1
|
Ruatpuia JVL, Halder G, Shi D, Halder S, Rokhum SL. Comparative life cycle cost analysis of bio-valorized magnetite nanocatalyst for biodiesel production: Modeling, optimization, kinetics and thermodynamic study. BIORESOURCE TECHNOLOGY 2024; 393:130160. [PMID: 38070578 DOI: 10.1016/j.biortech.2023.130160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/03/2023] [Accepted: 12/04/2023] [Indexed: 01/18/2024]
Abstract
An active, high surface area, recyclable, magnetic, basic, iron oxide-based nanocatalyst was developed from banana leaves waste and used for microwave-assisted transesterification of soybean oil to biodiesel. According to the Hammett indicator, the catalyst has a high total basicity of 15 < H < 18.4. After optimization through the response surface methodology, the reaction allows 96.5 % biodiesel yield in the presence of 24:1 methanol to soybean oil molar ratio, 6 wt% BLW@Fe3O4, 0.5 h at 65 °C. The magnetic nature of the catalyst improves reusability for up to 6 cycles. Thermodynamic analyses showed that transesterification of soybean oil to biodiesel is an endothermic reaction. Moreover, the catalyst has the potential to reduce biodiesel production costs by utilizing abundant biomass waste materials. The calculated cost for 1 kg of catalyst is $1.14, while the biodiesel's cost per kg produced in this work is merely $1.05, showing high commercial viability.
Collapse
Affiliation(s)
- Joseph V L Ruatpuia
- Department of Chemistry, National Institute of Technology Silchar, Silchar 788010, Assam, India
| | - Gopinath Halder
- Department of Chemical Engineering, National Institute of Technology Durgapur, Durgapur, India
| | - Da Shi
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Sudipta Halder
- Department of Mechanical Engineering, National Institute of Technology Silchar, Silchar 788010, Assam, India
| | | |
Collapse
|
2
|
Pourhajghanbar M, Arvand M, Habibi MF. Surface imprinting by using bi-functional monomers on spherical template magnetite for selective detection of levodopa in biological fluids. Talanta 2023; 254:124136. [PMID: 36462277 DOI: 10.1016/j.talanta.2022.124136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 11/27/2022]
Abstract
The present work introduces an innovative biosensing platform for greatly sensitive determination of levodopa medicine. Initially, spherical magnetic (SM) nanoparticles were prepared by hydrothermal fabrication approach and used as a pattern to make spherical magnetic molecular imprinted polymer (SMMIP). Afterward, levodopa-molecularly imprinted layer was grown on the surface of the spherical magnetic pattern by electropolymerization with dopamine and resorcinol as bi-functional monomers and levodopa as a template molecule, which enhanced the specific recognition of the sensing platform to levodopa. The presence of SM nanoparticles could not only accelerate the mass transfer, the electron transport rate, and improve specific surface area of the electrode but also facilitate the recognition of the polymer, in this way increasing the current response and improving the performance of the biosensor. The superior sensing efficiency of the presented biosensor was confirmed based on the low limit of detection of 10 nmol L-1 which represented two linear ranges from 0.5 to 200 μmol L-1 and 200-1000 μmol L-1 for levodopa. More importantly, the practicability of the biosensor was proved by detecting levodopa in tablet, blood serum and plasma, implying that the sensing platform was suitable for monitoring levodopa in actual biological fluid and medicine.
Collapse
Affiliation(s)
- Maedeh Pourhajghanbar
- Electroanalytical Chemistry Laboratory, Faculty of Chemistry, University of Guilan, Namjoo Street, P.O. Box: 1914-41335, Rasht, Iran
| | - Majid Arvand
- Electroanalytical Chemistry Laboratory, Faculty of Chemistry, University of Guilan, Namjoo Street, P.O. Box: 1914-41335, Rasht, Iran.
| | - Maryam Farahmand Habibi
- Electroanalytical Chemistry Laboratory, Faculty of Chemistry, University of Guilan, Namjoo Street, P.O. Box: 1914-41335, Rasht, Iran
| |
Collapse
|
3
|
Guari Y, Cahu M, Félix G, Sene S, Long J, Chopineau J, Devoisselle JM, Larionova J. Nanoheterostructures based on nanosized Prussian blue and its Analogues: Design, properties and applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214497] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
4
|
Ying S, Chen C, Wang J, Lu C, Liu T, Kong Y, Yi FY. Synthesis and Applications of Prussian Blue and Its Analogues as Electrochemical Sensors. Chempluschem 2021; 86:1608-1622. [PMID: 34907675 DOI: 10.1002/cplu.202100423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/15/2021] [Indexed: 12/23/2022]
Abstract
Prussian blue (PB) and its analogue (PBA) are a kind of representative cyanide-based coordination polymer. They have received enormous research interest and have shown promising applications in the electrochemical sensing field due to their excellent electrochemical activity and unique structural characteristics including open framework structure, high specific surface area, and adjustable metal active sites. In this review, we summarize the latest research progress of PB/PBA as an electrochemical sensor in detail from three aspects: fabrication strategy, synthesis method and electrochemical sensor application. For the fabrication strategy, we discussed different fabrication methods containing the combination of PBA and carbon materials, metal nanoparticles, polymers, etc., respectively, as well as their corresponding sensing mechanism for improving performance. We also presented the synthesis methods of PB/PBA materials in detail, such as: coprecipitation, hydrothermal and electrodeposition. In addition, the effects of different methods on the morphology, particle size and productivity of PB/PBA materials are also concluded. For the application of electrochemical sensors, the latest progress of such materials as electrochemical sensors for glucose, H2O2, toxic compounds, and biomolecules have been summarized. Finally, we conclude remaining challenges of PB/PBA-based materials as electrochemical sensors, and provide personal perspectives for future research in this field.
Collapse
Affiliation(s)
- Shuanglu Ying
- The School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| | - Chen Chen
- The School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| | - Jiang Wang
- The School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| | - Chunxiao Lu
- The School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| | - Tian Liu
- The School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| | - Yuxuan Kong
- The School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| | - Fei-Yan Yi
- The School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| |
Collapse
|
5
|
Mourdikoudis S, Kostopoulou A, LaGrow AP. Magnetic Nanoparticle Composites: Synergistic Effects and Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2004951. [PMID: 34194936 PMCID: PMC8224446 DOI: 10.1002/advs.202004951] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Indexed: 05/17/2023]
Abstract
Composite materials are made from two or more constituent materials with distinct physical or chemical properties that, when combined, produce a material with characteristics which are at least to some degree different from its individual components. Nanocomposite materials are composed of different materials of which at least one has nanoscale dimensions. Common types of nanocomposites consist of a combination of two different elements, with a nanoparticle that is linked to, or surrounded by, another organic or inorganic material, for example in a core-shell or heterostructure configuration. A general family of nanoparticle composites concerns the coating of a nanoscale material by a polymer, SiO2 or carbon. Other materials, such as graphene or graphene oxide (GO), are used as supports forming composites when nanoscale materials are deposited onto them. In this Review we focus on magnetic nanocomposites, describing their synthetic methods, physical properties and applications. Several types of nanocomposites are presented, according to their composition, morphology or surface functionalization. Their applications are largely due to the synergistic effects that appear thanks to the co-existence of two different materials and to their interface, resulting in properties often better than those of their single-phase components. Applications discussed concern magnetically separable catalysts, water treatment, diagnostics-sensing and biomedicine.
Collapse
Affiliation(s)
- Stefanos Mourdikoudis
- Biophysics GroupDepartment of Physics and AstronomyUniversity College LondonLondonWC1E 6BTUK
- UCL Healthcare Biomagnetic and Nanomaterials Laboratories21 Albemarle StreetLondonW1S 4BSUK
| | - Athanasia Kostopoulou
- Institute of Electronic Structure and Laser (IESL)Foundation for Research and Technology‐Hellas (FORTH)100 Nikolaou PlastiraHeraklionCrete70013Greece
| | - Alec P. LaGrow
- International Iberian Nanotechnology LaboratoryBraga4715‐330Portugal
| |
Collapse
|
6
|
Tan L, Li QY, Li YJ, Ma RR, He JY, Jiang ZF, Yang LL, Wang CZ, Luo L, Zhang QH, Yuan CS. Specific adsorption and determination of aspartame in soft drinks with a zein magnetic molecularly imprinted modified MGCE sensor. RSC Adv 2021; 11:13486-13496. [PMID: 35423884 PMCID: PMC8697574 DOI: 10.1039/d0ra10824c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 03/31/2021] [Indexed: 11/21/2022] Open
Abstract
Schematic representation of the synthesis procedure of ZDM-MIPs.
Collapse
|
7
|
Papavasileiou AV, Panagiotopoulos I, Prodromidis MI. All-screen-printed graphite sensors integrating permanent bonded magnets. Fabrication, characterization and analytical utility. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
8
|
Srinidhi G, Sudalaimani S, Giribabu K, Basha SJS, Suresh C. Amperometric determination of hydrazine using a CuS-ordered mesoporous carbon electrode. Mikrochim Acta 2020; 187:359. [PMID: 32468290 DOI: 10.1007/s00604-020-04325-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 05/14/2020] [Indexed: 02/08/2023]
Abstract
An electrocatalytic sensor for hydrazine using copper sulfide-ordered mesoporous carbon (CuS-OMC) is described. A facile solvothermal synthetic strategy was adopted for CuS-OMC and the ordered mesoporous carbon was obtained through nanocasting method. The synthesized CuS-OMC was characterized using microscopic and spectrochemical techniques. CuS-OMC was immobilized on GCE and evaluated for its electrochemical sensing of hydrazine using cyclic voltammetry and amperometry. CuS-OMC modified GCE exhibited better hydrazine sensing at an optimized pH 7.4 in terms of oxidation potential and current compared with that of GCE, CuS, and OMC. The observed sensing performance of CuS-OMC was attributed to the presence of Cu (I/II) in CuS dispersed in OMC which acts as an electrocatalytic center for the sensing of hydrazine. Amperometry under optimized experimental condition with an applied potential of 270 mV was employed to obtain a linear calibration plot in the range 0.25 to 40 μM (R2 = 0.9908) with a detection limit of 0.10 μM with a sensitivity of 0.915 (± 0.02) μA cm-2 μM-1. Real sample analyses were carried out by spiking of hydrazine in different water samples and the recoveries were in the range of 97 ± 2.1% (n = 3). Graphical abstract.
Collapse
Affiliation(s)
- G Srinidhi
- Department of Nanoscience and Nanotechnology, Anna University Regional Campus, Coimbatore, Tamil Nadu, 641 046, India
| | - S Sudalaimani
- Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute, Karaikudi, Tamil Nadu, 630 003, India
| | - K Giribabu
- Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute, Karaikudi, Tamil Nadu, 630 003, India.
| | - S J Sardhar Basha
- Department of Nanoscience and Nanotechnology, Anna University Regional Campus, Coimbatore, Tamil Nadu, 641 046, India
| | - C Suresh
- Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute, Karaikudi, Tamil Nadu, 630 003, India.
| |
Collapse
|
9
|
One-step electroreduction preparation of multilayered reduced graphene oxide/gold-palladium nanohybrid as a proficient electrocatalyst for development of sensitive hydrazine sensor. J Colloid Interface Sci 2020; 566:473-484. [DOI: 10.1016/j.jcis.2020.01.105] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/18/2020] [Accepted: 01/28/2020] [Indexed: 12/25/2022]
|
10
|
Amperometric sensing of hydrazine by using single gold nanopore electrodes filled with Prussian Blue and coated with polypyrrole and carbon dots. Mikrochim Acta 2019; 186:350. [PMID: 31093761 DOI: 10.1007/s00604-019-3486-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 05/05/2019] [Indexed: 01/26/2023]
Abstract
A nanoprobe for hydrazine sensing is described that is making use of a single gold nanopore electrode (SAuNPEs) that was modified by electro-deposition of Prussian Blue (PB) and then coated with a thin membrane of polypyrrole and carbon dots in order to enhance stability and catalytic activity. Best operated at a low potential of 0.3 V vs. Ag/AgCl, the nanosensor display good electrocatalytic activity towards the oxidation of hydrazine, with a linear response in the 0.5-80 μM hydrazine concentration range and a 0.18 μM detection limit (at S/N = 3). The method was applied to the determination of hydrazine in human urine. Graphical abstract Schematic presentation of the electrocatalytic oxidation of hydrazine using a single gold nanopore electrode that was modified by electro-deposition of Prussian Blue and then coated with a thin membrane of polypyrrole and carbon dots.
Collapse
|
11
|
Amperometric sensing of hydrazine in environmental and biological samples by using CeO 2-encapsulated gold nanoparticles on reduced graphene oxide. Mikrochim Acta 2019; 186:46. [PMID: 30610467 DOI: 10.1007/s00604-018-3144-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 12/02/2018] [Indexed: 02/07/2023]
Abstract
CeO2-encapsulated gold nanoparticles (AuNPs) were anchored to reduced graphene oxide (RGO/Au@CeO2) by an interfacial auto-redox reaction in a solution containing tetrachloroauric acid and Ce(III) on a solid support. The resulting material was placed on a glassy carbon electrode (GCE) and used as an electrochemical hydrazine sensor at trace levels. The electrocatalytic activity of the modified GCE towards hydrazine oxidation was significantly enhanced as compared to only RGO/CeO2, or CeO2-encapsulated AuNPs, or AuNPs loaded on CeO2 modified with RGO. This enhancement is attributed to the excellent conductivity and large surface area of RGO, and the strong interaction between the reversible Ce4+/Ce3+ and Auδ+/Au0 redox systems. The kinetics of the hydrazine oxidation was studied by electrochemical methods. The sensor, best operated at a peak voltage of 0.35 V (vs. saturated calomel electrode), had a wide linear range (that extends from 10 nM to 3 mM), a low detection limit (3.0 nM), good selectivity and good stability. It was successfully employed for the monitoring of hydrazine in spiked environmental water samples and to in-vitro tracking of hydrazine in cells with respect to its potential cytotoxicity. Graphical abstract CeO2-encapsulated gold nanoparticles anchored on reduced graphene oxide with the strong interaction between the reversible Ce4+/Ce3+ and Auδ+/Au0 reductions can be used for sensitive detection of hydrazine with detection limit of 3 nM and good selectivity in environmental and biological samples.
Collapse
|
12
|
In-situ growth of iron-based metal-organic framework crystal on ordered mesoporous carbon for efficient electrocatalysis of p -nitrotoluene and hydrazine. Anal Chim Acta 2018; 1024:73-83. [DOI: 10.1016/j.aca.2018.03.064] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/21/2018] [Accepted: 03/27/2018] [Indexed: 11/17/2022]
|
13
|
Sakthivel M, Ramaraj S, Chen SM, Dinesh B, Chen KH. A highly conducting flower like Au nanoparticles interconnected functionalized CNFs and its enhanced electrocatalytic activity towards hydrazine through direct electron transfer. J Taiwan Inst Chem Eng 2018. [DOI: 10.1016/j.jtice.2017.11.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|