1
|
Rocha PSM, Araújo AS, Cassella RJ. Single-vial preconcentration and cold vapor generation for the determination of Hg(II) in water samples of different salinities. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:4674-4683. [PMID: 37668437 DOI: 10.1039/d3ay01073b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
In this work, a single-vial methodology for the extraction and cold vapor generation of mercury(II) was developed, followed by the determination of the analyte by atomic absorption spectrometry, with application in water samples of different salinities. L-cystine-modified Fe3O4 nanoparticles (2LcysMNP) were used as sorbent material in the magnetic solid phase extraction (MSPE) in the same flask in which the mercury vapor generation step was performed using a handmade gas-liquid separator developed in our laboratory. The main conditions for extraction, pre-concentration, and cold vapor generation of mercury were optimized. Under the optimized conditions, detection and quantification limits of 0.04 and 0.12 μg L-1, respectively, were achieved with a relative standard deviation of 7.5%. The single-vial system allowed for a preconcentration factor of 30 and an enrichment factor of 24. The accuracy of the method was evaluated by applying it to certified reference materials, and the obtained values were not significantly different from the expected values according to the Student's t-test. Verification of non-specific interferences was assessed by recovery tests, resulting in recoveries ranging from 81 to 111% for water samples of different salinities.
Collapse
Affiliation(s)
- Pamela S M Rocha
- Departamento de Química Analítica, Universidade Federal Fluminense, Outeiro de São João Batista s/n, Centro, Niterói, RJ 24020-141, Brazil.
| | - André S Araújo
- Departamento de Química Analítica, Universidade Federal Fluminense, Outeiro de São João Batista s/n, Centro, Niterói, RJ 24020-141, Brazil.
| | - Ricardo J Cassella
- Departamento de Química Analítica, Universidade Federal Fluminense, Outeiro de São João Batista s/n, Centro, Niterói, RJ 24020-141, Brazil.
| |
Collapse
|
2
|
Abdelhamid HN. An introductory review on advanced multifunctional materials. Heliyon 2023; 9:e18060. [PMID: 37496901 PMCID: PMC10366438 DOI: 10.1016/j.heliyon.2023.e18060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/28/2023] Open
Abstract
This review summarizes the applications of some of the advanced materials. It included the synthesis of several nanoparticles such as metal oxide nanoparticles (e.g., Fe3O4, ZnO, ZrOSO4, MoO3-x, CuO, AgFeO2, Co3O4, CeO2, SiO2, and CuFeO2); metal hydroxide nanosheets (e.g., Zn5(OH)8(NO3)2·2H2O, Zn(OH)(NO3)·H2O, and Zn5(OH)8(NO3)2); metallic nanoparticles (Ag, Au, Pd, and Pt); carbon-based nanomaterials (graphene, graphene oxide (GO), graphitic carbon nitride (g-C3N4), and carbon dots (CDs)); biopolymers (cellulose, nanocellulose, TEMPO-oxidized cellulose nanofibers (TOCNFs), and chitosan); organic polymers (e.g. covalent-organic frameworks (COFs)); and hybrid materials (e.g. metal-organic frameworks (MOFs)). Most of these materials were applied in several fields such as environmental-based technologies (e.g., water remediation, air purification, gas storage), energy (production of hydrogen, dimethyl ether, solar cells, and supercapacitors), and biomedical sectors (sensing, biosensing, cancer therapy, and drug delivery). They can be used as efficient adsorbents and catalysts to remove emerging contaminants e.g., inorganic (i.e., heavy metals) and organic (e.g., dyes, antibiotics, pesticides, and oils in water via adsorption. They can be also used as catalysts for catalytic degradation reactions such as redox reactions of pollutants. They can be used as filters for air purification by capturing carbon dioxide (CO2) and volatile organic compounds (VOCs). They can be used for hydrogen production via water splitting, alcohol oxidation, and hydrolysis of NaBH4. Nanomedicine for some of these materials was also included being an effective agent as an antibacterial, nanocarrier for drug delivery, and probe for biosensing.
Collapse
Affiliation(s)
- Hani Nasser Abdelhamid
- Advanced Multifunctional Materials Laboratory, Chemistry Department-Faculty of Science, Assiut University, Egypt
- Nanotechnology Research Centre (NTRC), The British University in Egypt (BUE), Suez Desert Road, El-Sherouk City, Cairo 11837, Egypt
| |
Collapse
|
3
|
Zhang S, Yan H, Li H, Xu T, Li H, Wang C, Yang Z, Jia X, Liu X. Carbon dots as specific fluorescent sensors for Hg 2+ and glutathione imaging. Mikrochim Acta 2023; 190:224. [PMID: 37184606 DOI: 10.1007/s00604-023-05805-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 04/17/2023] [Indexed: 05/16/2023]
Abstract
Nitrogen-doped carbon dots (NCDs) have been constructed in which coal washing wastewater is used as carbon precursor, tryptophan is added for nitrogen doping and surface functional together with polyethylene glycol. The nitrogen doping and surface functional with electron rich groups resulted in excellent fluorescent properties regarding stability, reversibility, printability with high quantum yield which not only enable the NCDs as fluorescent ink for advanced message encryption, but also realize specific on-off-on fluorescent sensing of Hg2+ and GSH as solution, hydrogel and filter paper sensors. The NCDs had a linear range of 0.01-100 μM and a detection limit of 6.27 nM (RSD 0.33%) for Hg2+ and the NCDs@Hg2+ had a linear range of 0.01-60 μM and a detection limit of 3.53 nM (RSD 1.53%) for GSH in sensing studies with aqueous solutions. In addition, with the low cytotoxicity and good biocompatibility NCDs have been successfully used for imaging Hg2+ and GSH in living MG-63 cells. The presented NCDs recycle waste coal washing water into worthwhile material which can be implemented as promising anti-counterfeiting and message encryption candidates as well as effective Hg2+ and GSH sensing, tracking and removing tools in complicated environmental and biological systems.
Collapse
Affiliation(s)
- Shaobing Zhang
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, 710054, People's Republic of China
| | - Haidong Yan
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, 710054, People's Republic of China
| | - Hongni Li
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, 710054, People's Republic of China
| | - Tiantian Xu
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, 710054, People's Republic of China
| | - Hui Li
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, 710054, People's Republic of China
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, People's Republic of China
| | - Chengkun Wang
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, 710054, People's Republic of China
| | - Zheng Yang
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, 710054, People's Republic of China.
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, People's Republic of China.
- Key Laboratory of Coal Resources Exploration and Comprehensive Utilization, Ministry of Land and Resources, Xi'an, 710012, People's Republic of China.
| | - Xiaodan Jia
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, 710054, People's Republic of China
- Key Laboratory of Coal Resources Exploration and Comprehensive Utilization, Ministry of Land and Resources, Xi'an, 710012, People's Republic of China
| | - Xiangrong Liu
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, 710054, People's Republic of China
- Key Laboratory of Coal Resources Exploration and Comprehensive Utilization, Ministry of Land and Resources, Xi'an, 710012, People's Republic of China
| |
Collapse
|
4
|
Abdelhamid HN. Removal of Carbon Dioxide using Zeolitic Imidazolate Frameworks: Adsorption and Conversion via Catalysis. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hani Nasser Abdelhamid
- Advanced Multifunctional Materials Laboratory, Department of Chemistry Assiut University Assiut Egypt
- Proteomics Laboratory for Clinical Research and Materials Science, Department of Chemistry Assiut University Assiut Egypt
- Nanotechnology Research Centre (NTRC) The British University in Egypt Cairo Egypt
| |
Collapse
|
5
|
ZrO 2@chitosan composite for simultaneous photodegradation of three emerging contaminants and antibacterial application. Carbohydr Polym 2022; 278:118940. [PMID: 34973758 DOI: 10.1016/j.carbpol.2021.118940] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 11/22/2022]
Abstract
Emerging contaminants (ECs) are often detected in water bodies due to their prevalent use combined with inefficiency of the conventional wastewater treatment plants for their complete removal. Elimination of ECs using photocatalysis as a tertiary treatment can be a sustainable option for the reuse wastewater. Reported herewith is a photocatalyst, chitosan-based zirconia hybrid composite (ZrO2CTS-HC) for the individual/ simultaneous degradation of multiple ECs like Congo red (CR), Methyl orange (MO) and 4-hydroxybenzoic acid (4-HA) under visible light irradiation. Successfully synthesized ZrO2CTS-HC as confirmed by theoretical and various characterization techniques depicted photodegradation efficiency of 91.11, 69.11 and 78.40% for CR, MO and 4-HA respectively (SD 0.5-0.95; HPLC) aided by the reactive hydroxyl radical. Probable degradation mechanism supported by LC-MS/MS, COD and TOC along with reusability and antibacterial ability towards E.Coli & S.aureus is also reported. ZrO2CTS-HC can be a good option for elimination of residual ECs during tertiary treatment.
Collapse
|
6
|
Dowaidar M, Abdelhamid HN, Langel Ü. Improvement of Transfection with PepFects Using Organic and Inorganic Materials. Methods Mol Biol 2022; 2383:555-567. [PMID: 34766313 DOI: 10.1007/978-1-0716-1752-6_35] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
Cell-penetrating peptides (CPPs) are a promising non-viral vector for gene and drug delivery. CPPs exhibit high cell transfection, and are biocompatible. They can be also conjugated with organic and inorganic nanomaterials, such as magnetic nanoparticles (MNPs), graphene oxide (GO), metal-organic frameworks (MOFs), and chitosan. Nanomaterials offered a high specific surface area and provided relatively straightforward methods to be modified with biomolecules including CPPs and oligonucleotides (ONs). Novel nanomaterials conjugates with CPP/ONs complexes are therefore of interest for cell transfection with high efficiency. In this chapter, we described a summary of the non-viral vectors consisting of CPPs and nanomaterials. The book chapter also included a protocol to generate hybrid biomaterials consisting of CPPs and nanoparticles (NPs) for the delivery of oligonucleotides. The conjugation of NPs with CPPs serves as an effective platform for gene therapy with high cell transfection efficiency. The protocol is simple, offers high cell transfection compared to the CPPs-ONs complexes, and can be used for further improvements using external stimuli.
Collapse
Affiliation(s)
- Moataz Dowaidar
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.
| | - Hani Nasser Abdelhamid
- Advanced Multifunctional Materials Laboratory, Department of Chemistry, Faculty of Science, Assiut University, Assiut, Egypt
| | - Ülo Langel
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
- Institute of Technology, University of Tartu, Tartu, Estonia
| |
Collapse
|
7
|
Cellulose–metal organic frameworks (CelloMOFs) hybrid materials and their multifaceted Applications: A review. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214263] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
8
|
Sheibani E, Hosseini A, Sobhani Nasab A, Adib K, Ganjali MR, Pourmortazavi SM, Ahmadi F, Marzi Khosrowshahi E, Mirsadeghi S, Rahimi-Nasrabadi M, Ehrlich H. Application of polysaccharide biopolymers as natural adsorbent in sample preparation. Crit Rev Food Sci Nutr 2021; 63:2626-2653. [PMID: 34554043 DOI: 10.1080/10408398.2021.1978385] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Preparing samples for analyses is perhaps the most important part to analyses. The varied functional groups present on the surface of biopolymers bestow them appropriate adsorption properties. Properties like biocompatibility, biodegradability, presence of different surface functional group, high porosity, considerable absorption capacity for water, the potential for modification, etc. turn biopolymers to promising candidates for varied applications. In addition, one of the most important parts of determination of an analyte in a matrix is sample preparation step and the efficiency of this step in solid phase extraction methods is largely dependent on the type of adsorbent used. Due to the unique properties of biopolymers they are considered an appropriate choice for using as sorbent in sample preparation methods that use from a solid adsorbent. Many review articles have been published on the application of diverse adsorbents in sample preparation methods, however despite the numerous advantages of biopolymers mentioned; review articles in this field are very few. Thus, in this paper we review the reports in different areas of sample preparation that use polysaccharides-based biopolymers as sorbents for extraction and determination of diverse organic and inorganic analytes.
Collapse
Affiliation(s)
| | - Asieh Hosseini
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Sobhani Nasab
- Autoimmune Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran.,Core Research Lab, Kashan University of Medical Sciences, Kashan, Iran
| | - Kourosh Adib
- Department of Chemistry, Faculty of Basic Sciences, Imam Hossein University, Tehran, Iran
| | - Mohammad Reza Ganjali
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran.,Biosensor Research Center, Endocrinology and Metabolism Molecular Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Farhad Ahmadi
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Medicinal Chemistry, School of Pharmacy-International Campus, Iran University of Medical Sciences, Tehran Iran
| | | | - Somayeh Mirsadeghi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Rahimi-Nasrabadi
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.,Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran, Iran.,Institute of Electronic and Sensor Materials, TU Bergakademie, Freiberg, Germany
| | - Hermann Ehrlich
- Institute of Electronic and Sensor Materials, TU Bergakademie, Freiberg, Germany.,Centre for Climate Change Research, Toronto, Ontario, Canada.,A.R. Environmental Solutions, ICUBE-University of Toronto Mississauga, Mississauga, Ontario, Canada.,Center for Advanced Technology, Adam Mickiewicz University, Poznan, Poland
| |
Collapse
|
9
|
Aljazzar SO. Synthesis and spectral characterizations of vanadyl(ii) and chromium(iii) mixed ligand complexes containing metformin drug and glycine amino acid. OPEN CHEM 2021. [DOI: 10.1515/chem-2021-0063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Metformin is one of the most effective drugs for the treatment of type II diabetes. Two new mixed ligand complexes of vanadyl(ii) and chromium(iii) ions with the general formula [VOL1L2]SO4 and [CrL1L2(Cl)2]Cl, respectively, where L1 is the metformin and L2 is the glycine amino acid, have been synthesized in MeOH solvent with 1:1:1 stoichiometry and characterized by several spectroscopic techniques. The spectroscopic data suggested that the [VOL1L2]SO4 complex possesses a square pyramidal geometry, where the [CrL1L2(Cl)2]Cl complex possesses an octahedral geometry. The L1 ligand coordinated to the VO(ii) and Cr(iii) ions via the N atoms of the imino (‒C═NH) groups, where the L2 ligand coordinated via the O atom of the carboxylate group (COO) and the N atom of the amino group (NH2). The interaction of ligands L1 and L2 with the metal ions leads to complexes that have organized nanoscale structures with a main diameter of ∼14 nm for the [CrL1L2(Cl)2]Cl complex and ∼40 nm for the [VOL1L2]SO4 complex.
Collapse
Affiliation(s)
- Samar O. Aljazzar
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University , Riyadh 11671 , Saudi Arabia
| |
Collapse
|
10
|
Abdelhamid HN. Zeolitic imidazolate frameworks (ZIF‐8, ZIF‐67, and ZIF‐L) for hydrogen production. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6319] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Hani Nasser Abdelhamid
- Advanced Multifunctional Materials Laboratory, Department of Chemistry Assiut University Assiut Egypt
| |
Collapse
|
11
|
Sun Q, Ma W, Dan O, Li G, Yang Y, Yan X, Su H, Lin Z, Cai Z. Thiol functionalized covalent organic framework for highly selective enrichment and detection of mercury by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Analyst 2021; 146:2991-2997. [PMID: 33949450 DOI: 10.1039/d1an00282a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A spherical thiol-functionalized covalent organic framework (COF-SH) was designed via a facile thiol-yne click reaction of a alkynyl-terminated COF and pentaerythritol tetra(3-mercaptopropionate). The COF-SH was explored as a new adsorbent for the selective enrichment of Hg2+. The as-prepared COF-SH exhibited a uniform mesoporous structure, a high abundance of binding sites, and good chemical stability, which endow it with great performance for the adsorption of Hg2+ and its corresponding maximum adsorption capacity was up to 617.3 mg g-1. Furthermore, the adsorption behavior of Hg2+ on the COF-SH wasin good agreement with the Langmuir and pseudo-second-order models. The influences of adsorbent dosage, pH, selectivity, and reusability of the COF-SH on Hg2+ adsorption were also investigated. Besides this, the COF-SH showed high selectivity towards Hg2+ even in the presence of a high concentration of K+, Na+, Ca2+, Mg2+ and Zn2+ metal ions. Using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS), the corresponding limit of detection (LOD) of Hg2+ was determined at very low concentrations of 80 pg mL-1 (equal to 396 amoL μL-1). In addition, the COF-SH was successfully applied to rapidly enrich and sensitively detect Hg2+ in industrial sewage, with recoveries in the range of 101.8-103.4%, demonstrating the promising potential of COF-SH as an effective adsorbent for use in environmental sample pretreatment.
Collapse
Affiliation(s)
- Qianqian Sun
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| | - Wende Ma
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| | - Ouyang Dan
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| | - Guorong Li
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| | - Yixin Yang
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| | - Xi Yan
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| | - Hang Su
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| | - Zian Lin
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| | - Zongwei Cai
- Partner State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon Tong, Hong Kong, SAR, P. R. China
| |
Collapse
|
12
|
Huang J, Cui W, Liang R, Zhang L, Qiu J. Porous BMTTPA-CS-GO nanocomposite for the efficient removal of heavy metal ions from aqueous solutions. RSC Adv 2021; 11:3725-3731. [PMID: 35424284 PMCID: PMC8694123 DOI: 10.1039/d0ra07836k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 12/24/2020] [Indexed: 11/26/2022] Open
Abstract
In this study, a stable, cost-effective and environmentally friendly porous 2,5-bis(methylthio)terephthalaldehyde-chitosan-grafted graphene oxide (BMTTPA-CS-GO) nanocomposite was synthesized by covalently grafting BMTTPA-CS onto the surfaces of graphene oxide and used for removing heavy metal ions from polluted water. According to well-established Hg2+-thioether coordination chemistry, the newly designed covalently linked stable porous BMTTPA-CS-GO nanocomposite with thioether units on the pore walls greatly increases the adsorption capacity of Hg2+ and does not cause secondary pollution to the environment. The results of sorption experiments and inductively coupled plasma mass spectrometry measurements demonstrate that the maximum adsorption capacity of Hg2+ on BMTTPA-CS-GO at pH 7 is 306.8 mg g-1, indicating that BMTTPA-CS-GO has excellent adsorption performance for Hg2+. The experimental results show that this stable, environmentally friendly, cost-effective and excellent adsorption performance of BMTTPA-CS-GO makes it a potential nanocomposite for removing Hg2+ and other heavy metal ions from polluted water, and even drinking water. This study suggests that covalently linked crucial groups on the surface of carbon-based materials are essential for improving the adsorption capacity of adsorbents for heavy metal ions.
Collapse
Affiliation(s)
- Juan Huang
- College of Chemistry, Nanchang University Nanchang 330031 China +86-791-83969518
| | - Weirong Cui
- College of Chemistry, Nanchang University Nanchang 330031 China +86-791-83969518
| | - Ruping Liang
- College of Chemistry, Nanchang University Nanchang 330031 China +86-791-83969518
- Jiangxi Province Key Laboratory of Modern Analytical Science, Nanchang University Nanchang 330031 China
| | - Li Zhang
- College of Chemistry, Nanchang University Nanchang 330031 China +86-791-83969518
| | - Jianding Qiu
- College of Chemistry, Nanchang University Nanchang 330031 China +86-791-83969518
- College of Materials and Chemical Engineering, Pingxiang University Pingxiang 337055 China
| |
Collapse
|
13
|
Abdelhamid HN. Salts Induced Formation of Hierarchical Porous ZIF‐8 and Their Applications for CO
2
Sorption and Hydrogen Generation via NaBH
4
Hydrolysis. MACROMOL CHEM PHYS 2020. [DOI: 10.1002/macp.202000031] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Hani Nasser Abdelhamid
- Advanced Multifunctional Materials LaboratoryDepartment of ChemistryAssiut University Assiut 71516 Egypt
| |
Collapse
|
14
|
Faryadras F, Yousefi SM, Jamshidi P, Shemirani F. Application of magnetic graphene-based bucky gel as an efficient green sorbent for determination of mercury in fish and water samples. RESEARCH ON CHEMICAL INTERMEDIATES 2020. [DOI: 10.1007/s11164-019-04069-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
15
|
Goda MN, Abdelhamid HN, Said AEAA. Zirconium Oxide Sulfate-Carbon (ZrOSO 4@C) Derived from Carbonized UiO-66 for Selective Production of Dimethyl Ether. ACS APPLIED MATERIALS & INTERFACES 2020; 12:646-653. [PMID: 31823597 DOI: 10.1021/acsami.9b17520] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Methanol dehydration process to dimethyl ether (DME) has been considered as one of the main routes to produce clean fuel, that is, DME. Thus, efficient catalysts are highly required for selective production of DME. Herein, UiO-66 was used as a precursor for the synthesis of zirconium oxide sulfate embedded carbon (ZrOSO4@C). The synthesis method involves a one-step carbonization of UiO-66 in the presence of sulfuric acid (10 wt %). Material characterizations using X-ray diffraction, X-ray photoelectron spectroscopy, Fourier transform infrared, and Raman spectroscopy approve the formation of the high crystalline phase of ZrOSO4@C. Nitrogen adsorption-desorption isotherms and high-resolution transmission electron microscopy confirm the mesopore structure of the materials. Acidity analysis using pyridine temperature-programmed desorption and isopropanol dehydration corroborates that ZrOSO4@C has weak and intermediate acidic sites making ZrOSO4@C an effective catalyst for methanol dehydration to DME. The materials offered full conversion (100%) with excellent selectivity (100%) at a relatively low temperature (250 °C). The catalyst exhibited a long-term stability for 120 h. Based on these results, DME is produced efficiently in terms of conversion, selectivity, and long-term stability.
Collapse
|
16
|
Abdelhamid HN. Hierarchical porous ZIF-8 for hydrogen production via the hydrolysis of sodium borohydride. Dalton Trans 2020; 49:4416-4424. [DOI: 10.1039/d0dt00145g] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Terephthalic acid (TPA) is used for the synthesis of hierarchical porous zeolitic imidazolate framework (HPZIF-8) which shows high catalytic activity for the hydrolysis of NaBH4 (2333 mLH2 min−1 gcat−1).
Collapse
Affiliation(s)
- Hani Nasser Abdelhamid
- Advanced Multifunctional Materials Laboratory
- Department of Chemistry
- Assiut University
- Assiut
- Egypt
| |
Collapse
|
17
|
Abdelhamid HN, Wu HF. A New Binary Matrix for Specific Detection of Mercury(II) Using Matrix-Assisted Laser Desorption Ionization Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:2617-2622. [PMID: 31659719 DOI: 10.1007/s13361-019-02324-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 06/29/2019] [Accepted: 08/10/2019] [Indexed: 06/10/2023]
Abstract
The development of simple, low-cost, and specific detection method for mercury (Hg(II)) ions in aqueous media using matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) is a challenge due to matrix interferences and acidity that destroy weak interactions. Herein, a new binary matrix consists of mefenamic acid, and thymine (T) is applied for simple and specific detection of Hg(II) in aqueous solution and blood sample. Mass spectra show metal-to-ligand ratio of 1:2 (Hg(II):T) in which Hg(II) ions are bound to two T molecules and two water molecules, i.e., [Hg(T)2(H2O)2]. The method is simple and fast, and requires cheap reagents. In addition, the spectra show extremely specific signals for Hg(II) ions and insignificant signals in case of other competing metal ions. The concept of our protocol can be applied for other metals. The new matrix may be used for the analysis of small molecules with minimal interferences peaks.
Collapse
Affiliation(s)
- Hani Nasser Abdelhamid
- Department of Chemistry, National Sun Yat-Sen University, 70, Lien-Hai Road, Kaohsiung, 80424, Taiwan.
- Center for Nanoscience and Nanotechnology, National Sun Yat-Sen University, 70, Lien-Hai Road, Kaohsiung, 80424, Taiwan.
- Advanced Multifunctional Materials Laboratory, Department of Chemistry, Assiut University, Assiut, 71515, Egypt.
| | - Hui-Fen Wu
- Department of Chemistry, National Sun Yat-Sen University, 70, Lien-Hai Road, Kaohsiung, 80424, Taiwan.
- Center for Nanoscience and Nanotechnology, National Sun Yat-Sen University, 70, Lien-Hai Road, Kaohsiung, 80424, Taiwan.
- Advanced Multifunctional Materials Laboratory, Department of Chemistry, Assiut University, Assiut, 71515, Egypt.
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, 100, Shih-Chuan 1st Road, Kaohsiung, 80708, Taiwan.
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University, 70, Lien-Hai Road, Kaohsiung, 80424, Taiwan.
| |
Collapse
|
18
|
Zhao Y, Xie H, Zhao M, Li H, Chen X, Cai Z, Song H. Core-shell hollow spheres of type C@MoS 2 for use in surface-assisted laser desorption/ionization time of flight mass spectrometry of small molecules. Mikrochim Acta 2019; 186:830. [PMID: 31754806 DOI: 10.1007/s00604-019-3960-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 10/17/2019] [Indexed: 11/26/2022]
Abstract
Mesoporous carbon hollow spheres coated with MoS2 (C@MoS2) were synthesized to obtain a material with large specific surface area, fast electron transfer efficiency and good water dispersibility. The composite material was applied as a matrix for the analysis of small molecules by surface-assisted laser desorption/ionization time-of-flight mass spectrometry (SALDI-TOF MS). The use of a core-shell C@MoS2 matrix strongly reduces matrix background interferences and increases signal intensity in the analysis of sulfonamides antibiotics (SAs), cationic dyes, emodin, as well as estrogen and amino acids. The composite material was applied to the SALDI-TOF MS analysis of selected molecules in (spiked) real samples. The ionization mechanism of the core-shell C@MoS2 as a matrix is discussed. The method exhibits low fragmentation interference, excellent ionization efficiency, high reproducibility and satisfactory salt tolerance. Graphical abstractSchematic representation of the method for fabrication of MoS2-coated mesoporous carbon hollow spheres (core-shell C@MoS2). As a new matrix, the nanocomposites were applied to analysis of small molecules by surface-assisted laser desorption/ionization time-of-flight mass spectrometry.
Collapse
Affiliation(s)
- Yanfang Zhao
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Centre, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Hanyi Xie
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Centre, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Mei Zhao
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Centre, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Huijuan Li
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Centre, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Xiangfeng Chen
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Centre, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China.
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, 999077, People's Republic of China
| | - Hexing Song
- Intelligene Biosystems (QingDao) Co. Ltd., Qingdao, 266400, China
| |
Collapse
|
19
|
Dowaidar M, Nasser Abdelhamid H, Hällbrink M, Langel Ü, Zou X. Chitosan enhances gene delivery of oligonucleotide complexes with magnetic nanoparticles-cell-penetrating peptide. J Biomater Appl 2019; 33:392-401. [PMID: 30223733 DOI: 10.1177/0885328218796623] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Gene-based therapies, including the delivery of oligonucleotides, offer promising methods for the treatment of cancer cells. However, they have various limitations including low efficiency. Herein, cell-penetrating peptides (CPPs)-conjugated chitosan-modified iron oxide magnetic nanoparticles (CPPs-CTS@MNPs) with high biocompatibility as well as high efficiency were tested for the delivery of oligonucleotides such as plasmid pGL3, splice correction oligonucleotides, and small-interfering RNA. A biocompatible nanocomposite, in which CTS@MNPs was incorporated in non-covalent complex with CPPs-oligonucleotide, is developed. Modifying the surface of magnetic nanoparticles with cationic chitosan-modified iron oxide improved the performance of magnetic nanoparticles-CPPs for oligonucleotide delivery. CPPs-CTS@MNPs complexes enhance oligonucleotide transfection compared to CPPs@MNPs or CPPs. The hydrophilic character of CTS@MNPs improves complexation with plasmid pGL3, splice correction oligonucleotides, and small-interfering RNA payload, which consequently resulted in not only strengthening the colloidal stability of the constructed complex but also improving their biocompatibility. Transfection using PF14-splice correction oligonucleotides-CTS@MNPs showed sixfold increase of the transfection compared to splice correction oligonucleotides-PF14 that showed higher transfection than the commercially available lipid-based vector Lipofectamine™ 2000. Nanoscaled CPPs-CTS@MNPs comprise a new family of biomaterials that can circumvent some of the limitations of CPPs or magnetic nanoparticles.
Collapse
Affiliation(s)
- Moataz Dowaidar
- 1 Department of Biochemistry and Biophysics, Stockholm University
| | - Hani Nasser Abdelhamid
- 2 Department of Chemistry, Faculty of Science, Assuit University Assuit, Egypt.,3 Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden
| | | | - Ülo Langel
- 1 Department of Biochemistry and Biophysics, Stockholm University
| | - Xiaodong Zou
- 3 Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden
| |
Collapse
|
20
|
Ren H, Chen W, Wang H, Kang Y, Zhu X, Li J, Wu T, Du Y. Quantitative analysis of free fatty acids in gout by disposable paper-array plate based MALDI MS. Anal Biochem 2019; 579:38-43. [DOI: 10.1016/j.ab.2019.05.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/19/2019] [Accepted: 05/20/2019] [Indexed: 12/27/2022]
|
21
|
Wang Y, Han X, Li Z, Xie J. Rapid detection of insulin by immune-enrichment with silicon-nanoparticle-assisted MALDI-TOF MS. Anal Biochem 2019; 577:14-20. [PMID: 30991018 DOI: 10.1016/j.ab.2019.04.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/08/2019] [Accepted: 04/12/2019] [Indexed: 01/07/2023]
Abstract
BACKGROUND Insulin is central to regulating fat and carbohydrate metabolism in the body. However, it is difficult to detect insulin using mass spectrometry (MS). The integration of nanotechnology with mass spectrometry for selective and sensitive detection is an important research area. Our aim was to establish a method to detect insulin using silicon nanoparticle-assisted high-throughput MS. METHODS Different nanomaterials with the potential for use as MALDI components to enhance the MS signal by increasing peptide ionization were investigated in the present study. Insulin in samples was enriched with antibody-coated silicon nanoparticles and then analyzed by MALDI-TOF MS. Method validation was performed in the present study. RESULTS A platform for insulin detection with small sample volumes (100 μL) and a simplified procedure was successfully developed. The silicon nanoparticle-MS assay exhibited high sensitivity (LOQ, 0.1 nM) and good linear correlation of MS intensity with insulin concentration (R2 = 0.99). Intra-assay precision (% coefficient of variation) ranged from 1.81 to 4.53%, and interassay precision ranged from 2.71 to 8.09%. In addition, a correlation between the MALDI assay and a chemiluminescence immunoassay (CIA) was completed in patient samples, and the resulting Deming regression revealed good agreement (R2 = 0.981). CONCLUSIONS In our study, we found that the insulin signal could be enhanced with silicon nanoparticles. A new insulin determination method, immunoaffinity-based mass spectrometry, that saves time and involves simple processes, has been successfully established. The present assay was validated to detect insulin with low limits of detection.
Collapse
Affiliation(s)
- Yichao Wang
- Department of Clinical Laboratory Medicine, TaiZhou Central Hospital (Taizhou University Hospital), No.999 Donghai Road, Jiaojiang District, Taizhou, Zhejiang, 318000, China.
| | - Xinwei Han
- Marine college, Shandong University (Weihai), No.180 Wenhua West Road, Huancui District, Weihai, Shandong, 264209, China
| | - Zhaoyun Li
- Department of Clinical Laboratory Medicine, TaiZhou Central Hospital (Taizhou University Hospital), No.999 Donghai Road, Jiaojiang District, Taizhou, Zhejiang, 318000, China.
| | - Jiaogui Xie
- Department of Urology, The Fifteenth Military Hospital of China, Wusu, Xinjiang, 833000, China.
| |
Collapse
|
22
|
Magnetic silica nanoparticles for use in matrix-assisted laser desorption ionization mass spectrometry of labile biomolecules such as oligosaccharides, amino acids, peptides and nucleosides. Mikrochim Acta 2019; 186:104. [DOI: 10.1007/s00604-018-3208-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 12/23/2018] [Indexed: 10/27/2022]
|
23
|
Confining analyte droplets on visible Si pillars for improving reproducibility and sensitivity of SALDI-TOF MS. Anal Bioanal Chem 2019; 411:1135-1142. [PMID: 30623222 DOI: 10.1007/s00216-018-01565-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/10/2018] [Accepted: 12/21/2018] [Indexed: 10/27/2022]
Abstract
We present a universal method to efficiently improve reproducibility and sensitivity of surface-assisted laser desorption/ionization time of flight mass spectrometry (SALDI-TOF MS). In this method, the Si pillar array with unique surface wettability is used as substrate for ionizing analyte. The Si pillar is fabricated based on the combination of photolithography and metal-assisted chemical etching, which is of hydrophilic top and hydrophobic bottom and side wall. Based on the surface wettability of the Si pillar, a droplet of an aqueous analyte solution can be confined on the top of the Si pillar. After evaporation of solvent, an analyte deposition spot is formed on the top of Si pillar. The visible size of the Si pillar allows the sample spot to be easily found. Meanwhile, the diameter of the Si pillar is smaller than that of the laser, allowing the observation of all analyte molecules under one laser shot. Therefore, the reproducibility and sensitivity are highly improved with this method, which allows for the quantitative analysis. Furthermore, this method is applicable for different analytes dissolved in water, including amino acids, dye molecules, polypeptides, and polymers. The application of this substrate is demonstrated by analyzing real samples at low concentration. It should be a promising method for sensitive and reproducible detection for SALDI-TOF MS. Graphical abstract ᅟ.
Collapse
|
24
|
Li W, Khan M, Li H, Lin L, Mao S, Lin JM. Homogenous deposition of matrix–analyte cocrystals on gold-nanobowl arrays for improving MALDI-MS signal reproducibility. Chem Commun (Camb) 2019; 55:2166-2169. [DOI: 10.1039/c8cc09945f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An Au-nanobowl array was synthesized to utilize its excellent properties to achieve efficient quantitative analysis via MALDI-MS analysis.
Collapse
Affiliation(s)
- Weiwei Li
- Department of Chemistry
- Beijing Key Laboratory of Micronalytical Methods and Instrumentation
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology
- Tsinghua University
- Beijing 100084
| | - Mashooq Khan
- Department of Chemistry
- Beijing Key Laboratory of Micronalytical Methods and Instrumentation
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology
- Tsinghua University
- Beijing 100084
| | - Haifang Li
- Department of Chemistry
- Beijing Key Laboratory of Micronalytical Methods and Instrumentation
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology
- Tsinghua University
- Beijing 100084
| | - Ling Lin
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology
- CAS Center for Excellence in Nanoscience
- National Center for Nanoscience and Technology
- Beijing 100190
- P. R. China
| | - Sifeng Mao
- Department of Chemistry
- Beijing Key Laboratory of Micronalytical Methods and Instrumentation
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology
- Tsinghua University
- Beijing 100084
| | - Jin-Ming Lin
- Department of Chemistry
- Beijing Key Laboratory of Micronalytical Methods and Instrumentation
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology
- Tsinghua University
- Beijing 100084
| |
Collapse
|
25
|
Xu Q, Tian R, Lu C, Li H. Monodispersed Ag Nanoparticle in Layered Double Hydroxides as Matrix for Laser Desorption/Ionization Mass Spectrometry. ACS APPLIED MATERIALS & INTERFACES 2018; 10:44751-44759. [PMID: 30512921 DOI: 10.1021/acsami.8b17051] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) in the low-molecular-weight (LMW) range is a long-standing challenge because of the fragments from the matrix and the heterogeneity of the matrix-analyte crystals. In this work, a homogeneous film with the monodispersed Ag nanoparticles (Ag NPs) in the confined interlayer of layered double hydroxides (LDHs) has been achieved. The Ag NPs with advantageous optical absorption could realize the energy capture and transfer process, and LDHs with abundant hydroxyl groups are beneficial for the deprotonated reaction. Therefore, the as-prepared film exhibited interference-free deprotonated signals in negative-ion mode with high ionization efficiency. The uniform matrix-analyte spots were constructed through the homogeneous assembly process, contributing to the high reproducibility for both the liquid and gaseous samples. Good linearities were successfully realized in the range from 0.1 μM to 1.0 mM for glucose with the relative standard deviation (RSD) of 3.8%, and 0.2-2.0 mM with the average RSD of 4.5% for psoralen samples, respectively. It is believed that the proposed matrix could exhibit competitive advantages for MALDI detection in the LMW region, which may provide new insight into development for MALDI mass detection.
Collapse
Affiliation(s)
- Qi Xu
- State Key Laboratory of Chemical Resource Engineering , Beijing University of Chemical Technology , Beijing 100029 , China
| | - Rui Tian
- State Key Laboratory of Chemical Resource Engineering , Beijing University of Chemical Technology , Beijing 100029 , China
| | - Chao Lu
- State Key Laboratory of Chemical Resource Engineering , Beijing University of Chemical Technology , Beijing 100029 , China
| | - Haifang Li
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation , Tsinghua University , Beijing 100084 , China
| |
Collapse
|
26
|
Abdelhamid HN. Ionic Liquid-Assisted Laser Desorption/Ionization-Mass Spectrometry: Matrices, Microextraction, and Separation. Methods Protoc 2018; 1:E23. [PMID: 31164566 PMCID: PMC6526421 DOI: 10.3390/mps1020023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/13/2018] [Accepted: 06/15/2018] [Indexed: 12/16/2022] Open
Abstract
Ionic liquids (ILs) have advanced a variety of applications, including matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS). ILs can be used as matrices and solvents for analyte extraction and separation prior to analysis using laser desorption/ionization-mass spectrometry (LDI-MS). Most ILs show high stability with negligible sublimation under vacuum, provide high ionization efficiency, can be used for qualitative and quantitative analyses with and without internal standards, show high reproducibility, form homogenous spots during sampling, and offer high solvation efficiency for a wide range of analytes. Ionic liquids can be used as solvents and pseudo-stationary phases for extraction and separation of a wide range of analytes, including proteins, peptides, lipids, carbohydrates, pathogenic bacteria, and small molecules. This review article summarizes the recent advances of ILs applications using MALDI-MS. The applications of ILs as matrices, solvents, and pseudo-stationary phases, are also reviewed.
Collapse
|
27
|
Nanoparticle assisted laser desorption/ionization mass spectrometry for small molecule analytes. Mikrochim Acta 2018; 185:200. [DOI: 10.1007/s00604-018-2687-8] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 01/18/2018] [Indexed: 12/14/2022]
|
28
|
Dowaidar M, Abdelhamid HN, Hällbrink M, Freimann K, Kurrikoff K, Zou X, Langel Ü. Magnetic Nanoparticle Assisted Self-assembly of Cell Penetrating Peptides-Oligonucleotides Complexes for Gene Delivery. Sci Rep 2017; 7:9159. [PMID: 28831162 PMCID: PMC5567346 DOI: 10.1038/s41598-017-09803-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 07/28/2017] [Indexed: 12/26/2022] Open
Abstract
Magnetic nanoparticles (MNPs, Fe3O4) incorporated into the complexes of cell penetrating peptides (CPPs)-oligonucleotides (ONs) promoted the cell transfection for plasmid transfection, splice correction, and gene silencing efficiencies. Six types of cell penetrating peptides (CPPs; PeptFect220 (denoted PF220), PF221, PF222, PF223, PF224 and PF14) and three types of gene therapeutic agents (plasmid (pGL3), splicing correcting oligonucleotides (SCO), and small interfering RNA (siRNA) were investigated. Magnetic nanoparticles incorporated into the complexes of CPPs-pGL3, CPPs-SCO, and CPPs-siRNA showed high cell biocompatibility and efficiently transfected the investigated cells with pGL3, SCO, and siRNA, respectively. Gene transfer vectors formed among PF14, SCO, and MNPs (PF14-SCO-MNPs) showed a superior transfection efficiency (up to 4-fold) compared to the noncovalent PF14-SCO complex, which was previously reported with a higher efficiency compared to commercial vector called Lipofectamine™2000. The high transfection efficiency of the new complexes (CPPs-SCO-MNPs) may be attributed to the morphology, low cytotoxicity, and the synergistic effect of MNPs and CPPs. PF14-pDNA-MNPs is an efficient complex for in vivo gene delivery upon systemic administration. The conjugation of CPPs-ONs with inorganic magnetic nanoparticles (Fe3O4) may open new venues for selective and efficient gene therapy.
Collapse
Affiliation(s)
- Moataz Dowaidar
- Department of Neurochemistry, Stockholm University, Svante Arrhenius väg 16B, Stockholm, SE-10691, Sweden.
| | - Hani Nasser Abdelhamid
- Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16C, Stockholm, SE-106 91, Sweden
| | - Mattias Hällbrink
- Department of Neurochemistry, Stockholm University, Svante Arrhenius väg 16B, Stockholm, SE-10691, Sweden
| | - Krista Freimann
- Laboratory of Molecular Biotechnology, Institute of Technology, University of Tartu, Nooruse, Tartu, 50411, Estonia
| | - Kaido Kurrikoff
- Laboratory of Molecular Biotechnology, Institute of Technology, University of Tartu, Nooruse, Tartu, 50411, Estonia
| | - Xiaodong Zou
- Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16C, Stockholm, SE-106 91, Sweden.
| | - Ülo Langel
- Department of Neurochemistry, Stockholm University, Svante Arrhenius väg 16B, Stockholm, SE-10691, Sweden.
- Laboratory of Molecular Biotechnology, Institute of Technology, University of Tartu, Nooruse, Tartu, 50411, Estonia.
| |
Collapse
|
29
|
Organic matrices, ionic liquids, and organic matrices@nanoparticles assisted laser desorption/ionization mass spectrometry. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.01.012] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
30
|
Kumaran S, Abdelhamid HN, Wu HF. Quantification analysis of protein and mycelium contents upon inhibition of melanin for Aspergillus niger: a study of matrix assisted laser desorption/ionization mass spectrometry (MALDI-MS). RSC Adv 2017. [DOI: 10.1039/c7ra03741d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Mass spectrometry (MS) provides a simple discrimination method for microorganisms.
Collapse
Affiliation(s)
- Sekar Kumaran
- Department of Chemistry and Center for Nanoscience and Nanotechnology
- National Sun Yat-Sen University
- Kaohsiung
- Taiwan
- School of Pharmacy
| | - Hani Nasser Abdelhamid
- Department of Chemistry and Center for Nanoscience and Nanotechnology
- National Sun Yat-Sen University
- Kaohsiung
- Taiwan
- School of Pharmacy
| | - Hui-Fen Wu
- Department of Chemistry and Center for Nanoscience and Nanotechnology
- National Sun Yat-Sen University
- Kaohsiung
- Taiwan
- School of Pharmacy
| |
Collapse
|
31
|
Abdelhamid HN, Lin YC, Wu HF. Magnetic nanoparticle modified chitosan for surface enhanced laser desorption/ionization mass spectrometry of surfactants. RSC Adv 2017. [DOI: 10.1039/c7ra05982e] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Chitosan (CTS) modified magnetic nanoparticles (CTS@Fe3O4MNPs) offer dual functions for the detection of surfactants using surface enhanced laser desorption/ionization mass spectrometry (SELDI-MS).
Collapse
Affiliation(s)
- Hani Nasser Abdelhamid
- Department of Chemistry
- National Sun Yat-Sen University
- Kaohsiung
- Taiwan
- Department of Chemistry
| | - Yu Chih Lin
- Department of Chemistry
- National Sun Yat-Sen University
- Kaohsiung
- Taiwan
| | - Hui-Fen Wu
- Department of Chemistry
- National Sun Yat-Sen University
- Kaohsiung
- Taiwan
- School of Pharmacy
| |
Collapse
|