1
|
Yu SQ, Li P, Li HJ, Shang LJ, Guo R, Sun XM, Ren QQ. Highly Sensitive Detection of Hydrogen Peroxide in Cancer Tissue Based on 3D Reduced Graphene Oxide-MXene-Multi-Walled Carbon Nanotubes Electrode. BIOSENSORS 2024; 14:261. [PMID: 38920565 PMCID: PMC11201644 DOI: 10.3390/bios14060261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/11/2024] [Accepted: 05/19/2024] [Indexed: 06/27/2024]
Abstract
Hydrogen peroxide (H2O2) is a signaling molecule that has the capacity to control a variety of biological processes in organisms. Cancer cells release more H2O2 during abnormal tumor growth. There has been a considerable amount of interest in utilizing H2O2 as a biomarker for the diagnosis of cancer tissue. In this study, an electrochemical sensor for H2O2 was constructed based on 3D reduced graphene oxide (rGO), MXene (Ti3C2), and multi-walled carbon nanotubes (MWCNTs) composite. Three-dimensional (3D) rGO-Ti3C2-MWCNTs sensor showed good linearity for H2O2 in the ranges of 1-60 μM and 60 μM-9.77 mM at a working potential of -0.25 V, with sensitivities of 235.2 µA mM-1 cm-2 and 103.8 µA mM-1 cm-2, respectively, and a detection limit of 0.3 µM (S/N = 3). The sensor exhibited long-term stability, good repeatability, and outstanding immunity to interference. In addition, the modified electrode was employed to detect real-time H2O2 release from cancer cells and cancer tissue ex vivo.
Collapse
Affiliation(s)
| | | | | | | | | | - Xu-Ming Sun
- School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, China; (S.-Q.Y.); (P.L.); (H.-J.L.); (L.-J.S.); (R.G.)
| | - Qiong-Qiong Ren
- School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, China; (S.-Q.Y.); (P.L.); (H.-J.L.); (L.-J.S.); (R.G.)
| |
Collapse
|
2
|
Liu K, Pan M, Zhang Z, Hong L, Xie X, Yang J, Wang S, Wang Z, Song Y, Wang S. Electrochemical sensor applying ZrO2/nitrogen-doped three-dimensional porous carbon nanocomposite for efficient detection of ultra-trace Hg2+ ions. Anal Chim Acta 2022; 1231:340392. [DOI: 10.1016/j.aca.2022.340392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/06/2022] [Accepted: 09/11/2022] [Indexed: 11/29/2022]
|
3
|
Lv J, Fan M, Zhang L, Zhou Q, Wang L, Chang Z, Chong R. Photoelectrochemical sensing and mechanism investigation of hydrogen peroxide using a pristine hematite nanoarrays. Talanta 2022; 237:122894. [PMID: 34736710 DOI: 10.1016/j.talanta.2021.122894] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/17/2021] [Accepted: 09/18/2021] [Indexed: 01/03/2023]
Abstract
In this paper, a facile hydrothermal combined with subsequent two-step post-calcination method was used to fabricate hematite (α-Fe2O3) nanoarrays on fluorine-doped SnO2 glass (FTO). The morphology, crystalline phase, optical property and surface chemical states of the fabricated α-Fe2O3 photoelectrode were characterized by scanning electron microscopy, X-ray diffraction, ultraviolet visible spectroscopy and X-ray photoelectron spectroscopy correspondingly. The α-Fe2O3 photoelectrode exhibits excellent photoelectrochemical (PEC) response toward hydrogen peroxide (H2O2) in aqueous solutions, with a low detection limit of 20 μM (S/N = 3) and wide linear range (0.01-0.09, 0.3-4, and 6-16 mM). Additionally, the α-Fe2O3 photoelectrode shows satisfying reproducibility, stability, selectivity and good feasibility for real samples. Mechanism analysis indicates, comparing with H2O, H2O2 possesses much more fast reaction kinetics over α-Fe2O3 surface, thus the recombination of photogenerated charges are reduced, followed by much more photogenerated electrons are migrated to the counter electrode via external circuit. The insight on the enhanced photocurrent, which is corelative to the concentration of H2O2 in aqueous solution, will stimulate us to further optimize the surface structure of α-Fe2O3 to gain highly efficient α-Fe2O3 based sensors.
Collapse
Affiliation(s)
- Jiaqi Lv
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, Henan Provincial Engineering Research Center of Green Anticorrosion Technology for Magnesium Alloys, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Ming Fan
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, Henan Provincial Engineering Research Center of Green Anticorrosion Technology for Magnesium Alloys, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Ling Zhang
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, Henan Provincial Engineering Research Center of Green Anticorrosion Technology for Magnesium Alloys, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Qian Zhou
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, Henan Provincial Engineering Research Center of Green Anticorrosion Technology for Magnesium Alloys, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Li Wang
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, Henan Provincial Engineering Research Center of Green Anticorrosion Technology for Magnesium Alloys, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Zhixian Chang
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, Henan Provincial Engineering Research Center of Green Anticorrosion Technology for Magnesium Alloys, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China.
| | - Ruifeng Chong
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, Henan Provincial Engineering Research Center of Green Anticorrosion Technology for Magnesium Alloys, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
4
|
Zhu X, Wang Z, Gao M, Wang Y, Hu J, Song Z, Wang Z, Dong M. AgPt/MoS 2 hybrid as electrochemical sensor for detecting H 2O 2 release from living cells. NEW J CHEM 2022. [DOI: 10.1039/d2nj02495k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel non-enzymatic H2O2 biosensor based on a AgPt/MoS2 nanohybrid exhibits high sensitivity and selectivity.
Collapse
Affiliation(s)
- Xiaona Zhu
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China
| | - Zegao Wang
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus C, Denmark
| | - Mingyan Gao
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China
| | - Yuqing Wang
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus C, Denmark
| | - Jing Hu
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China
| | - Zhengxun Song
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China
| | - Zuobin Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China
| | - Mingdong Dong
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus C, Denmark
| |
Collapse
|
5
|
Banavath R, Srivastava R, Bhargava P. EDTA derived graphene supported porous cobalt hexacyanoferrate nanospheres as a highly electroactive nanocomposite for hydrogen peroxide sensing. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00003b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Developed a highly electroactive graphene and porous cobalt hexacyanoferrate nanosphere (Gr/P-CoHCF-NSPs) composite for H2O2 sensing by using EDTA chelation strategy.
Collapse
Affiliation(s)
- Ramu Banavath
- Particulate Materials Laboratory, Department of Metallurgical Engineering & Materials Science, Indian Institute of Technology Bombay, Mumbai, India
| | - Rohit Srivastava
- Nano bios Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Parag Bhargava
- Particulate Materials Laboratory, Department of Metallurgical Engineering & Materials Science, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
6
|
Wang Z, Zhao H, Gao Q, Chen K, Lan M. Facile synthesis of ultrathin two-dimensional graphene-like CeO 2-TiO 2 mesoporous nanosheet loaded with Ag nanoparticles for non-enzymatic electrochemical detection of superoxide anions in HepG2 cells. Biosens Bioelectron 2021; 184:113236. [PMID: 33872979 DOI: 10.1016/j.bios.2021.113236] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/16/2021] [Accepted: 04/06/2021] [Indexed: 01/10/2023]
Abstract
Here we presented a new facile strategy to fabricate ultrathin two-dimensional (2D) metal oxide nanosheets, by using polydopamine-coated graphene (rGO@PDA) as a template under simply wet-chemical conditions. Based on the strategy, graphene-like CeO2-TiO2 mesoporous nanosheet (MNS-CeO2-TiO2) was prepared and was loaded with dispersive Ag nanoparticles (AgNPs) to obtain effective electrocatalysts (denoted as Ag/MNS-CeO2-TiO2) for electrochemical detection of superoxide anion (O2•-). Characterizations demonstrated that MNS-CeO2-TiO2 exhibited ultrathin thickness, larger specific surface area, and pore volume in comparison with its bulk counterpart. The above properties of MNS-CeO2-TiO2 shorten electron transmission distance, promotes mass transfer, and is conducive to the dispersion of post-modified AgNPs. Therefore, the recommended Ag/MNS-CeO2-TiO2 sensors (denoted as Ag/MNS-CeO2-TiO2/SPCE) exhibited satisfactory properties, including the sensitivity of 737.1 μA cm-2 mM-1, the detection limit of 0.0879 μM (S/N = 3), and good selectivity. Meanwhile, the sensors also successfully realized in the online monitoring of O2•- released from HepG2 cells, meaning the prepared sensors had practical application potential towards the analysis of O2•- in biological samples.
Collapse
Affiliation(s)
- Zhenxing Wang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Hongli Zhao
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
| | - Qianmei Gao
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Kaicha Chen
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Minbo Lan
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China; Research Center of Analysis and Test, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
| |
Collapse
|
7
|
A novel low cost nonenzymatic hydrogen peroxide sensor based on CoFe2O4/CNTs nanocomposite modified electrode. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114504] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
8
|
Li Y, Tang L, Deng D, He H, Yan X, Wang J, Luo L. Hetero-structured MnO-Mn 3O 4@rGO composites: Synthesis and nonenzymatic detection of H 2O 2. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111443. [PMID: 33255035 DOI: 10.1016/j.msec.2020.111443] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 08/10/2020] [Accepted: 08/20/2020] [Indexed: 01/14/2023]
Abstract
The construction of metal-oxide heterojunction architecture has greatly widened applications in the fields of optoelectronics, energy conversions and electrochemical sensors. In this study, olive-like hetero-structured MnO-Mn3O4 microparticles wrapped by reduced graphene oxide (MnO-Mn3O4@rGO) were synthesized through a facile solvothermal-calcination treatment. The morphology and structure of MnO-Mn3O4@rGO were characterized by scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, and X-ray diffraction. The as-synthesized MnO-Mn3O4@rGO exhibited prominent catalyzing effect on the electroreduction of H2O2, due to the combination of good electrical conductivity of rGO and the synergistic effect of MnO and Mn3O4. The MnO-Mn3O4@rGO modified glassy carbon electrode provided a wide linear response from 0.004 to 17 mM, a low detection limit of 0.1 μM, and high sensitivity of 274.15 μA mM-1 cm-2. The proposed sensor displayed noticeable selectivity and long-term stability. In addition, the biosensor has been successfully applied for detecting H2O2 in tomato sauce with good recovery, revealing its promising potential applications for practical electrochemical sensors.
Collapse
Affiliation(s)
- Yuanyuan Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China; College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Li Tang
- College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Dongmei Deng
- College of Sciences, Shanghai University, Shanghai 200444, PR China.
| | - Haibo He
- College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Xiaoxia Yan
- College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Jinhua Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China.
| | - Liqiang Luo
- College of Sciences, Shanghai University, Shanghai 200444, PR China.
| |
Collapse
|
9
|
Balasubramanian P, He SB, Jansirani A, Deng HH, Peng HP, Xia XH, Chen W. Oxygen vacancy confined nickel cobaltite nanostructures as an excellent interface for the enzyme-free electrochemical sensing of extracellular H2O2 secreted from live cells. NEW J CHEM 2020. [DOI: 10.1039/d0nj03281f] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Oxygen vacancy (OV) manufacturing is an effective way to boost the efficiency of a catalyst; therefore, the development of OV-rich catalysts has attracted substantial research interest.
Collapse
Affiliation(s)
- Paramasivam Balasubramanian
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province
- Department of Pharmaceutical Analysis
- Fujian Medical University
- Fuzhou 350004
- China
| | - Shao-Bin He
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province
- Department of Pharmaceutical Analysis
- Fujian Medical University
- Fuzhou 350004
- China
| | - Arumugam Jansirani
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province
- Department of Pharmaceutical Analysis
- Fujian Medical University
- Fuzhou 350004
- China
| | - Hao-Hua Deng
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province
- Department of Pharmaceutical Analysis
- Fujian Medical University
- Fuzhou 350004
- China
| | - Hua-Ping Peng
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province
- Department of Pharmaceutical Analysis
- Fujian Medical University
- Fuzhou 350004
- China
| | - Xing-Hua Xia
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
- China
| | - Wei Chen
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province
- Department of Pharmaceutical Analysis
- Fujian Medical University
- Fuzhou 350004
- China
| |
Collapse
|
10
|
Mondal R, Sarkar K, Dey S, Majumdar D, Bhattacharya SK, Sen P, Kumar S. Magnetic, Pseudocapacitive, and H 2O 2-Electrosensing Properties of Self-Assembled Superparamagnetic Co 0.3Zn 0.7Fe 2O 4 with Enhanced Saturation Magnetization. ACS OMEGA 2019; 4:12632-12646. [PMID: 31460384 PMCID: PMC6682044 DOI: 10.1021/acsomega.9b01362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 07/11/2019] [Indexed: 06/10/2023]
Abstract
The present work explores the structural, microstructural, optical, magnetic, and hyperfine properties of Co0.3Zn0.7Fe2O4 microspheres, which have been synthesized by a novel template-free solvothermal method. Powder X-ray diffraction, electron microscopic, and Fourier transform infrared spectroscopic techniques were employed to thoroughly investigate the structural and microstructural properties of Co0.3Zn0.7Fe2O4 microspheres. The results revealed that the microspheres (average diameter ∼121 nm) have been formed by self-assembly of nanoparticles with an average particle size of ∼12 nm. UV-vis diffuse reflectance spectroscopic and photoluminescence studies have been performed to study the optical properties of the sample. The studies indicate that Co0.3Zn0.7Fe2O4 microspheres exhibit a lower band gap value and enhanced PL intensity compared to their nanoparticle counterpart. The outcomes of dc magnetic measurement and Mössbauer spectroscopic study confirm that the sample is ferrimagnetic in nature. The values of saturation magnetization are 76 and 116 emu g-1 at 300 and 5 K, respectively, which are substantially larger than its nanosized counterpart. The infield Mössbauer spectroscopic study and Rietveld analysis of the PXRD pattern reveal that Fe3+ ions have migrated from [B] to (A) sites resulting in the cation distribution: (Zn2+ 0.46Fe3+ 0.54)A[Zn2+ 0.24Co2+ 0.3Fe3+ 1.46]BO4. Comparison of electrochemical performance of the Co0.3Zn0.7Fe2O4 microspheres to that of the Co0.3Zn0.7Fe2O4 nanoparticles reveals that the former displays greater specific capacitance (149.13 F g-1) than the latter (80.06 F g-1) due to its self-assembled porous structure. Moreover, it was found that Co0.3Zn0.7Fe2O4 microspheres possess a better electrochemical response toward H2O2 sensing than Co0.3Zn0.7Fe2O4 nanoparticles in a wide linear range.
Collapse
Affiliation(s)
- Rituparna Mondal
- Department
of Physics and Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Koyel Sarkar
- Department
of Physics and Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Subhrajyoti Dey
- Department
of Physics and Department of Chemistry, Jadavpur University, Kolkata 700032, India
- Swami
Vivekananda Institute of Science & Technology, Sonarpur, Kolkata 700145, India
| | - Dipanwita Majumdar
- Department
of Chemistry, Chandernagore College, Chandannagar, West Bengal 712136, India
| | | | - Pintu Sen
- Variable
Energy Cyclotron Centre, HBNI, 1/AF Bidhannagar, Kolkata 700064, India
| | - Sanjay Kumar
- Department
of Physics and Department of Chemistry, Jadavpur University, Kolkata 700032, India
| |
Collapse
|
11
|
Simultaneous detection of iodide and mercuric ions by nitrogen-sulfur co-doped graphene quantum dots based on flow injection “turn off-on” chemiluminescence analysis system. Microchem J 2019. [DOI: 10.1016/j.microc.2019.04.039] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Annalakshmi M, Balasubramanian P, Chen SM, Chen TW. Enzyme-free electrocatalytic sensing of hydrogen peroxide using a glassy carbon electrode modified with cobalt nanoparticle-decorated tungsten carbide. Mikrochim Acta 2019; 186:265. [PMID: 30929084 DOI: 10.1007/s00604-019-3377-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 03/21/2019] [Indexed: 12/30/2022]
Abstract
An efficient non-enzymatic electrochemical sensor for hydrogen peroxide (H2O2) was constructed by modifying a glassy carbon electrode (GCE) with a nanocomposite prepared from cobalt nanoparticle (CoNP) and tungsten carbide (WC). The nanocomposite was prepared at low temperature through a simple technique. Its crystal structure, surface morphology and elemental composition were investigated via X-ray diffraction, transmission electron microscopy and X-ray photoelectron spectroscopy. The results showed the composite to be uniformly distributed and that the CoNP are well attached to the surface of the flake-like WC. Electrochemical studies show that the modified GCE has an improved electrocatalytic activity toward the reduction of H2O2. H2O2 can be selectively detected, best at a working voltage of -0.4 V (vs. Ag/AgCl), with a 6.3 nM detection limit over the wide linear range from 50 nM to 1.0 mM. This surpasses previously reported non-enzymatic H2O2 sensors. The sensor was successfully applied to the determination of H2O2 in contact lens solutions and in spiked serum samples. Graphical abstract Schematic presentation of a method for electrochemical sensing of hydrogen peroxide in real samples using cobalt nanoparticle decorated tungsten carbide (WCC) modified glassy carbon electrode (GCE).
Collapse
Affiliation(s)
- Muthaiah Annalakshmi
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, 106, Taiwan, Republic of China
| | - Paramasivam Balasubramanian
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, 106, Taiwan, Republic of China
| | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, 106, Taiwan, Republic of China.
| | - Tse-Wei Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, 106, Taiwan, Republic of China.,Research and Development Center for Smart Textile Technology, National Taipei University of Technology, No.1, Section 3, Zhongxiao East Road, Taipei, 106, Taiwan, Republic of China
| |
Collapse
|
13
|
Balasubramanian P, Annalakshmi M, Chen SM, Sathesh T, Peng TK, Balamurugan TST. Facile Solvothermal Preparation of Mn 2CuO 4 Microspheres: Excellent Electrocatalyst for Real-Time Detection of H 2O 2 Released from Live Cells. ACS APPLIED MATERIALS & INTERFACES 2018; 10:43543-43551. [PMID: 30495924 DOI: 10.1021/acsami.8b18510] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Hydrogen peroxide (H2O2) is an eminent biomarker in pathogenesis; a selective, highly sensitive real-time detection of H2O2 released from live cells has drawn a significant research interest in bioanalytical chemistry. Binary transition-metal oxides (BTMOs) displayed a recognizable benefit in enhancing the sensitivity of H2O2 detection; although the reported BTMO-based H2O2 sensor's detection limit is still insufficient, it is not appropriate for in situ profiling of trace amounts of cellular H2O2. In this paper, we describe an efficient, reliable electrochemical biosensor based on Mn2CuO4 (MCO) microspheres to assay cellular H2O2. The Mn2CuO4 microspheres were prepared through a superficial solvothermal method. It is obvious from impedance studies, introduction of manganese into copper oxide lattice significantly improved the ionic conductivity, which is beneficial for the electrochemical sensing process. Thanks to the distinct microsphere structure and excellent synergy, MCO-modified electrode exhibited excellent nonenzymatic electrochemical behavior toward H2O2 sensing. The MCO-modified electrode delivered a broad working range (36 nM to 9.3 mM) and an appreciable detection limit (13 nM), with high selectivity toward H2O2. To prove its practicality, the developed sensor was applied in the detection of cellular H2O2 released by RAW 264.7 cells in presence of CHAPS. These results label the possible appliance of the sensor in clinical analysis and pathophysiology. Thus, BTMOs are evolving as a promising candidate in designing catalytic matrices for biosensor applications.
Collapse
|
14
|
Hassan M, Jiang Y, Bo X, Zhou M. Sensitive nonenzymatic detection of hydrogen peroxide at nitrogen-doped graphene supported-CoFe nanoparticles. Talanta 2018; 188:339-348. [DOI: 10.1016/j.talanta.2018.06.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/25/2018] [Accepted: 06/01/2018] [Indexed: 12/22/2022]
|
15
|
Guler M, Turkoglu V, Kivrak A, Karahan F. A novel nonenzymatic hydrogen peroxide amperometric sensor based on Pd@CeO 2-NH 2 nanocomposites modified glassy carbon electrode. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 90:454-460. [PMID: 29853112 DOI: 10.1016/j.msec.2018.04.084] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 03/13/2018] [Accepted: 04/28/2018] [Indexed: 01/13/2023]
Abstract
Herein, (3-aminopropyl)triethoxysilane functionalized cerium (IV) oxide (CeO2-NH2) supported Pd nanoparticles were synthesized. The nanocomposites were characterized using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and High-resolution transmission electron microscopy (HRTEM). The Pd@CeO2-NH2 showed better electrocatalytic response to the reduction of H2O2 than CeO2-NH2. The fabricated sensor exhibited two linear responses to the reduction of H2O2. The first one was from 0.001 to 3.276 mM with 0.47 μM of a limit of detection (LOD) (S/N = 3) and excellent sensitivity of 440.72 μA mM-1 cm-2 and the second one was from 3.276 to 17.500 mM with the sensitivity of 852.65 μA mM-1 cm-2 in the optimum conductions. Also, the sensor exhibited 91% of electrocatalytic activity toward H2O2 after having been used for 30 days and the reproducibility was also satisfactory. The sensor response to H2O2 was not affected by ascorbic acid, fructose, glycine, dopamine, arginine, mannose, glucose, uric acid, Mg+2, Ca+2, and phenylalanine at the studied potential. Also, the fabricated sensor was used to determine H2O2 in milk samples. The results show that the constructed sensor can be a promising devise for the determination of H2O2 in real samples.
Collapse
Affiliation(s)
- Muhammet Guler
- Van Yuzuncu Yil University, Faculty of Science, Department of Chemistry, 65080 Van, Turkey.
| | - Vedat Turkoglu
- Van Yuzuncu Yil University, Faculty of Science, Department of Chemistry, 65080 Van, Turkey
| | - Arif Kivrak
- Van Yuzuncu Yil University, Faculty of Science, Department of Chemistry, 65080 Van, Turkey
| | - Fatih Karahan
- Van Yuzuncu Yil University, Institute of Science, Van, Turkey
| |
Collapse
|