1
|
Srivastava P, Prasad D. Isothermal nucleic acid amplification and its uses in modern diagnostic technologies. 3 Biotech 2023; 13:200. [PMID: 37215369 PMCID: PMC10193355 DOI: 10.1007/s13205-023-03628-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/10/2023] [Indexed: 05/24/2023] Open
Abstract
Nucleic acids are prominent biomarkers for diagnosing infectious pathogens using nucleic acid amplification techniques (NAATs). PCR, a gold standard technique for amplifying nucleic acids, is widely used in scientific research and diagnosis. Efficient pathogen detection is a key to adequate food safety and hygiene. However, using bulky thermal cyclers and costly laboratory setup limits its uses in developing countries, including India. The isothermal amplification methods are exploited to develop miniaturized sensors against viruses, bacteria, fungi and other pathogenic organisms and have been applied for in situ diagnosis. Isothermal amplification techniques have been found suitable for POC techniques and follow WHO's ASSURED criteria. LAMP, NASBA, SDA, RCA and RPA are some of the isothermal amplification techniques which are preferable for POC diagnostics. Furthermore, methods such as WGA, CPA, HDA, EXPAR, SMART, SPIA and DAMP were introduced for even more accuracy and robustness. Using recombinant polymerases and other nucleic acid-modifying enzymes has dramatically broadened the detection range of target pathogens under the scanner. The coupling of isothermal amplification methods with advanced technologies such as CRISPR/Cas systems, fluorescence-based chemistries, microfluidics and paper-based sensors has significantly influenced the biosensing and diagnosis field. This review comprehensively analyzed isothermal nucleic acid amplification methods, emphasizing their advantages, disadvantages and limitations.
Collapse
Affiliation(s)
- Pulkit Srivastava
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215 India
| | - Dinesh Prasad
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215 India
| |
Collapse
|
2
|
Wang B, Wang M, Peng F, Fu X, Wen M, Shi Y, Chen M, Ke G, Zhang XB. Construction and Application of DNAzyme-based Nanodevices. Chem Res Chin Univ 2023; 39:42-60. [PMID: 36687211 PMCID: PMC9841151 DOI: 10.1007/s40242-023-2334-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/02/2023] [Indexed: 01/19/2023]
Abstract
The development of stimuli-responsive nanodevices with high efficiency and specificity is very important in biosensing, drug delivery, and so on. DNAzymes are a class of DNA molecules with the specific catalytic activity. Owing to their unique catalytic activity and easy design and synthesis, the construction and application of DNAzymes-based nanodevices have attracted much attention in recent years. In this review, the classification and properties of DNAzyme are first introduced. The construction of several common kinds of DNAzyme-based nanodevices, such as DNA motors, signal amplifiers, and logic gates, is then systematically summarized. We also introduce the application of DNAzyme-based nanodevices in sensing and therapeutic fields. In addition, current limitations and future directions are discussed.
Collapse
Affiliation(s)
- Bo Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 P. R. China
| | - Menghui Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 P. R. China
| | - Fangqi Peng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 P. R. China
| | - Xiaoyi Fu
- Institute of Basic Medicine and Cancer(IBMC), Chinese Academy of Sciences, Hangzhou, 310022 P. R. China
| | - Mei Wen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 P. R. China
| | - Yuyan Shi
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 P. R. China
| | - Mei Chen
- College of Materials Science and Engineering, Hunan University, Changsha, 410082 P. R. China
| | - Guoliang Ke
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 P. R. China
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 P. R. China
| |
Collapse
|
3
|
Chen W, Lai Q, Zhang Y, Liu Z. Recent Advances in Aptasensors For Rapid and Sensitive Detection of Staphylococcus Aureus. Front Bioeng Biotechnol 2022; 10:889431. [PMID: 35677308 PMCID: PMC9169243 DOI: 10.3389/fbioe.2022.889431] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/12/2022] [Indexed: 12/30/2022] Open
Abstract
The infection of Staphylococcus aureus (S.aureus) and the spread of drug-resistant bacteria pose a serious threat to global public health. Therefore, timely, rapid and accurate detection of S. aureus is of great significance for food safety, environmental monitoring, clinical diagnosis and treatment, and prevention of drug-resistant bacteria dissemination. Traditional S. aureus detection methods such as culture identification, ELISA, PCR, MALDI-TOF-MS and sequencing, etc., have good sensitivity and specificity, but they are complex to operate, requiring professionals and expensive and complex machines. Therefore, it is still challenging to develop a fast, simple, low-cost, specific and sensitive S. aureus detection method. Recent studies have demonstrated that fast, specific, low-cost, low sample volume, automated, and portable aptasensors have been widely used for S. aureus detection and have been proposed as the most attractive alternatives to their traditional detection methods. In this review, recent advances of aptasensors based on different transducer (optical and electrochemical) for S. aureus detection have been discussed in details. Furthermore, the applications of aptasensors in point-of-care testing (POCT) have also been discussed. More and more aptasensors are combined with nanomaterials as efficient transducers and amplifiers, which appears to be the development trend in aptasensors. Finally, some significant challenges for the development and application of aptasensors are outlined.
Collapse
Affiliation(s)
- Wei Chen
- Department of Clinical Laboratory, Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory for Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, China
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China
- *Correspondence: Wei Chen, ; Zhengchun Liu,
| | - Qingteng Lai
- Hunan Key Laboratory for Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, China
| | - Yanke Zhang
- Hunan Key Laboratory for Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, China
| | - Zhengchun Liu
- Hunan Key Laboratory for Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, China
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China
- *Correspondence: Wei Chen, ; Zhengchun Liu,
| |
Collapse
|
4
|
Wang X, Tao Z. Expanding the analytical applications of nucleic acid hybridization using junction probes. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:4931-4938. [PMID: 33043948 DOI: 10.1039/d0ay01605e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Nucleic acid hybridization is crucial in target recognition with respect to in vitro and in vivo nucleic acid biosensing. Conventional linear probes and molecular beacons encounter challenges in multiplexing and specific recognition of intractable nucleic acids. Advances in nucleic acid nanotechnologies have resulted in a set of novel structural probes: junction probes (JPs), which make full use of the advantages of specificity, stability, programmability and predictability of Watson-Crick base pairing. In recent years, junction probes have been regularly implemented in constructing systems related to biosensing, synthetic biology and gene regulation. Herein, we summarize the latest advances in JP designs as potential nucleic acid biosensing systems and their expansive applications, and provide some general guidelines for developing JP based sensing strategies for implementation of such systems.
Collapse
Affiliation(s)
- Xuchu Wang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University, Hangzhou, China.
| | | |
Collapse
|
5
|
Cai R, Yin F, Chen H, Tian Y, Zhou N. A fluorescent aptasensor for Staphylococcus aureus based on strand displacement amplification and self-assembled DNA hexagonal structure. Mikrochim Acta 2020; 187:304. [PMID: 32350613 DOI: 10.1007/s00604-020-04293-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/22/2020] [Indexed: 12/14/2022]
Abstract
A fluorescent aptasensor for Staphylococcus aureus (S. aureus) is designed, which takes advantage of strand displacement amplification (SDA) technology and unique self-assembled DNA hexagonal structure. In the presence of S. aureus, a partially complementary strand of S. aureus aptamer (cDNA) is competitively released from cDNA/aptamer duplex immobilized on magnetic beads due to the affinity of the aptamer for S. aureus. The addition of primer starts the SDA reaction. With the catalysis of Bsm DNA polymerase and Nb.bpu10I endonuclease, a large number of single-stranded DNA (ssDNA) is produced, which induces the opening of a hairpin probe and the subsequent self-assembly to form a hexagonal structure. The staining of the DNA hexagon with SYBR Green I excites the fluorescence signal, which is used for detection. The aptasensor exhibits a broad linear range from 7 to 7 × 107 CFU/mL, with a detection limit of 1.7 CFU/mL for S. aureus. The sensor shows negligible responses to other bacteria. Moreover, the aptasensor has been applied to detect S. aureus in milk samples, and the results demonstrate the general applicability of the sensor and its prospect in systematic detection of S. aureus in food safety control and medicine-related fields. Graphical abstract The presence of S. aureus can be converted to the formation of unique DNA hexagonal structure and subsequent fluorescent signal by the combination of SDA with self-assembly technology.
Collapse
Affiliation(s)
- Rongfeng Cai
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Fan Yin
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Haohan Chen
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Yaping Tian
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Nandi Zhou
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
6
|
Lee S, Jang H, Kim HY, Park HG. Three-way junction-induced isothermal amplification for nucleic acid detection. Biosens Bioelectron 2019; 147:111762. [PMID: 31654822 DOI: 10.1016/j.bios.2019.111762] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/27/2019] [Accepted: 10/03/2019] [Indexed: 02/04/2023]
Abstract
We, herein, describe a three-way junction (3WJ)-induced isothermal amplification (ThIsAmp) reaction for target nucleic acid detection. In this strategy, target nucleic acid induces the formation of 3WJ structure by associating a specially designed ThIsAmp template and ThIsAmp primer. Upon the formation of 3WJ structure, ThIsAmp primer is subjected to continuously repeated extension and nicking reaction by the combined activities of DNA polymerase and nicking endonuclease, consequently producing a large number of trigger strands. The trigger strands then initiate two separate but interconnected pathways by binding to either 3' overhang of ThIsAmp template within the 3WJ structure or free ThIsAmp template. As a consequence, a large number of final double-stranded DNA products are produced under an isothermal condition, which can be monitored in real-time by detecting the fluorescence intensity resulting from SYBR Green I staining. Based on this principle, we successfully detected target DNA down to 78.1 aM with excellent specificity. The sophisticated design principle employed in this work would provide great insight for the development of self-operative isothermal amplifying system enabling target nucleic acid detection.
Collapse
Affiliation(s)
- Seoyoung Lee
- Department of Chemical and Biomolecular Engineering (BK 21+ Program), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 305-338, Republic of Korea
| | - Hyowon Jang
- Department of Chemical and Biomolecular Engineering (BK 21+ Program), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 305-338, Republic of Korea
| | - Hyo Yong Kim
- Department of Chemical and Biomolecular Engineering (BK 21+ Program), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 305-338, Republic of Korea
| | - Hyun Gyu Park
- Department of Chemical and Biomolecular Engineering (BK 21+ Program), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 305-338, Republic of Korea.
| |
Collapse
|
7
|
A star-shaped DNA probe based on strand displacement for universal and multiplexed fluorometric detection of genetic variations. Mikrochim Acta 2018; 185:413. [DOI: 10.1007/s00604-018-2941-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/31/2018] [Indexed: 12/18/2022]
|
8
|
Signal-on electrochemiluminescence biosensor for microRNA-319a detection based on two-stage isothermal strand-displacement polymerase reaction. Biosens Bioelectron 2018; 107:34-39. [DOI: 10.1016/j.bios.2018.02.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 02/04/2018] [Indexed: 12/21/2022]
|
9
|
Detection of nucleic acids and elimination of carryover contamination by using loop-mediated isothermal amplification and antarctic thermal sensitive uracil-DNA-glycosylase in a lateral flow biosensor: application to the detection of Streptococcus pneumoniae. Mikrochim Acta 2018; 185:212. [DOI: 10.1007/s00604-018-2723-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 02/02/2018] [Indexed: 12/13/2022]
|
10
|
Fluorometric determination of nucleic acids based on the use of polydopamine nanotubes and target-induced strand displacement amplification. Mikrochim Acta 2018; 185:105. [DOI: 10.1007/s00604-017-2632-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 12/22/2017] [Indexed: 11/26/2022]
|
11
|
Rolling circle amplification based amperometric aptamer/immuno hybrid biosensor for ultrasensitive detection of Vibrio parahaemolyticus. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2383-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|