 Bureau Drive Stop 8520, Gaithersburg, Maryland 20899-8520, USA.
| | - Vincent A Hackley
- Materials Measurement Science Division, National Institute of Standards and Technology, 100 Bureau Drive Stop 8520, Gaithersburg, Maryland 20899-8520, USA.
| |
Collapse
|
6
|
Espinosa E, Sánchez R, Otero R, Domínguez-Robles J, Rodríguez A. A comparative study of the suitability of different cereal straws for lignocellulose nanofibers isolation. Int J Biol Macromol 2017; 103:990-999. [DOI: 10.1016/j.ijbiomac.2017.05.156] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 05/03/2017] [Accepted: 05/25/2017] [Indexed: 11/16/2022]
|
7
|
Laura Soriano M, Zougagh M, Valcárcel M, Ríos Á. Analytical Nanoscience and Nanotechnology: Where we are and where we are heading. Talanta 2017; 177:104-121. [PMID: 29108565 DOI: 10.1016/j.talanta.2017.09.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/31/2017] [Accepted: 09/02/2017] [Indexed: 01/21/2023]
Abstract
The main aim of this paper is to offer an objective and critical overview of the situation and trends in Analytical Nanoscience and Nanotechnology (AN&N), which is an important break point in the evolution of Analytical Chemistry in the XXI century as they were computers and instruments in the second half of XX century. The first part of this overview is devoted to provide a general approach to AN&N by describing the state of the art of this recent topic, being the importance of it also emphasized. Secondly, particular but very relevant trends in this topic are outlined: the analysis of the nanoworld, the so "third way" in AN&N, the growing importance of bioanalysis, the evaluation of both nanosensors and nanosorbents, the impact of AN&N in bioimaging and in nanotoxicological studies, as well as the crucial importance of reliability of the nanotechnological processes and results for solving real analytical problems in the frame of Social Responsibility (SR) of science and technology. Several reflections are included at the end of this overview written as a bird's eye view, which is not an easy task for experts in AN&N.
Collapse
Affiliation(s)
- María Laura Soriano
- Department of Analytical Chemistry, Marie Curie Building, Campus de Rabanales, University of Córdoba, E-14071 Córdoba, Spain
| | - Mohammed Zougagh
- Regional Institute for Applied Chemistry Research (IRICA), 13004 Ciudad Real, Spain; Castilla-La Mancha Science and Technology Park, 20006 Albacete, Spain
| | - Miguel Valcárcel
- Spanish Royal Academy of Sciences, Valverde 24, E-28071 Madrid, Spain.
| | - Ángel Ríos
- Department of Analytical Chemistry and Food Technology, University of Castilla-La Mancha Ciudad Real, Spain.
| |
Collapse
|
8
|
García-Fernández J, Bettmer J, Jakubowski N, Panne U, Añón E, Montes-Bayón M, Sanz-Medel A. The fate of iron nanoparticles used for treatment of iron deficiency in blood using mass-spectrometry based strategies. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2388-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|