1
|
Lerdsri J, Jakmunee J, Reanpang P. Development of a sensitive electrochemical method to determine amitraz based on perylene tetracarboxylic acid/mesoporous carbon/Nafion@SPCEs. Mikrochim Acta 2024; 191:228. [PMID: 38558104 DOI: 10.1007/s00604-024-06308-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/09/2024] [Indexed: 04/04/2024]
Abstract
A cutting-edge electrochemical method is presented for precise quantification of amitraz (AMZ), a commonly used acaricide in veterinary medicine and agriculture. Leveraging a lab-made screen-printed carbon electrode modified with a synergistic blend of perylene tetracarboxylic acid (PTCA), mesoporous carbon (MC), and Nafion, the sensor's sensitivity was significantly improved. Fine-tuning of PTCA, MC, and Nafion ratios, alongside optimization of the pH of the supporting electrolyte and accumulation time, resulted in remarkable sensitivity enhancements. The sensor exhibited a linear response within the concentration range 0.01 to 0.70 μg mL-1, boasting an exceptionally low limit of detection of 0.002 μg mL-1 and a limit of quantification of 0.10 μg mL-1, surpassing maximum residue levels permitted in honey, tomato, and longan samples. Validation with real samples demonstrated high recoveries ranging from 80.8 to 104.8%, with a relative standard deviation below 10%, affirming the method's robustness and precision. The modified PTCA/MC/Nafion@SPCE-based electrochemical sensor not only offers superior sensitivity but also simplicity and cost-effectiveness, making it a pivotal tool for accurate AMZ detection in food samples. Furthermore, beyond the scope of this study, the sensor presents promising prospects for wider application across various electrochemical analytical fields, thereby significantly contributing to food safety and advancing agricultural practices.
Collapse
Affiliation(s)
- Jamras Lerdsri
- Department of Livestock Development, Veterinary Research and Development Center (Upper Northern Region), Lampang, 52190, Thailand
| | - Jaroon Jakmunee
- Department of Chemistry, Center of Excellence for Innovation in Chemistry, and Material Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Preeyaporn Reanpang
- Department of Chemistry, Faculty of Science and Technology, Thammasat University, Lampang, 52190, Thailand.
| |
Collapse
|
2
|
Sun M, Wang X, Ding Y, Feng J. Titania hybridized melamine–formaldehyde aerogel for online in-tube solid-phase microextraction of polycyclic aromatic hydrocarbons prior to HPLC–DAD. Mikrochim Acta 2022; 189:456. [DOI: 10.1007/s00604-022-05572-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/06/2022] [Indexed: 11/24/2022]
|
3
|
Loussala HM, Han S, Feng J, Sun M, Feng J, Fan J, Pei M. Mesoporous silica hybridized by ordered mesoporous carbon for in-tube solid-phase microextraction. J Sep Sci 2020; 43:3655-3664. [PMID: 32662596 DOI: 10.1002/jssc.202000129] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 06/30/2020] [Accepted: 07/11/2020] [Indexed: 12/27/2022]
Abstract
To enhance the extraction performance, a mesoporous silica was modified with ordered mesoporous carbon for solid-phase microextraction. Three stainless-steel wires coated with the mesoporous material were placed in a polyetheretherketone tube for getting an extraction tube. The tube was coupled to high-performance liquid chromatography with diode array detector, and the online analysis system was constructed. Then its extraction performance was evaluated using hydrophobic polycyclic aromatic hydrocarbons, phthalates, and hydrophilic neonicotinoids. The best selectivity was presented for polycyclic aromatic hydrocarbons. Several main conditions were optimized such as sampling volume, sampling rate, methanol concentration in the sample, and desorption time, a rapid and sensitive analytical method was established toward polycyclic aromatic hydrocarbons. The analytical method exhibited wide linear range from 0.017 to 15 µg/L with acceptable correlation coefficients more than 0.9990, limits of detection in 0.005-0.020 µg/L, limits of quantification ranging from 0.017 to 0.066 µg/L as well as large enrichment factors of 377-2314. It was successfully applied to detect trace polycyclic aromatic hydrocarbons in some real water samples including tap water, snow water, and domestic sewage.
Collapse
Affiliation(s)
- Herman Maloko Loussala
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, P. R. China
| | - Sen Han
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, P. R. China
| | - Juanjuan Feng
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, P. R. China
| | - Min Sun
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, P. R. China
| | - Jiaqing Feng
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, P. R. China
| | - Jing Fan
- School of Pharmaceutical Sciences, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, P. R. China
| | - Meishan Pei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, P. R. China
| |
Collapse
|
4
|
Li C, Sun M, Ji X, Han S, Feng J, Guo W, Feng J. Triazine‐based organic polymers@SiO
2
nanospheres for sensitive solid‐phase microextraction of polycyclic aromatic hydrocarbons. J Sep Sci 2019; 43:622-630. [DOI: 10.1002/jssc.201900941] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/22/2019] [Accepted: 10/29/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Chunying Li
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of ShandongSchool of Chemistry and Chemical Engineering, University of Jinan Jinan 250022 P.R. China
| | - Min Sun
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of ShandongSchool of Chemistry and Chemical Engineering, University of Jinan Jinan 250022 P.R. China
| | - Xiangping Ji
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of ShandongSchool of Chemistry and Chemical Engineering, University of Jinan Jinan 250022 P.R. China
| | - Sen Han
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of ShandongSchool of Chemistry and Chemical Engineering, University of Jinan Jinan 250022 P.R. China
| | - Jiaqing Feng
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of ShandongSchool of Chemistry and Chemical Engineering, University of Jinan Jinan 250022 P.R. China
| | - Wenjuan Guo
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of ShandongSchool of Chemistry and Chemical Engineering, University of Jinan Jinan 250022 P.R. China
| | - Juanjuan Feng
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of ShandongSchool of Chemistry and Chemical Engineering, University of Jinan Jinan 250022 P.R. China
| |
Collapse
|
5
|
Hou X, Tang S, Wang J. Recent advances and applications of graphene-based extraction materials in food safety. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.07.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Ji X, Sun M, Li C, Han S, Wang X, Tian Y, Feng J. Bare polyprolylene hollow fiber as extractive phase for in‐tube solid‐phase microextraction to determine estrogens in water samples. J Sep Sci 2019; 42:2398-2406. [DOI: 10.1002/jssc.201900010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 04/26/2019] [Accepted: 04/26/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Xiangping Ji
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of ShandongSchool of Chemistry and Chemical EngineeringUniversity of Jinan Jinan P. R. China
| | - Min Sun
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of ShandongSchool of Chemistry and Chemical EngineeringUniversity of Jinan Jinan P. R. China
| | - Chunying Li
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of ShandongSchool of Chemistry and Chemical EngineeringUniversity of Jinan Jinan P. R. China
| | - Sen Han
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of ShandongSchool of Chemistry and Chemical EngineeringUniversity of Jinan Jinan P. R. China
| | - Xiuqin Wang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of ShandongSchool of Chemistry and Chemical EngineeringUniversity of Jinan Jinan P. R. China
| | - Yu Tian
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of ShandongSchool of Chemistry and Chemical EngineeringUniversity of Jinan Jinan P. R. China
| | - Juanjuan Feng
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of ShandongSchool of Chemistry and Chemical EngineeringUniversity of Jinan Jinan P. R. China
| |
Collapse
|
7
|
Chen Z, Wang T, Guo M, Chang H, Zhou H, Wang Y, Ye J, Chu Q, Huang D. Electrophoretic analysis of polyamines in exhaled breath condensate based on gold-nanoparticles microextraction coupled with field-amplified sample stacking. Talanta 2019; 198:480-486. [PMID: 30876590 DOI: 10.1016/j.talanta.2019.02.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 01/26/2019] [Accepted: 02/03/2019] [Indexed: 12/29/2022]
Abstract
In this work, citrate-capped gold-nanoparticles (citrate-AuNPs) have been firstly used for selective extraction of trace polyamines, putrescine (Put) and cadaverine (Cad), followed by field-amplified sample stacking (FASS) coupled with capillary electrophoresis and capacitively coupled contactless conductivity detection (FASS-CE-C4D). Put and Cad were extracted by electrostatic attractions between the amine group of the polyamines and the citrate ligands adsorbed on the surfaces of AuNPs. AuNPs microextraction (AuNPs-ME) effectively shortened preparation time (50 min) by introducing ultrasound, and the required sample extraction volume was only 1 mL. Furthermore, a synergistic enrichment strategy based on off-line AuNPs-ME and on-line FASS significantly improved the detection sensitivity, making the enrichment factors up to 1726-1887 times. Under the optimum conditions, Put and Cad could be well separated from the potential coexisting substances and then directly determined by CE-C4D without derivatization. Due to its low sample consumption, high sensitivity (LODs: 0.070-0.17 ng mL-1), and acceptable recoveries (90-105%), this AuNPs-ME/FASS-CE-C4D method provides a rapid, economical and eco-friendly approach for direct determination of polyamines in human exhaled breath condensate, and has potential application prospects in preliminary noninvasive diagnosis of oral and respiratory inflammation.
Collapse
Affiliation(s)
- Zheyan Chen
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Tingting Wang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Mengnan Guo
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Hui Chang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Huan Zhou
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Ying Wang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Jiannong Ye
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Qingcui Chu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China.
| | - Dongping Huang
- Shanghai Putuo District People's Hospital, Shanghai 200060, China.
| |
Collapse
|
8
|
Guo H, Chen G, Ma J, Jia Q. A triazine based organic framework with micropores and mesopores for use in headspace solid phase microextraction of phthalate esters. Mikrochim Acta 2018; 186:4. [DOI: 10.1007/s00604-018-3060-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 10/18/2018] [Indexed: 12/25/2022]
|
9
|
Ji X, Feng J, Wang X, Tian Y, Li C, Luo C, Sun M. Diamond nanoparticles coating for in-tube solid-phase microextraction to detect polycyclic aromatic hydrocarbons. J Sep Sci 2018; 41:4480-4487. [DOI: 10.1002/jssc.201800862] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/20/2018] [Accepted: 10/08/2018] [Indexed: 12/30/2022]
Affiliation(s)
- Xiangping Ji
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong; School of Chemistry and Chemical Engineering; University of Jinan; Jinan P. R. China
| | - Juanjuan Feng
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong; School of Chemistry and Chemical Engineering; University of Jinan; Jinan P. R. China
| | - Xiuqin Wang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong; School of Chemistry and Chemical Engineering; University of Jinan; Jinan P. R. China
| | - Yu Tian
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong; School of Chemistry and Chemical Engineering; University of Jinan; Jinan P. R. China
| | - Chunying Li
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong; School of Chemistry and Chemical Engineering; University of Jinan; Jinan P. R. China
| | - Chuannan Luo
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong; School of Chemistry and Chemical Engineering; University of Jinan; Jinan P. R. China
| | - Min Sun
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong; School of Chemistry and Chemical Engineering; University of Jinan; Jinan P. R. China
| |
Collapse
|
10
|
Hou X, Tang S, Guo X, Wang L, Liu X, Lu X, Guo Y. Preparation and application of guanidyl-functionalized graphene oxide-grafted silica for efficient extraction of acidic herbicides by Box-Behnken design. J Chromatogr A 2018; 1571:65-75. [PMID: 30150113 DOI: 10.1016/j.chroma.2018.08.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 08/06/2018] [Accepted: 08/09/2018] [Indexed: 12/12/2022]
Abstract
A highly selective and efficient extraction material was synthesized through the functionalization of guanidyl onto the graphene oxide-grafted silica via a simple chemical modification, which was designed and proposed to improve the enrichment capacity for acidic herbicides. The extraction material was confirmed by scanning electron microscopy, Fourier transform infrared spectrometry, X-ray photoelectron spectrometry, thermal gravimetric analyzer and zeta potential analysis. Theoretical adsorption energies, static- and dynamic-state binding experiments, and comparative experiments with various adsorbents were investigated to elucidate the adsorption mechanism. The introduction of guanidyl endowed the sorbent with stronger Lewis base property and electron-donating ability, hence, excellent extraction recoveries for acidic herbicides could be obtained. Besides, electrostatic and π-π interactions were considered as two major driving impetuses in the adsorption process. Single-factor experiment and response surface methodology were utilized for the optimization of extraction and desorption conditions. Under the optimized conditions, the wide linearities were obtained with correlation coefficients ranging from 0.9904 to 0.9980, and the method detection limits were in the range of 0.5-2 μg L-1. The relative standard deviation values of the recoveries of five different extractions were 3.0-7.1%. Coupled with high performance liquid chromatography, the as-proposed method was successfully applied to detect five acidic herbicides in Lycium barbarum (Goji). It turned out that the proposed method provided a promising perspective for the selective extraction and determination of polar acidic compounds in complex samples.
Collapse
Affiliation(s)
- Xiudan Hou
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; School of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Sheng Tang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Xingxiang Guo
- Shanghai Institute of Technology, School of Chemical and Environmental Engineering, Shanghai 200000, China
| | - Licheng Wang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Xia Liu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Xiaofeng Lu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Yong Guo
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| |
Collapse
|
11
|
Ghaemmaghami M, Yamini Y, Amanzadeh H, Hosseini Monjezi B. Electrophoretic deposition of ordered mesoporous carbon nitride on a stainless steel wire as a high-performance solid phase microextraction coating. Chem Commun (Camb) 2018; 54:507-510. [DOI: 10.1039/c7cc08273h] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
An electrophoretic deposition approach was developed to fabricate a robust ordered mesoporous carbon nitride (MCN) coating for solid-phase microextraction.
Collapse
Affiliation(s)
| | - Y. Yamini
- Department of Chemistry
- Tarbiat Modares University
- Tehran
- Iran
| | - H. Amanzadeh
- Department of Chemistry
- Tarbiat Modares University
- Tehran
- Iran
| | - B. Hosseini Monjezi
- Industrial Protection Division
- Research Institute of Petroleum Industry
- Tehran
- Iran
| |
Collapse
|