1
|
Gu X, Li M, Yan Y, Miao J. Construction of a fluorescence switch sensor of Mn doped AgInS 2 quantum dots for the detection of Fe (III) and ascorbic acid. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 321:124709. [PMID: 38945008 DOI: 10.1016/j.saa.2024.124709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 06/22/2024] [Accepted: 06/24/2024] [Indexed: 07/02/2024]
Abstract
The convenience and high efficiency of recently developed I-III-VI group AgInS2 (AIS) fluorescence sensors have garnered considerable attention. In this study, glutathione (GSH) was employed as a stabilizer to synthesize Mn doped AgInS2 quantum dots (Mn-AIS QDs) via a one-step hydrothermal method at a lower temperature. The resultant samples displayed favorable photoluminescent characteristics and excellent water dispersibility. The photoluminescence of Mn-AIS QDs is quenched by Fe (III) via a photo-induced electron transfer mechanism (PET), and this quenching can be reversed by ascorbic acid (AA) as a result of the redox reaction between the Mn-AIS-Fe (III) complex and AA. Utilizing the on-off-on fluorescence principle, a fluorescence switch sensor based on Mn-AIS QDs was developed for the detection of Fe (III) and AA. The linear range for the detection of Fe (III) using the Mn-AIS QDs sensor was established to be 0.03-120 µM, with a detection limit (LOD) of 0.16 nM. For the detection of AA within the Mn-AIS-Fe (III) system, the linear range spanned from 0.05 to 180 µM, with a LOD of 0.031 µM. Both Mn-AIS and Mn-AIS-Fe (III) demonstrated robust anti-interference properties, facilitating the accurate detection of Fe (III) in tap water and AA in vitamin C tablets. This approach is notable for its simplicity, cost-effectiveness, and considerable potential for application in the creation of innovative biological and environmental sensors.
Collapse
Affiliation(s)
- Xinyue Gu
- College of Pharmacy, Dali University, Dali 671000, Yunnan, China
| | - Minghua Li
- College of Pharmacy, Dali University, Dali 671000, Yunnan, China
| | - Ya Yan
- College of Pharmacy, Dali University, Dali 671000, Yunnan, China; Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China.
| | - Julian Miao
- College of Pharmacy, Dali University, Dali 671000, Yunnan, China.
| |
Collapse
|
2
|
Fu X, Tian X, Lin J, Wang Q, Gu L, Wang Z, Chi M, Yu B, Feng Z, Liu W, Zhang L, Li C, Zhao G. Zeolitic Imidazolate Framework-8 Offers an Anti-Inflammatory and Antifungal Method in the Treatment of Aspergillus Fungal Keratitis in vitro and in vivo. Int J Nanomedicine 2024; 19:11163-11179. [PMID: 39502641 PMCID: PMC11537184 DOI: 10.2147/ijn.s480800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/26/2024] [Indexed: 11/08/2024] Open
Abstract
Background Fungal keratitis is a serious blinding eye disease. Traditional drugs used to treat fungal keratitis commonly have the disadvantages of low bioavailability, poor dispersion, and limited permeability. Purpose To develop a new method for the treatment of fungal keratitis with improved bioavailability, dispersion, and permeability. Methods Zeolitic Imidazolate Framework-8 (ZIF-8) was formed by zinc ions and 2-methylimidazole linked by coordination bonds and characterized by Scanning electron microscopy (SEM), X-ray diffraction (XRD), and Zeta potential. The safety of ZIF-8 on HCECs and RAW 264.7 cells was detected by Cell Counting Kit-8 (CCK-8). Safety evaluation of ZIF-8 on mice corneal epithelium was conducted using the Draize corneal toxicity test. The effects of ZIF-8 on fungal growth, biofilm formation, and hyphae structure were detected by Minimal inhibit concentration (MIC), crystal violet staining, Propidium Iodide (PI) testing, and calcofluor white staining. The anti-inflammatory effects of ZIF-8 on RAW 246.7 cells were evaluated by Quantitative Real-Time PCR Experiments (qPCR) and Enzyme-linked immunosorbent assay (ELISA). Clinical score, Colony-Forming Units (CFU), Hematoxylin-eosin (HE) staining, and immunofluorescence were conducted to verify the therapeutic effect of ZIF-8 on C57BL/6 female mice with fungal keratitis. Results In vitro, ZIF-8 showed outstanding antifungal effects, including inhibiting the growth of Aspergillus fumigatus over 90% at 64 μg/mL, restraining the formation of biofilm, and destroying cell membranes. In vivo, treatment with ZIF-8 reduced corneal fungal load and mitigated neutrophil infiltration in fungal keratitis, which effectively reduced the severity of keratitis in mice and alleviated the infiltration of inflammatory factors in the mouse cornea. In addition, ZIF-8 reduces the inflammatory response by downregulating the expression of pro-inflammatory cytokines TNF-α, IL-6, and IL-1β after Aspergillus fumigatus infection in vivo and in vitro. Conclusion ZIF-8 has a significant anti-inflammatory and antifungal effect, which provides a new solution for the treatment of fungal keratitis.
Collapse
Affiliation(s)
- Xueyun Fu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Xue Tian
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Jing Lin
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Qian Wang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Lingwen Gu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Ziyi Wang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Menghui Chi
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Bing Yu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Zhuhui Feng
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Wenyao Liu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Lina Zhang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Cui Li
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Guiqiu Zhao
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| |
Collapse
|
3
|
Gao YY, He J, Li XH, Li JH, Wu H, Wen T, Li J, Hao GF, Yoon J. Fluorescent chemosensors facilitate the visualization of plant health and their living environment in sustainable agriculture. Chem Soc Rev 2024; 53:6992-7090. [PMID: 38841828 DOI: 10.1039/d3cs00504f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Globally, 91% of plant production encounters diverse environmental stresses that adversely affect their growth, leading to severe yield losses of 50-60%. In this case, monitoring the connection between the environment and plant health can balance population demands with environmental protection and resource distribution. Fluorescent chemosensors have shown great progress in monitoring the health and environment of plants due to their high sensitivity and biocompatibility. However, to date, no comprehensive analysis and systematic summary of fluorescent chemosensors used in monitoring the correlation between plant health and their environment have been reported. Thus, herein, we summarize the current fluorescent chemosensors ranging from their design strategies to applications in monitoring plant-environment interaction processes. First, we highlight the types of fluorescent chemosensors with design strategies to resolve the bottlenecks encountered in monitoring the health and living environment of plants. In addition, the applications of fluorescent small-molecule, nano and supramolecular chemosensors in the visualization of the health and living environment of plants are discussed. Finally, the major challenges and perspectives in this field are presented. This work will provide guidance for the design of efficient fluorescent chemosensors to monitor plant health, and then promote sustainable agricultural development.
Collapse
Affiliation(s)
- Yang-Yang Gao
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China.
| | - Jie He
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China.
| | - Xiao-Hong Li
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China.
| | - Jian-Hong Li
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China.
| | - Hong Wu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China.
| | - Ting Wen
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China.
| | - Jun Li
- College of Chemistry, Huazhong Agricultural University, Wuhan 430070, China.
| | - Ge-Fei Hao
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China.
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 120-750, Korea.
| |
Collapse
|
4
|
K Algethami F, Abdelhamid HN. Heteroatoms-doped carbon dots as dual probes for heavy metal detection. Talanta 2024; 273:125893. [PMID: 38508123 DOI: 10.1016/j.talanta.2024.125893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/17/2024] [Accepted: 03/07/2024] [Indexed: 03/22/2024]
Abstract
The utilization of l-cysteine in hydrothermal synthesis allows for the manufacture of carbon dots (CDs) that are doped with heteroatoms including oxygen, nitrogen, and sulfur (N, S, O-doped CDs). CDs have a particle size ranging from 1 to 3 nm, with an average particle size of 2.5 nm. N, S, and O-doped CDs display a blue fluorescence emission at a wavelength of 425 nm. It shows a reliance on the specific excitation wavelength between 320 and 500 nm. It has a selective quenching effect specifically with copper (Cu2+) ions when exposed to interactions with heavy metal ions, as compared to other metal ions. The assay has a limit of detection (LOD) of 2 μM and exhibits a linear correlation within the concentration range of 10-33.3 μM. The fluorescence mechanism was elucidated by employing various analytical techniques, such as transmission electron microscopy (TEM), high-resolution TEM , UV-Vis spectroscopy, zeta potential analysis, and conductometry. An analysis of the data reveals that Cu2+ ions exhibit a strong attraction to the external surface of N, S, and O-doped CDs, leading to the formation of aggregates. N, S, and O-doped CDs can be also used as probes for electrochemical investigations utilizing cyclic voltammetry (CV), linear sweep voltammetry (LSV), chronoamperometry (CA), and electrochemical impedance spectroscopy (EIS) to produce Nyquist and Bode plots. The electrochemical results offer substantiation for the interaction between Cu2+ ions and N, S, and O-doped CDs. Zero-dimensional carbon nanomaterials, i.e. CDs, can improve the detection of heavy metals using optical and electrochemical methods.
Collapse
Affiliation(s)
- Faisal K Algethami
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11432, Saudi Arabia
| | - Hani Nasser Abdelhamid
- Department of Chemistry, Faculty of Science, Assiut University, Assiut, 71575, Egypt; Egyptian-Russian University, Badr City, Cairo, 11829, Egypt.
| |
Collapse
|
5
|
Gong Y, Fu Y, Lou D. A Eu-MOF-Based Fluorescent Sensing Probe for the Detection of Tryptophan and Cu 2+ in Aqueous Solutions. J Fluoresc 2024:10.1007/s10895-024-03633-9. [PMID: 38416282 DOI: 10.1007/s10895-024-03633-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/22/2024] [Indexed: 02/29/2024]
Abstract
Abnormal tryptophan (Trp) metabolism can be used as an important indicator of chronic hepatitis, paranoia, Parkinson's disease and other diseases. Deficiency or excessive accumulation of Cu2+ can cause diseases such as Wilson's disease and Alzheimer's disease. Eu-based metal-organic framework (Eu-MOF) was successfully prepared for fluorescence sensing of Trp and Cu2+ in an aqueous solution (pH = 7.4). Eu-MOF showed high selectivity and sensitivity for Trp and Cu2+ with detection limits of 0.22 µM and 0.09 µM and Ksv of 6.17 × 103 M- 1 and 2.37 × 104 M- 1 respectively. Trp and Cu2+ had overlapped UV absorption spectra with that of Eu-MOF and competed for the excitation light source. Trp also attenuated the antennae effect of organic ligands on Eu-MOF, thus quenching the red fluorescence of Eu-MOF. This study provides insights into the application of MOFs in bioanalysis and diagnostics.
Collapse
Affiliation(s)
- Yafei Gong
- Department of Analytical Chemistry, Jilin Institute of Chemical Technology, Jilin, 132022, P.R. China
| | - Yan Fu
- Department of Analytical Chemistry, Jilin Institute of Chemical Technology, Jilin, 132022, P.R. China
| | - Dawei Lou
- Department of Analytical Chemistry, Jilin Institute of Chemical Technology, Jilin, 132022, P.R. China.
| |
Collapse
|
6
|
Yuan C, Qiao Y, Zhang Z, Chai Y, Zhang X, Dong X, Zhao Y. Studying Fluorescence Sensing of Acetone and Tryptophan and Antibacterial Properties Based on Zinc-Based Triple Interpenetrating Metal-Organic Skeletons. Molecules 2023; 28:7315. [PMID: 37959734 PMCID: PMC10648533 DOI: 10.3390/molecules28217315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/26/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Two triple interpenetrating Zn(II)-based MOFs were studied in this paper. Named [Zn6(1,4-bpeb)4(IPA)6(H2O)]n (MOF-1) and {[Zn3(1,4-bpeb)1.5(DDBA)3]n·2DMF} (MOF-2), {1,4-bpeb = 1,4-bis [2-(4-pyridy1) ethenyl]benze, IPA = Isophthalic acid, DDBA = 3,3'-Azodibenzoic acid}, they were synthesized by the hydrothermal method and were characterized and stability tested. The results showed that MOF-1 had good acid-base stability and solvent stability. Furthermore, MOF-1 had excellent green fluorescence and with different phenomena in different solvents, which was almost completely quenched in acetone. Based on this phenomenon, an acetone sensing test was carried out, where the detection limit of acetone was calculated to be 0.00365% (volume ratio). Excitingly, the MOF-1 could also be used as a proportional fluorescent probe to specifically detect tryptophan, with a calculated detection limit of 34.84 μM. Furthermore, the mechanism was explained through energy transfer and competitive absorption (fluorescence resonance energy transfer (FRET)) and internal filtration effect (IFE). For antibacterial purposes, the minimum inhibitory concentrations of MOF-1 against Escherichia coli and Staphylococcus aureus were 19.52 µg/mL and 39.06 µg/mL, respectively, and the minimum inhibitory concentrations of MOF-2 against Escherichia coli and Staphylococcus aureus were 68.36 µg/mL and 136.72 µg/mL, respectively.
Collapse
Affiliation(s)
- Congying Yuan
- School of Life Science, Luoyang Normal University, 6 Jiqing Road, Luoyang 471934, China; (C.Y.); (X.Z.); (X.D.)
| | - Yidan Qiao
- Henan Province Function-Oriented Porous Materials Key Laboratory, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China; (Y.Q.); (Z.Z.); (Y.C.)
- College of Materials and Chemical Engineering, China Three Gorges University, No. 8, Daxue Road, Yichang 443002, China
| | - Zhaolei Zhang
- Henan Province Function-Oriented Porous Materials Key Laboratory, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China; (Y.Q.); (Z.Z.); (Y.C.)
| | - Yinhang Chai
- Henan Province Function-Oriented Porous Materials Key Laboratory, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China; (Y.Q.); (Z.Z.); (Y.C.)
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaojun Zhang
- School of Life Science, Luoyang Normal University, 6 Jiqing Road, Luoyang 471934, China; (C.Y.); (X.Z.); (X.D.)
| | - Xiaojing Dong
- School of Life Science, Luoyang Normal University, 6 Jiqing Road, Luoyang 471934, China; (C.Y.); (X.Z.); (X.D.)
| | - Ying Zhao
- Henan Province Function-Oriented Porous Materials Key Laboratory, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China; (Y.Q.); (Z.Z.); (Y.C.)
| |
Collapse
|
7
|
Abdelhamid HN. An introductory review on advanced multifunctional materials. Heliyon 2023; 9:e18060. [PMID: 37496901 PMCID: PMC10366438 DOI: 10.1016/j.heliyon.2023.e18060] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/28/2023] Open
Abstract
This review summarizes the applications of some of the advanced materials. It included the synthesis of several nanoparticles such as metal oxide nanoparticles (e.g., Fe3O4, ZnO, ZrOSO4, MoO3-x, CuO, AgFeO2, Co3O4, CeO2, SiO2, and CuFeO2); metal hydroxide nanosheets (e.g., Zn5(OH)8(NO3)2·2H2O, Zn(OH)(NO3)·H2O, and Zn5(OH)8(NO3)2); metallic nanoparticles (Ag, Au, Pd, and Pt); carbon-based nanomaterials (graphene, graphene oxide (GO), graphitic carbon nitride (g-C3N4), and carbon dots (CDs)); biopolymers (cellulose, nanocellulose, TEMPO-oxidized cellulose nanofibers (TOCNFs), and chitosan); organic polymers (e.g. covalent-organic frameworks (COFs)); and hybrid materials (e.g. metal-organic frameworks (MOFs)). Most of these materials were applied in several fields such as environmental-based technologies (e.g., water remediation, air purification, gas storage), energy (production of hydrogen, dimethyl ether, solar cells, and supercapacitors), and biomedical sectors (sensing, biosensing, cancer therapy, and drug delivery). They can be used as efficient adsorbents and catalysts to remove emerging contaminants e.g., inorganic (i.e., heavy metals) and organic (e.g., dyes, antibiotics, pesticides, and oils in water via adsorption. They can be also used as catalysts for catalytic degradation reactions such as redox reactions of pollutants. They can be used as filters for air purification by capturing carbon dioxide (CO2) and volatile organic compounds (VOCs). They can be used for hydrogen production via water splitting, alcohol oxidation, and hydrolysis of NaBH4. Nanomedicine for some of these materials was also included being an effective agent as an antibacterial, nanocarrier for drug delivery, and probe for biosensing.
Collapse
Affiliation(s)
- Hani Nasser Abdelhamid
- Advanced Multifunctional Materials Laboratory, Chemistry Department-Faculty of Science, Assiut University, Egypt
- Nanotechnology Research Centre (NTRC), The British University in Egypt (BUE), Suez Desert Road, El-Sherouk City, Cairo 11837, Egypt
| |
Collapse
|
8
|
Song L, Zhu Y, Wang J, Wu T, Zhou S, Zhang X, Tang J, Wang J, Lin D, Chen G. Inorganic phosphate regulated high luminescence NaYF 4:Yb 3+, Er 3+ as an iron ion fluorescent nanoprobe. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 300:122903. [PMID: 37290241 DOI: 10.1016/j.saa.2023.122903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/08/2023] [Accepted: 05/18/2023] [Indexed: 06/10/2023]
Abstract
The iron ion in industrial circulating cooling water is an important indicator for early warning of equipment corrosion and control level. It is interesting to construct an upconversion luminescence iron ion nanoprobe with a common inorganic phosphate water treatment agent. Herein, inorganic phosphate sodium hexametaphosphate (SHMP) was used to regulate the morphology and functionalization of NaYF4:Yb3+, Er3+ upconversion luminescent nanoprobe (UCNPs) and applied to fluorometric detection of trace Fe(III) in water based on the fluorescence quenching which is caused by the selective coordination between hexametaphosphate on the surface of UCNPs and Fe(III). The structure, morphology, and luminous intensity of UCNPs were regulated by disodium hydrogen phosphate (ADSP), sodium tripolyphosphate (STPP) and sodium hexametaphosphate(SHMP). The UCNPs functionalized with SHMP has high sensitivity and selectivity for Fe(III) detection. The linear range and detection limit are 1.0-50 μM and 0.2 μM, respectively. The method has satisfactory results for the detection of trace Fe(III) in industrial circulating cooling water.
Collapse
Affiliation(s)
- Lingyu Song
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yongbao Zhu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jinfeng Wang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Tingxia Wu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Shuo Zhou
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xianbo Zhang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Junping Tang
- School of Energy and Materials, Shanghai Thermophysical Properties Big Data Professional Technical Service Platform, Shanghai Engineering Research Center of Advanced Thermal Functional Materials, Shanghai Key Laboratory of Engineering Materials Application and Evaluation, Shanghai Polytechnic University, Shanghai 201209, China
| | - Jikui Wang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Donghai Lin
- School of Energy and Materials, Shanghai Thermophysical Properties Big Data Professional Technical Service Platform, Shanghai Engineering Research Center of Advanced Thermal Functional Materials, Shanghai Key Laboratory of Engineering Materials Application and Evaluation, Shanghai Polytechnic University, Shanghai 201209, China.
| | - Guosong Chen
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
9
|
Li J, Du N, Guan R, Zhao S. Construction of a Chiral Fluorescent Probe for Tryptophan Enantiomers/Ascorbic Acid Identification. ACS APPLIED MATERIALS & INTERFACES 2023; 15:23642-23652. [PMID: 37134180 DOI: 10.1021/acsami.3c02423] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Chiral recognition of amino acid enantiomers is critical in enhancing drug efficacy, detecting disease markers, and understanding physiological processes. Enantioselective fluorescent identification has gained attention among researchers due to its nontoxicity, easy synthesis, and biocompatibility. In this work, chiral fluorescent carbon dots (CCDs) were produced through a hydrothermal reaction followed by chiral modification. The fluorescent probe, Fe3+-CCDs (F-CCDs), was constructed by complexing Fe3+ with CCDs to differentiate between the enantiomers of tryptophan (Trp) and determine ascorbic acid (AA) through an "on-off-on" response. It is worth noting that l-Trp can greatly enhance the fluorescence of F-CCDs with a blue shift, whereas d-Trp does not have any effect on the fluorescence of F-CCDs. F-CCDs showed a low limit of detection (LOD) for l-Trp and l-AA, with an LOD of 3.98 and 6.28 μM, respectively. The chiral recognition mechanism of tryptophan enantiomers using F-CCDs was proposed based on the interaction force between the enantiomers and F-CCDs, as confirmed by UV-vis absorption spectroscopy and density functional theory calculations. The determination of l-AA by F-CCDs was also confirmed through the binding of l-AA to Fe3+ to release CCDs, as seen in UV-vis absorption spectra and time-resolved fluorescence decays. In addition, AND and OR gates were constructed based on the different responses of CCDs to Fe3+ and Fe3+-CCDs to l-Trp/d-Trp, demonstrating the significance of molecular-level logic gates in drug detection and clinical diagnosis.
Collapse
Affiliation(s)
- Jinqiu Li
- School of Materials Science & Engineering, University of Jinan, Jinan, Shandong 250022, China
| | - Ning Du
- School of Materials Science & Engineering, University of Jinan, Jinan, Shandong 250022, China
| | - Ruifang Guan
- School of Materials Science & Engineering, University of Jinan, Jinan, Shandong 250022, China
| | - Songfang Zhao
- School of Materials Science & Engineering, University of Jinan, Jinan, Shandong 250022, China
| |
Collapse
|
10
|
Hou X, Song Y, Lv Y, Wang P, Chen K, Li G, Guo L. Preparation of temperature-responsive nanomicelles with AIE property as fluorescence probe for detection of Fe 3+ and Fe 2. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 290:122254. [PMID: 36577245 DOI: 10.1016/j.saa.2022.122254] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 12/11/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Temperature-responsive nanomicelles with aggregation induced emission (AIE) property were prepared by the host-guest complexation of ferrocene functionalized tetraphenyl (TPE-Fc) and β-cyclodextrin-poly (N-isopropylacrylamide) (β-CD-(PNIPAM)7). The AIE chromophore TPE-Fc bound to the hydrophobic cavity of cyclodextrin serves as the core of micelles, and temperature sensitive PNIPAM serves as the shell to give the micelles good solubility. The size of the nanomicelles is about 100 nm. At the excitation wavelength of 340 nm, the strongest fluorescent emission peak was 421 nm. The introduction of cyclodextrin star polymer increased the fluorescence intensity of nanomicelles, thus improving the recognition of probe to Fe3+ and Fe2+. The fluorescent probe can quickly detect Fe3+ and Fe2+ in water within 5 min even in the presence of various interfering ions. The detection limits of Fe3+ and Fe2+ were 1.04 μM and 0.78 μM, respectively in the range of 10-90 μM. The formation of complex between the probe and Fe3+/Fe2+ was supported by Job's plot. The probe was successfully applied to the detection of Fe3+and Fe2+ in actual water sample with a good recovery. In addition, a possible sensing mechanism for the interaction of iron ions with amide bond groups of nanomicelles was proposed.
Collapse
Affiliation(s)
- Xinhui Hou
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Yifan Song
- Chu Kochen Honors College, Zhejiang University, Hangzhou 310058, China
| | - Yupeng Lv
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Peiyao Wang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Kun Chen
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Guiying Li
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China.
| | - Lei Guo
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China.
| |
Collapse
|
11
|
Li WD, Huang Y, Li SZ, Dong WK. A novel double-armed salamo-based probe for highly selective fluorescence detection of tryptophan and Al3+. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
12
|
Hu DC, Lin XR, Gao Q, Zhang JM, Feng H, Liu JC. Synthesis of novel coordination polymer Cd-MOF and fluorescence recognition of tryptophan. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
|
13
|
Zhao Y, Hao H, Wang H, Sun L, Zhang N, Zhang X, Liang J. Antibiotic quantitative fluorescence chemical sensor based on Zn-MOF aggregation-induced emission characteristics. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
14
|
Liu L, Li JM, Wang HJ, Zhang MD, Xi Y, Xu J, Huang YY, Zhang B, Li Y, Zhang ZB, Zhao ZF, Cui CX. Study on Fluorescence Recognition of Fe 3+, Cr 2O 72- and p-Nitrophenol by a Cadmium Complex and Related Mechanism. Molecules 2023; 28:1848. [PMID: 36838838 PMCID: PMC9965397 DOI: 10.3390/molecules28041848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
The effective detection of environmental pollutants is very important to the sustainable development of human health and the environment. A luminescent Cd(II) coordination complex, {[Cd(dbtdb)(1,2,4-H3btc)]·0.5H2O}n (1) (dbtdb = 1-(2,3,5,6-tetramethyl-4-((2-(thiazol-4-yl)-2H-benzo[d]imidazol-3(3aH)-yl)methyl)benzyl)-2,7a-dihydro-2-(thiazol-4-yl)-1H-benzo[d]imidazole, 1,2,4-H3btc = 1,2,4-benzenetricarboxylic acid), was obtained by hydrothermal reactions. Complex 1 has a chain structure decorated with uncoordinated Lewis basic O and S donors and provides good sensing of Fe3+, Cr2O72-, and p-nitrophenol with fluorescence quenching through an energy transfer process. The calculated binding constants were 3.3 × 103 mol-1 for Fe3+, 2.36 × 104 mol-1 for Cr2O72-, and 9.3 × 103 mol-1 for p-nitrophenol, respectively. These results show that 1 is a rare multiresponsive sensory material for efficient detection of Fe3+, Cr2O72-, and p-nitrophenol.
Collapse
Affiliation(s)
- Lu Liu
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Jian-Min Li
- School of Resources and Environment, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Hui-Jie Wang
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Meng-Di Zhang
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Yu Xi
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Jie Xu
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Yuan-Yuan Huang
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Bo Zhang
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Ying Li
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Zhen-Bei Zhang
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Zi-Fang Zhao
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Cheng-Xing Cui
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, China
| |
Collapse
|
15
|
Karbalaee Hosseini A, Pourshirzad Y, Tadjarodi A. A water-stable luminescent cadmium-thiazole metal-organic framework for detection of some anionic and aromatic pollutants. J SOLID STATE CHEM 2023. [DOI: 10.1016/j.jssc.2022.123676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
16
|
Kaur G, Komal, Kandwal P, Sud D. Sonochemically synthesized Zn (II) and Cd (II) based metal-organic frameworks as fluoroprobes for sensing of 2,6-dichlorophenol. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
17
|
Sahoo S, Mondal S, Sarma D. Luminescent Lanthanide Metal Organic Frameworks (LnMOFs): A Versatile Platform towards Organomolecule Sensing. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214707] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
18
|
A feasible and efficient voltammetric sensor based on electropolymerized L-arginine for the detection of L-tryptophan in dietary supplements. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
19
|
Jin X, Zhao L, Zhang X, Wang Z, Hao M, Li Y. Ligand as Buffer for Improving Chemical Stability of Coordination Polymers. ACS APPLIED MATERIALS & INTERFACES 2022; 14:42267-42276. [PMID: 36075001 DOI: 10.1021/acsami.2c14071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Chemical stability is one of the key concerns in coordination polymers (CPs). However, technologies to protect CPs against acidic or alkaline aqueous environments have yet to be implemented. Herein we demonstrate an approach for improving the pH stability by utilizing the ligand salt as buffering site to modify the unsaturated coordination sites of CPs. For the selective one-dimensional CP Eu-d-DBTA (d-H2DBTA = d-O,O'-dibenzoyltartaric acid) with a pH stability range of 6-8, the introduction of the ligand salt Na-d-DBTA extends the pH stability interval from 3 to 11. Crystallographic structure data reveal the formation of a Eu/Na-d-DBTA dynamic structure with Na-d-DBTA buffer sites on the Eu-O cluster of the Eu-d-DBTA skeleton. Benefiting from the dynamic single-crystal-to-single-crystal transformation, the buffer sites protect the skeleton from the impact of the acidic or alkaline aqueous environment. In addition, Eu/Na-d-DBTA produces stable photoluminescence properties and selective responses toward l-tryptophan (l-Trp) and further toward l-lysine (l-Lys) over the whole buffer capacity range of 3-11. Noticeably, other Ln/Na-d-DBTA CPs and star metal-organic frameworks also exhibit pH stability improvement when the ligand-as-buffer technology is used, which is significant for developing advanced inorganic-organic hybrid materials with superior functionality.
Collapse
Affiliation(s)
- Xiaomeng Jin
- School of Chemistry and Material Science, Heilongjiang University, Harbin 150080, P. R. China
| | - Lina Zhao
- School of Chemistry and Material Science, Heilongjiang University, Harbin 150080, P. R. China
| | - Xiaojun Zhang
- School of Chemistry and Material Science, Heilongjiang University, Harbin 150080, P. R. China
| | - Zicheng Wang
- School of Chemistry and Material Science, Heilongjiang University, Harbin 150080, P. R. China
| | - Ming Hao
- School of Chemistry and Material Science, Heilongjiang University, Harbin 150080, P. R. China
| | - Yuxin Li
- School of Chemistry and Material Science, Heilongjiang University, Harbin 150080, P. R. China
| |
Collapse
|
20
|
Europium-cadmium organic framework with zwitterionic ligand exhibiting tunable luminescence, CO2 adsorption and dye degradation. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
Huang L, Ran ZY, Liu X, Huang CM, Qin QP, Zhou J. One Luminescent Cadmium Iodide with Free Bifunctional Azole Sites as a Triple Sensor for Cu 2+, Fe 3+, and Cr 2O 72- Ions. Inorg Chem 2022; 61:14156-14163. [PMID: 35994725 DOI: 10.1021/acs.inorgchem.2c02324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The exploration of an excellent triple sensor for monitoring Cu2+, Fe3+, and Cr2O72- ions is of exceeding significance because of their serious effects on the human body. Herein, optically active 1H-3,5-bis(pyrazinyl)-1,2,4-triazole (Hbpt) with triazolyl and pyrazinyl groups was applied for the construction of a new type of organic hybrid cadmium iodide [Cd6I8(bpt)4(H2O)4]·2H2O (1) incorporating a hitherto-unknown [Cd3I4(H2O)2]2+ trimeric-cationic unit, which shows an orange light emission at 589 nm with a large Stokes shift of 246 nm. In virtue of the existence of free bifunctional azole sites as the receptors, 1 exhibits a highly selective and sensitive sensing property toward Cu2+, Fe3+, and Cr2O72- ions in aqueous solution with lower detection limits of 0.70∼4.46 ppm, which offers the sole example of cadmium iodide as an excellent triple sensor for detecting Cu2+, Fe3+, and Cr2O72- ions. Moreover, temperature-dependent luminescent determinations also reveal that 1 can be used as the potential luminescent molecular thermometer.
Collapse
Affiliation(s)
- Li Huang
- Chongqing Key Laboratory of Inorganic Functional Materials, College of Chemistry, Chongqing Normal University, Chongqing 401331, P.R. China
| | - Zi-You Ran
- Chongqing Key Laboratory of Inorganic Functional Materials, College of Chemistry, Chongqing Normal University, Chongqing 401331, P.R. China
| | - Xing Liu
- Chongqing Key Laboratory of Inorganic Functional Materials, College of Chemistry, Chongqing Normal University, Chongqing 401331, P.R. China
| | - Chun-Mei Huang
- Chongqing Key Laboratory of Inorganic Functional Materials, College of Chemistry, Chongqing Normal University, Chongqing 401331, P.R. China
| | - Qi-Pin Qin
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, Yulin 537000, P.R. China
| | - Jian Zhou
- Chongqing Key Laboratory of Inorganic Functional Materials, College of Chemistry, Chongqing Normal University, Chongqing 401331, P.R. China
| |
Collapse
|
22
|
Song L, Tian F, Liu Z. Lanthanide doped metal-organic frameworks as a ratiometric fluorescence biosensor for visual and ultrasensitive detection of serotonin. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
23
|
Liu QR, Liu B, Qiu MM, Miao WN, Xu L. A Europium MOF-based turn-off fluorescent sensor for tryptophan detection in human serum, urine and lake water. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
24
|
Selective detection of iron (III) using salicylic acid capped Tb3+-doped CaF2 colloidal nanoparticles. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
25
|
Abdelhamid HN. Removal of Carbon Dioxide using Zeolitic Imidazolate Frameworks: Adsorption and Conversion via Catalysis. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6753] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hani Nasser Abdelhamid
- Advanced Multifunctional Materials Laboratory, Department of Chemistry Assiut University Assiut Egypt
- Proteomics Laboratory for Clinical Research and Materials Science, Department of Chemistry Assiut University Assiut Egypt
- Nanotechnology Research Centre (NTRC) The British University in Egypt Cairo Egypt
| |
Collapse
|
26
|
Lunev AM, Belousov YA. Luminescent sensor materials based on rare-earth element complexes for detecting cations, anions, and small molecules. Russ Chem Bull 2022. [DOI: 10.1007/s11172-022-3485-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
27
|
Two Bi-MOFs with pyridylmulticarboxylate ligands showing distinct crystal structures and phosphorescence properties. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
28
|
Khattab TA, El-Naggar ME, Pannipara M, Wageh S, Abou Taleb MF, Abu-Saied MA, El Sayed IET. Green metallochromic cellulose dipstick for Fe(III) using chitosan nanoparticles and cyanidin-based natural anthocyanins red-cabbage extract. Int J Biol Macromol 2022; 202:269-277. [PMID: 35033529 DOI: 10.1016/j.ijbiomac.2022.01.067] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/10/2021] [Accepted: 01/10/2022] [Indexed: 11/24/2022]
Abstract
Environmentally-friendly, cyanidin(Cy)-based anthocyanin isolated from red-cabbage served as a spectroscopic probe imprinted onto chitosan nanoparticles (CsNPs), which were in turn integrated onto cellulose paper strip (CPS) as a host matrix to develop a metallochromic solid state sensor for real-time selective determination of ferric ions in an aqueous medium. The ferric transition metal ions in aqueous environments were detected using a novel, simple, portable, fast responsive, low-cost, real-time, environmentally safe, reversible and colorimetric sensor based on chitosan nanoparticles as a hosting biopolymer and cyanidin phenol chromophore as a biomolecular probe. In order to use the cyanidin biomolecule as a pH indicator and chelating agent, it was purified from red-cabbage and added into the CsNPs biosensor film. The colorimetric shift increased in direct proportion to the ferric ion concentration. As a result, the current research that was both qualitative and quantitative was carried out. While the Cy-CsNPs-CPS sensor showed high selectivity for ferric ions, no color change was detected for other metal cations. It was discovered that the detection process occurred as a result of a coordination complex formed between the active sites of phenolic cyanidin and Fe(III) ions.
Collapse
Affiliation(s)
- Tawfik A Khattab
- Institute of Textile Research and Technology, National Research Centre (Affiliation ID: 60014618), Dokki, Cairo, Egypt
| | - Mehrez E El-Naggar
- Institute of Textile Research and Technology, National Research Centre (Affiliation ID: 60014618), Dokki, Cairo, Egypt.
| | - Mehboobali Pannipara
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia; Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - S Wageh
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Physics and Engineering Mathematics Department, Faculty of Electronic Engineering, Menoufia University, Menouf 32952, Egypt
| | - Manal F Abou Taleb
- Department of Chemistry, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia; Department of Polymer Chemistry, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Nasr City, P.O. Box 7551, Cairo 11762, Egypt
| | - M A Abu-Saied
- Polymeric Materials Research Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTACITY), New Borg El-Arab City 21934, Alexandria, Egypt
| | | |
Collapse
|
29
|
Cao QL, Wang RT, Duan JY, Dong GY. Two stable cadmium(II) coordination polymers for fluorimetric detection of tetracycline and Fe3+ ions. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2021.122816] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
30
|
Zhou Z, Zhang J, Zhang Z, Yao Z, Wang Z. Enhanced fluorescence and ion adsorption/sensing properties of europium(III) complex with porous structure. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.122985] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
31
|
Hitabatuma A, Wang P, Su X, Ma M. Metal-Organic Frameworks-Based Sensors for Food Safety. Foods 2022; 11:382. [PMID: 35159532 PMCID: PMC8833942 DOI: 10.3390/foods11030382] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/11/2022] [Accepted: 01/21/2022] [Indexed: 01/07/2023] Open
Abstract
Food contains a variety of poisonous and harmful substances that have an impact on human health. Therefore, food safety is a worldwide public concern. Food detection approaches must ensure the safety of food at every step of the food supply chain by monitoring and evaluating all hazards from every single step of food production. Therefore, early detection and determination of trace-level contaminants in food are one of the most crucial measures for ensuring food safety and safeguarding consumers' health. In recent years, various methods have been introduced for food safety analysis, including classical methods and biomolecules-based sensing methods. However, most of these methods are laboratory-dependent, time-consuming, costly, and require well-trained technicians. To overcome such problems, developing rapid, simple, accurate, low-cost, and portable food sensing techniques is essential. Metal-organic frameworks (MOFs), a type of porous materials that present high porosity, abundant functional groups, and tunable physical and chemical properties, demonstrates promise in large-number applications. In this regard, MOF-based sensing techniques provide a novel approach in rapid and efficient sensing of pathogenic bacteria, heavy metals, food illegal additives, toxins, persistent organic pollutants (POPs), veterinary drugs, and pesticide residues. This review focused on the rapid screening of MOF-based sensors for food safety analysis. Challenges and future perspectives of MOF-based sensors were discussed. MOF-based sensing techniques would be useful tools for food safety evaluation owing to their portability, affordability, reliability, sensibility, and stability. The present review focused on research published up to 7 years ago. We believe that this work will help readers understand the effects of food hazard exposure, the effects on humans, and the use of MOFs in the detection and sensing of food hazards.
Collapse
Affiliation(s)
| | | | - Xiaoou Su
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (A.H.); (P.W.); (M.M.)
| | | |
Collapse
|
32
|
Shahat A, Elamin NY, Abd El-Fattah W. Spectrophotometric and Fluorometric Methods for the Determination of Fe(III) Ions in Water and Pharmaceutical Samples. ACS OMEGA 2022; 7:1288-1298. [PMID: 35036790 PMCID: PMC8756786 DOI: 10.1021/acsomega.1c05899] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Chemical sensors based on mesoporous silica nanotubes (MSNTs) for the quick detection of Fe(III) ions have been developed. The nanotubes' surface was chemically modified with phenolic groups by reaction of the silanol from the silica nanotubes surface with 3-aminopropyltriethoxysilane followed by reaction with 3-formylsalicylic acid (3-fsa) or 5-formylsalicylic acid (5-fsa) to produce the novel nanosensors. The color of the resultant 3-fsa-MSNT and 5-fsa-MSNT sensors changes once meeting a very low concentration of Fe(III) ions. Color changes can be seen by the naked eye and tracked with a smartphone or fluorometric or spectrophotometric techniques. Many experimental studies have been conducted to find out the optimum conditions for colorimetric and fluorometric determining of the Fe(III) ions by the two novel sensors. The response time, for the two sensors, that is necessary to achieve a steady spectroscopic signal was less than 15 s. The suggested methods were validated in terms of the lowest limit of detection (LOD), the lowest limit of quantification (LOQ), linearity, and precision according to International Conference on Harmonization (ICH) guidelines. The lowest limit of detection that was obtained from the spectrophotometric technique was 18 ppb for Fe(III) ions. In addition, the results showed that the two sensors can be used eight times after recycling using 0.1 M EDTA as eluent with high efficiency (90%). As a result, the two sensors were successfully used to determine Fe(III) in a variety of real samples (tap water, river water, seawater, and pharmaceutical samples) with great sensitivity and selectivity.
Collapse
Affiliation(s)
- Ahmed Shahat
- Chemistry
Department, Faculty of Science, Suez University, Suez 43518, Egypt
| | - Nuha Y. Elamin
- Chemistry
Department, College of Science, IMSIU (Imam
Mohammad Ibn Saud Islamic University), Riyadh 11623, Kingdom of Saudi Arabia
- Department
of Chemistry, Sudan University of Science
and Technology, P.O. Box 407, Khartoum 11111, Sudan
| | - Wesam Abd El-Fattah
- Chemistry
Department, College of Science, IMSIU (Imam
Mohammad Ibn Saud Islamic University), Riyadh 11623, Kingdom of Saudi Arabia
- Department
of Chemistry, Faculty of Science, Port-Said
University, Port-Said 43518, Egypt
| |
Collapse
|
33
|
Dowaidar M, Abdelhamid HN, Langel Ü. Improvement of Transfection with PepFects Using Organic and Inorganic Materials. Methods Mol Biol 2022; 2383:555-567. [PMID: 34766313 DOI: 10.1007/978-1-0716-1752-6_35] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
Cell-penetrating peptides (CPPs) are a promising non-viral vector for gene and drug delivery. CPPs exhibit high cell transfection, and are biocompatible. They can be also conjugated with organic and inorganic nanomaterials, such as magnetic nanoparticles (MNPs), graphene oxide (GO), metal-organic frameworks (MOFs), and chitosan. Nanomaterials offered a high specific surface area and provided relatively straightforward methods to be modified with biomolecules including CPPs and oligonucleotides (ONs). Novel nanomaterials conjugates with CPP/ONs complexes are therefore of interest for cell transfection with high efficiency. In this chapter, we described a summary of the non-viral vectors consisting of CPPs and nanomaterials. The book chapter also included a protocol to generate hybrid biomaterials consisting of CPPs and nanoparticles (NPs) for the delivery of oligonucleotides. The conjugation of NPs with CPPs serves as an effective platform for gene therapy with high cell transfection efficiency. The protocol is simple, offers high cell transfection compared to the CPPs-ONs complexes, and can be used for further improvements using external stimuli.
Collapse
Affiliation(s)
- Moataz Dowaidar
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.
| | - Hani Nasser Abdelhamid
- Advanced Multifunctional Materials Laboratory, Department of Chemistry, Faculty of Science, Assiut University, Assiut, Egypt
| | - Ülo Langel
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
- Institute of Technology, University of Tartu, Tartu, Estonia
| |
Collapse
|
34
|
Cellulose–metal organic frameworks (CelloMOFs) hybrid materials and their multifaceted Applications: A review. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214263] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
35
|
Upconversion nanoparticles/carbon dots (UCNPs@CDs) composite for simultaneous detection and speciation of divalent and trivalent iron ions. Anal Chim Acta 2021; 1183:338973. [PMID: 34627508 DOI: 10.1016/j.aca.2021.338973] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/11/2021] [Accepted: 08/19/2021] [Indexed: 01/18/2023]
Abstract
In this study, the application of carbon dots (CDs) modified NaYF4:Yb, Er nanoparticles (UCNPs@CDs) as the fluorescent nanoprobe for simultaneous detection of Fe2+ and Fe3+ was investigated. Fe3+ quantification (5-80 μmol L-1) was achieved, as a result of Fe3+ induced fluorescence quenching of UCNPs@CDs at 434 nm (under the 336 nm excitation). The chelate (Fe2+-phen) formed by Fe2+ and 1,10-phenanthroline had a broad absorption centered at 510 nm, due to inner filter effect (IFE), Fe2+ quantification (4-120 μmol L-1) was achieved as a result of (Fe2+-phen) induced fluorescence quenching of UCNPs@CDs at 545 nm (under the 980 nm excitation). The resultant UCNPs@CDs probe, with excellent anti-interference capability, favorable fluorescence stability, and convincing performance in real sample analysis, showed promising application in simultaneous detection of Fe2+ and Fe3+.
Collapse
|
36
|
Desai ML, Basu H, Saha S, Singhal RK, Kailasa SK. Fluorescence enhancement of bovine serum albumin gold nanoclusters from La3+ ion: Detection of four divalent metal ions (Hg2+, Cu2+, Pb2+ and Cd2+). J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116239] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
37
|
Xu D, Li C, Zi Y, Jiang D, Qu F, Zhao XE. MOF@MnO 2nanocomposites prepared using in situmethod and recyclable cholesterol oxidase-inorganic hybrid nanoflowers for cholesterol determination. NANOTECHNOLOGY 2021; 32:315502. [PMID: 33836512 DOI: 10.1088/1361-6528/abf692] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 04/09/2021] [Indexed: 06/12/2023]
Abstract
In this work, through thein situgrowth of MnO2nanosheets on the surface of terbium metal-organic frameworks (Tb-MOFs), MOF@MnO2nanocomposites are prepared and the fluorescence of Tb-MOFs is quenched significantly by MnO2. Additionally, the hybrid nanoflowers are self-assembled by cholesterol oxidase (ChOx) and copper phosphate (Cu3(PO4)2·3H2O). Then a new strategy for cholesterol determination is developed based on MOF@MnO2nanocomposites and hybrid nanoflowers. Cholesterol is oxidized under the catalysis of hybrid nanoflowers to yield H2O2, which further reduces MnO2nanosheets into Mn2+. Hence, the fluorescence recovery of Tb-MOFs is positively correlated to the concentration of cholesterol in the range of 10 to 360μM. The limit of detection (LOD) of cholesterol is 1.57μM. On the other hand, the hierarchical and confined structure of ChOx-inorganic hybrid nanoflowers greatly improve the stability of the enzyme. The activity of hybrid nanoflowers remains at a high level for one week when stored at room temperature. Moreover, the hybrid nanoflowers can be collected by centrifugation and reused. The activity of hybrid nanoflowers can continue at a high level for five cycles of determination. Therefore, it can be concluded that the hybrid nanoflowers are more stable and more economic than free enzymes, and they show a similar sensitivity and specificity to cholesterol compared with free ChOx. Finally, this strategy has been further validated for the determination of cholesterol in serum samples with satisfactory recoveries.
Collapse
Affiliation(s)
- Dawei Xu
- Key Laboratory of Life-Organic Analysis, Qufu Normal University, Qufu 273165, Shandong, People's Republic of China
- Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Qufu Normal University, Qufu 273165, Shandong, People's Republic of China
| | - Cong Li
- Key Laboratory of Life-Organic Analysis, Qufu Normal University, Qufu 273165, Shandong, People's Republic of China
- Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Qufu Normal University, Qufu 273165, Shandong, People's Republic of China
| | - Yuqiu Zi
- Key Laboratory of Life-Organic Analysis, Qufu Normal University, Qufu 273165, Shandong, People's Republic of China
- Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Qufu Normal University, Qufu 273165, Shandong, People's Republic of China
| | - Dafeng Jiang
- Department of Physical and Chemical Testing, Shandong Center for Disease Control and Prevention, Jinan 250014, People's Republic of China
| | - Fei Qu
- Key Laboratory of Life-Organic Analysis, Qufu Normal University, Qufu 273165, Shandong, People's Republic of China
- Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Qufu Normal University, Qufu 273165, Shandong, People's Republic of China
| | - Xian-En Zhao
- Key Laboratory of Life-Organic Analysis, Qufu Normal University, Qufu 273165, Shandong, People's Republic of China
- Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Qufu Normal University, Qufu 273165, Shandong, People's Republic of China
| |
Collapse
|
38
|
Abdelhamid HN. Dehydrogenation of sodium borohydride using cobalt embedded zeolitic imidazolate frameworks. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122034] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
39
|
Abdelhamid HN, Sharmoukh W. Intrinsic catalase-mimicking MOFzyme for sensitive detection of hydrogen peroxide and ferric ions. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105873] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
40
|
Abdelhamid HN, Badr G. Nanobiotechnology as a platform for the diagnosis of COVID-19: a review. NANOTECHNOLOGY FOR ENVIRONMENTAL ENGINEERING 2021. [PMCID: PMC7988262 DOI: 10.1007/s41204-021-00109-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A sensitive method for diagnosing coronavirus disease 2019 (COVID-19) is highly required to fight the current and future global health threats due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV 2). However, most of the current methods exhibited high false‐negative rates, resulting in patient misdiagnosis and impeding early treatment. Nanoparticles show promising performance and great potential to serve as a platform for diagnosing viral infection in a short time and with high sensitivity. This review highlighted the potential of nanoparticles as platforms for the diagnosis of COVID-19. Nanoparticles such as gold nanoparticles, magnetic nanoparticles, and graphene (G) were applied to detect SARS-CoV 2. They have been used for molecular-based diagnosis methods and serological methods. Nanoparticles improved specificity and shorten the time required for the diagnosis. They may be implemented into small devices that facilitate the self-diagnosis at home or in places such as airports and shops. Nanoparticles-based methods can be used for the analysis of virus-contaminated samples from a patient, surface, and air. The advantages and challenges were discussed to introduce useful information for designing a sensitive, fast, and low-cost diagnostic method. This review aims to present a helpful survey for the lesson learned from handling this outbreak to prepare ourself for future pandemic.
Collapse
Affiliation(s)
- Hani Nasser Abdelhamid
- Advanced Multifunctional Materials Laboratory, Department of Chemistry, Faculty of Science, Assiut University, Assiut, Egypt
| | - Gamal Badr
- Laboratory of Immunology, Zoology Department, Faculty of Science, Assiut University, Assiut, Egypt
| |
Collapse
|
41
|
Tran YBN, Nguyen PTK. Lanthanide metal–organic frameworks for catalytic oxidation of olefins. NEW J CHEM 2021. [DOI: 10.1039/d0nj05685e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Two isostructural metal–organic frameworks (MOFs), termed Ln-MOF-589 (Ln = La, Ce), were developed for the catalytic oxidation of olefins.
Collapse
Affiliation(s)
- Y. B. N. Tran
- Future Materials & Devices Laboratory
- Institute of Fundamental and Applied Sciences
- Duy Tan University
- Ho Chi Minh City 700000
- Vietnam
| | - Phuong T. K. Nguyen
- Future Materials & Devices Laboratory
- Institute of Fundamental and Applied Sciences
- Duy Tan University
- Ho Chi Minh City 700000
- Vietnam
| |
Collapse
|
42
|
Hadjiivanov KI, Panayotov DA, Mihaylov MY, Ivanova EZ, Chakarova KK, Andonova SM, Drenchev NL. Power of Infrared and Raman Spectroscopies to Characterize Metal-Organic Frameworks and Investigate Their Interaction with Guest Molecules. Chem Rev 2020; 121:1286-1424. [DOI: 10.1021/acs.chemrev.0c00487] [Citation(s) in RCA: 150] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | - Dimitar A. Panayotov
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Mihail Y. Mihaylov
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Elena Z. Ivanova
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Kristina K. Chakarova
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Stanislava M. Andonova
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Nikola L. Drenchev
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| |
Collapse
|
43
|
Gao E, Zhu M, Zhang Y, Kosinova M, Fedin VP, Wu S. Logic operation for differentiation and speciation of Fe
3+
and Fe
2+
based on two‐dimensional metal–organic frameworks with tunable emissions. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.6129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Enjun Gao
- School of Chemical Engineering University of Science and Technology Liaoning Anshan Liaoning China
- The Key Laboratory of the Inorganic Molecule‐Based Chemistry of Liaoning Province and Laboratory of Coordination Chemistry Shenyang University of Chemical Technology Shenyang Liaoning China
| | - Mingchang Zhu
- The Key Laboratory of the Inorganic Molecule‐Based Chemistry of Liaoning Province and Laboratory of Coordination Chemistry Shenyang University of Chemical Technology Shenyang Liaoning China
| | - Ying Zhang
- The Key Laboratory of the Inorganic Molecule‐Based Chemistry of Liaoning Province and Laboratory of Coordination Chemistry Shenyang University of Chemical Technology Shenyang Liaoning China
| | - Marina Kosinova
- Nikolaev Institute of Inorganic Chemistry Siberian Branch of the Russian Academy of Sciences Novosibirsk Russia
| | - Vladimir P. Fedin
- Nikolaev Institute of Inorganic Chemistry Siberian Branch of the Russian Academy of Sciences Novosibirsk Russia
| | - Shuangyan Wu
- The Key Laboratory of the Inorganic Molecule‐Based Chemistry of Liaoning Province and Laboratory of Coordination Chemistry Shenyang University of Chemical Technology Shenyang Liaoning China
| |
Collapse
|
44
|
Wang SD, Xie LX, Zhao YF, Wang YN. A dual luminescent sensor coordination polymer for simultaneous determination of ascorbic acid and tryptophan. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 242:118750. [PMID: 32731144 DOI: 10.1016/j.saa.2020.118750] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/09/2020] [Accepted: 07/12/2020] [Indexed: 06/11/2023]
Abstract
Simultaneous high sensitivity detection of biomolecules is important for research in medicine, living cells and environmental samples. In this work, a water stable coordination polymer, [Cd2(bptc)(4,4'-bpy)(H2O)3]ˑH2O 1 (H4bptc = 2,3,3',4'-biphenyl tetracarboxylic acid, 4,4'-bpy = 4,4'-bipyridine), was designed and successfully synthesized as a luminescent sensor for simultaneous recognition of Ascorbic Acid (AA) and L-Tryptophan (L-Trp) based on luminescent -OFF and -ON, respectively. Importantly, the proposed sensing system showed an excellent performance with high KSV values of 4.85 × 104 M-1, 9.60 × 107 M-1 and low limit of detection (LOD) of 0.28 nM, 63 nM, respectively. In addition, the probable mechanisms are also discussed. The luminescent quenching behavior by AA can be mainly attributed to the static resonance energy transfer between complex 1 and the analytes. Whereas the enhancing effect of L-Trp comes from the intrinsic strong luminescence for L-Trp itself and photo-competitive mechanism between CP 1 sensor and L-Trp, supposedly. In addition, the repeatability of both systems were also investigated.
Collapse
Affiliation(s)
- Shao-Dan Wang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Lan-Xin Xie
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Yu-Fei Zhao
- Key Laboratory of Ecological Security for Water Source Region of Mid-line of Southto-North Water Diversion Project of Henan Province, Collaborative Innovation Center of Water Security for Water Source Region of Mid-line of South-to-North Diversion Project of Henan Province, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Yan-Ning Wang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, Henan 464000, China.
| |
Collapse
|
45
|
Abdelhamid HN, Goda MN, Said AEAA. Selective dehydrogenation of isopropanol on carbonized metal–organic frameworks. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.nanoso.2020.100605] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
46
|
Pyridine functionalized carbon dots for specific detection of tryptophan in human serum samples and living cells. Microchem J 2020. [DOI: 10.1016/j.microc.2019.104579] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
47
|
Jia P, Wang Z, Zhang Y, Zhang D, Gao W, Su Y, Li Y, Yang C. Selective sensing of Fe 3+ ions in aqueous solution by a biodegradable platform based lanthanide metal organic framework. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 230:118084. [PMID: 32000062 DOI: 10.1016/j.saa.2020.118084] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 01/08/2020] [Accepted: 01/20/2020] [Indexed: 05/25/2023]
Abstract
As a significant metal ion in the environmental and biological systems, excess or shortage of Fe3+ from the organism can cause a host of diseases. So it is very urgent to explore an explicit, rapid and recoverable method for the detection of Fe3+ ions. Herein, a novel and flexible ligand containing 12 carboxyl groups (BHM-COOH) is used for the structure of a series of luminescent Eu3+/Tb3+-metal-organic frameworks (MOFs). A reliable and convenient luminescent detection platform is constructed by combining polylactic acid (PLA) film with Eu0.24Tb0.76-BHM-COOH. More importantly, the luminescent platform can highly sensitive to sense Fe3+ ions through fluorescence quenching (Stern-volmer constant Ksv = 1.27 × 104 M-1 for Fe(NO3)3), and detection limit can be as low as 4.47 μM. The sensing mechanism is ascribed to the fluorescence quenching caused by the competitive absorption between Eu0.24Tb0.76-BHM-COOH and Fe3+ ion. At the same time, the sensor can be reused many times. These exciting results indicate that Eu0.24Tb0.76-BHM-COOH film can serve as a promising multi-responsive luminescent sensor for environmental pollutant monitoring.
Collapse
Affiliation(s)
- Peng Jia
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Zhonghao Wang
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Yongfeng Zhang
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Dan Zhang
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Weichen Gao
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Yan Su
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Youbing Li
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400054, PR China.
| | - Chaolong Yang
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400054, PR China.
| |
Collapse
|
48
|
Abdelhamid HN. Salts Induced Formation of Hierarchical Porous ZIF‐8 and Their Applications for CO
2
Sorption and Hydrogen Generation via NaBH
4
Hydrolysis. MACROMOL CHEM PHYS 2020. [DOI: 10.1002/macp.202000031] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Hani Nasser Abdelhamid
- Advanced Multifunctional Materials LaboratoryDepartment of ChemistryAssiut University Assiut 71516 Egypt
| |
Collapse
|
49
|
Pang S, Liu S. Dual-emission carbon dots for ratiometric detection of Fe 3+ ions and acid phosphatase. Anal Chim Acta 2020; 1105:155-161. [PMID: 32138914 DOI: 10.1016/j.aca.2020.01.033] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 12/28/2019] [Accepted: 01/14/2020] [Indexed: 12/12/2022]
Abstract
We have developed a simple and convenient route to prepare fluorescent carbon dots with dual emission peaks respectively at 470 and 570 nm. The prepared dual-emission carbon dots can be used for ratiometric detection of Fe3+ ions in the range from 0 to 50 μmol·L-1 with 0.8 μmol·L-1 detection limit based on the fluorescence quenching at 570 nm. The quenched fluorescence induced by Fe3+ ions could be recovered by pyrophosphate. We further used the carbon dots-Fe3+ ions-pyrophosphate mixed system for ratiometric detection of acid phosphatase in the range from 0.08 to 6.75 μg·mL-1 with 0.01 μg·mL-1 detection limit.
Collapse
Affiliation(s)
- Shu Pang
- College of Chemistry, Chemical Engineering and Environmental Engineering, Liaoning Shihua University, Fushun, 113001, China.
| | - Siyu Liu
- College of Life and Health Sciences, Northeastern University, Shenyang, 110000, China.
| |
Collapse
|
50
|
Goda MN, Abdelhamid HN, Said AEAA. Zirconium Oxide Sulfate-Carbon (ZrOSO 4@C) Derived from Carbonized UiO-66 for Selective Production of Dimethyl Ether. ACS APPLIED MATERIALS & INTERFACES 2020; 12:646-653. [PMID: 31823597 DOI: 10.1021/acsami.9b17520] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Methanol dehydration process to dimethyl ether (DME) has been considered as one of the main routes to produce clean fuel, that is, DME. Thus, efficient catalysts are highly required for selective production of DME. Herein, UiO-66 was used as a precursor for the synthesis of zirconium oxide sulfate embedded carbon (ZrOSO4@C). The synthesis method involves a one-step carbonization of UiO-66 in the presence of sulfuric acid (10 wt %). Material characterizations using X-ray diffraction, X-ray photoelectron spectroscopy, Fourier transform infrared, and Raman spectroscopy approve the formation of the high crystalline phase of ZrOSO4@C. Nitrogen adsorption-desorption isotherms and high-resolution transmission electron microscopy confirm the mesopore structure of the materials. Acidity analysis using pyridine temperature-programmed desorption and isopropanol dehydration corroborates that ZrOSO4@C has weak and intermediate acidic sites making ZrOSO4@C an effective catalyst for methanol dehydration to DME. The materials offered full conversion (100%) with excellent selectivity (100%) at a relatively low temperature (250 °C). The catalyst exhibited a long-term stability for 120 h. Based on these results, DME is produced efficiently in terms of conversion, selectivity, and long-term stability.
Collapse
|